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First of all.... thanks to the organizers for putting this together, and all
participants for a high level stimulating profound discussion which illustrates
how fascinating this subject is! Seriously, only thing missing is...

Where all is

understood!



What is this talk about

The necessity of a field theory perspective
Hydrodynamics is neither transport nor string theory!

Introduction to the field theory of hydrodynamics
Our knowledge of hydrodynamics rewritten as symmetries and free energy
minimization

Disadvantage Unlike other approaches, EoS,viscosity,polarizability etc.
black boxes. Limited insight on microscopic physics (beyond “thermalizes
fast, has these symmetries” and causality consequences )

Advantage Some insights easy (viscosity,polarization,E-M tensor, role of
gauge symmetries... )
Considering the ambiguities apparent in last few weeks, very useful!



Λ STAR
collaboration

1701.06657

A spectacular experimental result. A common question: but what have we
learned? My take is...



Hydro is not (just) transport! Nor string theory! Hydro is hydro!
Its constitutents are usually neither billiard balls not black holes!
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Hydro very good but ”micro” and ”macro” DoFs talk to each other!
Convergence of both Boltzmann (reliant on molecular chaos, corrections
expanded by Occupancy number ) and AdS/CFT (Nc ) suspect
But fluid appears ”perfect”, viscosity low to vanishing!
Lagrangian hydrodynamics , assuming ”instant thermalization”
Action ↔ Free energy, Fluctuations/correlations ↔ Functional integrals



Lets set-up EFT around local equilibrium (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(x

µ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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Local equilibrium⇒ Maximize s ⇒ Minimize F → S ⇔︸︷︷︸
Legendre

F

The system is a Fluid if it’s Lagrangian obeys some symmetries subject to
local minima of free energy. Solutions generally break these, Excitations
(Sound waves, vortices etc) can be thought of as ”Goldstone bosons”.
Causality can be checked by linearizing and finding dispersion relation



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφ

I∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B (actually b =

√
B )

In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = -F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ǫµαβγǫIJK ∂αφ

I∂βφ
J∂γφ

K

(A useful formula is db
d∂µφI

∂νφI = uµuν − gµν )

Equation of state chosen by specifying F (b) . “Ideal”: ⇔ F (B) ∝ b2/3

b is identified with the entropy and bdF (B)
dB with the microscopic temperature.

uµ fixed by uµ∂µφ
∀I = 0 . Vortices become Noether currents of

diffeomorphisms!
This is all really smart, but why?



Hydrodynamics is based on three scales

lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro

lmicro stochastic, lmfp dissipative. If lmicro ∼ lmfp soundwaves

Of amplitude so that momentum Psound ∼ (area)λ (δρ) cs ≫ T

And wavenumber ksound ∼ Psound

Survive (ie their amplitude does not decay to Esound ∼ T ) τsound ≫ 1/T

Transport: Beyond Molecular chaos AdS/CFT: Beyond large Nc
It turns out Polarization, gauge symmetries mess this lmicro hyerarchy!



Ideal hydrodynamics and the microscopic scale
The most general Lagrangian is

L = T 4
0F

(
B

T 4
0

)

, B = T 4
0 detBIJ , BIJ =

∣
∣∂µφ

I∂µφJ
∣
∣

Where φI=1,2,3 is the comoving coordinate of a volume element of fluid.

NB: T0 ∼ Λg microscopic scale, includes thermal wavelength and g ∼ N2
c

(or µ/Λ for dense systems ). T0 → ∞ ⇒ classical limit
It is therefore natural to identify T0 with the microscopic scale!

Kn behaves as a gradient, T0 as a Planck constant!!!



At T0 < ∞ quantum and thermal fluctuations can produce sound waves
and vortices, “weighted” by the usual path integral prescription!

L→ lnZ Z =

∫

Dφi exp
[

−T 4
0

∫

F (B)d4x

]

, 〈O〉 ∼ ∂lnZ
∂...

(

eg.
〈

T xµνT
x′

µν

〉

=
∂2lnZ

∂gµν(x)∂gµν(x′)

)

T0 ∼ n−1/3 , unlike Knudsen number, behaves as a ”Planck constant”.EFT
expansion and lattice techniques should give all allowed terms and
correlators. Coarse-graining will be handled here!



The big problem with Lagrangians... usually only non-dissipative terms
But there are a few ways to fix it. We focus on coordinate doubling
(Galley,but before Morse+Feschbach)

Dissipative
extension
of Hamiltons
principle

anti−dissipative

dissipative

L =
1

2

(

mẋ2 − wx2
︸ ︷︷ ︸

SHO

)

→
(
mẋ+

2 − wx2+
)

︸ ︷︷ ︸
L1

−
(
mẋ−

2 − wx2−
)

︸ ︷︷ ︸
L2

+α (ẋ+x− − ẋ−x+)
︸ ︷︷ ︸

K

two sets of equations, one with a damped harmonic oscillator, the other
“anti-damped”. Navier-Stokes and Israel-Stewart (GT,D.Montenegro, PRD,
(2016)) Functional integrals/Lattice also possible!



For analytical calculations fluid can be perturbed around a hydrostatic
(φI = ~x ) background

φI = ~x+ (~πL)
︸︷︷︸
sound

+ (~πT )
︸︷︷︸
vortex

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov cascade, Viscosity from turbulence when frequency≃ energy?



And we discover a fundamental problem: Vortices carry arbitray small
energies but stay put! No S-matrix in hydrostatic solution!

Llinear = ˙~πL
2 − c2s(∇.~πL)2︸ ︷︷ ︸
sound wave

+ π̇T
2

︸︷︷︸
vortex

+Interactions(O
(
π3, ∂π3, ...

)
)

Unlike sound waves , Vortices can not give you “free particles”, since they
do not propagate: They carry energy and momentum but stay in the same
place! Can not expand such a quantum theory in terms of free particles.

Physically: “quantum vortices” can live for an arbitrary long time, and
dominate any vacuum solution with their interactions. This does not mean
the theory is ill-defined, just that its strongly non-perturbative!
Lattice: Tommy Burch,GT, 1502.05421 In ideal limit, Indications of a 1st
order transition between turbulent and hydrostatic phases! Need viscous
corrections, fluctuation/dissipation on lattice (BIG project!) But also
Polarization might help here!



And chemical potential?
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

φI → φIe
iα , L(φI, α) = L(φI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(φI, α) = L(φI, α+ y(φI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy



What is ideal hydro? A conceptual difficulty!

Entropy conserved always at maximum at each point in spacetime

Local isotropy in the comoving frame
But polarization non-zero at equilibrium if particles have spin!

Circulation is conserved (Kelvins theorem/Nother current for deformations)
But polarization “absorbs and emits” angular momentum!

Continuum limit when you break up cells, intensive results stay the same
But each particle carries discrete spin unit!

With polarization, only the first has a chance of being realized even in the
ideal limit



Back to those length scales... lmicro︸ ︷︷ ︸

∼s−1/3,n−1/3

≪ lmfp
︸︷︷︸

∼η/(sT )

≪ Lmacro

It is clear first ’stochastic’ scale controls polarization:

• Vorticity is a ”collective” excitation, while polarization is given by
microstate counting, ↔ fluctuations

• Polarization a 2-particle correlation, reducing entropy f(s1|s2)

• In planar limit fermion polarization typically Nc-suppressed
Gauge boson polarization not gauge invariant!

Understanding role of polarization is ”similar” to understanding role of
fluctuations. Not a conserved quantity so lagrangians help!



Combining polarization with the ideal hydrodynamic limit, defined as

(i) The dynamics within each cell is faster than macroscopic dynamics,
and it is expressible only in term of local variables and with no explicit
reference to four-velocity uµ (gradients of flow are however permissible,
in fact required to describe local vorticity).

(ii) Dynamics is dictated by local entropy maximization, within each cell,
subject to constraints of that cell alone. Macroscopic quantities are
assumed to be in local equilibrium inside each macroscopic cell

(iii) Only excitations around a hydrostatic medium are sound
waves,vortices

(i-iii) ,with symmetries and EFT define the theory



So how do we implement polarization?
In comoving frame, polarization described by a representation of a ”little
group” of the volume element.
Need local ∼ SO(3) charges and unambiguus definition of uµ (sµ ∝ Jµ)

Ψµν|comoving = −Ψνµ|comoving = exp



−
∑

i=1,2,3

αi(φI)T̂i
µν





For particle spinor, vector, tensor... repreentations possible.
For ”many incoherent particles” RPA means only vector representation
remains
Similar to Xin-Li Sheng’s ”continuus spin”



Chemical shift symmetry, SO(3)α1,2,3 → SO(3)α1,2,3(φI)

αi → αi +∆αi (φI) ⇒ L(b, yαβ = uµ∂
µΨαβ)

yµν ≡ µi for polarization vector components in comoving frame

This way we ensured spin current flows with uµ.

Note that it is not a proper chemical potential (it it would be there would
be 3 phases attached to each φI) as yµν not invariant under symmetries of
φI. yµν ”auxiliary” polarization field



How to combine polarization with local equilibrium?

Since polarization decreases the entropy by an amount proportional to the
DoFs and independent of polarization direction

b→ b
(
1− cyµνy

µν +O
(
y4
))

, F (b) → F (b, y) = F
(
b
(
(1− cy2

))

c > 0 ferrovortetic c < 0 antiferrovortetic (like ferromagnetic but for
vorticity!)
Other terms break requirement (i)

First law of thermodynamics,

dE = TdS − pdV − JdΩ → dF (b) = db
dF

db
+ dy

dF

d(yb)



Energy-momentum tensor
Not uniquely defined

Canonical defined as the Noether charge for translations, could be negative
because of ∼ ∂L

∂(∂ψi)
∂ψj

Belinfante-Rosenfeld ∼ δS
δgµν

symmetric independent of spin, no non-

relativistic limit

Which is the source for ∂µT
µν = 0 ? Not clear as...



The problem: Too many degrees of freedom

8 degrees of freedom,5 equations (e, p, ux,y,z, y
µν). One can include

the antisymmetric part of Tµν and match equations but...

No entropy maximization If spin waves and sound waves separated, in
comoving volume their ratio is arbitrary... but it should be decided by
entropy maximization!

I suspect EFTs based on Tµν (Hong Liu,Florkowski and collaborators) will
have this problem



Solution clear: make polarization always proportional to vorticity,

yµν ∼ χ(T )(e+ p) (∂µuν − ∂νuµ)

extension of Gibbs-Duhem to angular momentum uniquely fixes χ via
entropy maximization. For a free energy F to be minimized

dF =
∂F
∂V

dV +
∂F
∂e
de+

∂F
∂ [Ωµν]

d [Ωµν] = 0

where [Ωµν] is the vorticity in the comoving frame.
THis fixes χ . It also constrains the Lagrangian to be a Legendre transform
of the free energy just as in the chemical potential case, in a straight-
forward generalization of Nicolis,Dubovsky et al. Free energy always at
(local) minimum! (requirement (ii))



A qualitative explanation
Instant thermalization means vorticity instantly adjusts to angular
momentum, and is parallel to angular momentum. Corrections to this
will be of the relaxation type a-la Israel-Stewart

φ

Vector
quantity
1

Vector quantity 2
θ

Microscopic physics allows an arbitrary angle between vorticity and
polarization. but such systems would have no hydrodynamic limit due
to requirement (iii) and the necessity for stability of relaxation dynamics

Radoslaw had a Killing-vector argument, here’s a qualitative expanation!



These techniques lead to a well-defined Euler-Lagrange equation of motion

∂µJ
µ
I = 0 , JµI = 4 c ∂ν

{

F ′
[

χ (χ+ 2 ∂Ω2χ)ωαβ g
α{µP

ν}β
I

]}

−

−F ′
[
uρP

ρµ
I

(
1− cy2 − 2cbχω2 ∂bχ

)]
− 2c

(
χ+ 2ω2 ∂Ω2χ

)
F ′×

×
{[

χω2 − 1

b
yρσ (uα∂

αKρ − uα∇ρKα)

]

P σµI − 1

6b
yρσε

µραβǫIJK∇σ∂αφ
J∂βφ

K

}

.

PµνK = ∂Kµ/∂(∂νφK) , ∇α = ∆αβ∂β

NB depends on accelleration, so ∆S = 0 ⇒ ∂µ∂ν
∂F

∂(∂µ∂νφI)
= ∂µ

∂F
∂(∂µφI)

JµI : Co-moving total angular momentum components!



Which can be linearized, φI = XI + πI
The ”free” (sound wave and vortex kinetic terms) part of the equation will
be

L = (−F ′(1))

{
1

2
(π̇)2 − c2s[∂π]

2

}

+

+fζ

{

π̈i∂iπ̇j + π̈iπ̈j + ∂jπ̇
i∂iπ̇j + ∂jπ̇iπ̈j+

+(2π̈i∂jπ̇i − 2π̈j∂
iπ̇j) + (π̈2

i − π̈2
j ) + (∂jπ̇

2
i − ∂iπ̇

2
j )

}

• Accelleration terms survive linearization

• Vortices and sound wave modes mix at ”leading” order. Change in
temperature due to sound wave changes polarizability, and that changes
vorticity



We decompose perturbation into sound and vortex φI = ∇φ+∇× ~Ω

(
ϕ
~Ω

)

=

∫

dwd3k

(
ϕ0

~Ω0

)

exp
[

i
(

~kφ,Ω.~x− wφ,Ωt
)]

The part parallel to k (“sound-wave”) will have a dispersion relation

w2
φ − c2sk

2
φ + 2βkφw

3
φ = 0

The vector part will be

(3k2Ω − 2kΩwΩ)j(~kΩ × ~Ω0)iw
2
Ω + w4Ω = 0



Dispersion relations show violation of causality!

Both phase and group velocity will generally go above unity



What I think is going on I: A lower limit of viscosity for polarized hydro

the Free energy F , and hence the local dynamics, is sensitive to an
accelleration. As is well-known (Ostrogradski’s theorem, Dirac runaway
solutions) such Lagrangians are unstable and lead to causality violation.
Note that one needs Lagrangians to see this!

To fix this issue, one would need to update the proportionality of y on Ω to
an Israel-Stewart type equation

τΩuα∂
αyµν + yµν = χ(T, y)Ωµν

with an appropriate relaxation time τΩ would resolve this issue. Just
like with Israel-Stewart, this requires the introduction of new DoFs with
relaxation-type dynamics, but, unlike non-polarized hydro,such terms are
required from the idea limit



G Torrieri,D Montenegro, 1807.02796 : Polarization are independent DoFs
which relax to vorticity

Anti-”Ferrovortetic” fluid non-causal mode (|dw/dk| ≥ 1 ) in UV unless

τ2Y ≥ 8cχ2(bo, 0)

(1− c2s)boF
′(bo)

,
η

s
≥ TτY

✵ ✶ ✷ ✸ ✹ ✺

✵�✵
✵�✷

✵�✹
✵�✁

✵�✂
✶�✵

✶�✷
✶�✹

❦

✄
❣

τY regulates quenching of vortices into polarization!



A bottom-up limit on viscosity from polarization!

τ2Y ≥ 8cχ2(bo, 0)

(1− c2s)boF
′(bo)

,
η

s
≥ TτY

Heuristically: At strong coupling vorticity quenches gradients on a
timescale 1/T



Dispersion relations show violation of causality!

Any theorist worth his salt knows
3 explanations for the same physical phenomenon

Mathematically : vorticity is an accelleration, instantaneus equilibration
to it non-causal. Causality from Relaxation , of spin-flip dynamics
“non-local collision term N. Weickgenannt et al , gradient expansion of
entropy M.Hongo,S.Shi ,...yield same conclusion! Top-down dissipation
constraint from polarizeability!



What I think is going on II
Fluctuation-dissipation: τΩ ∼ limω→0 ω

−1
∫
dt 〈yµνΩµν〉 exp(iωt)

polarization

Ω

Π
T polarization

No

With

Polarization makes vorticity aquire a ”soft gap” wrt angular momentum.
At small amplitudes, creating polarization is more advantageus than
creating vorticity. This means small amplitude vortices get quenched.



A more rigorous derivation
GT,Montenegro, 2004.10195 A tour de force calculation

τΩ, χ related by Kramers-Konig relation

χ = Re[F ] , τΩ = Im[F ] , F = Limw→∞

∫

eiwt 〈[Ωµν(t), yµν(0)]

Higgs-like mechanism spontaneus breaking rotation symmetries and
giving ”mass” to vortices

Tails of corelation functions have same behavior as fluctuating
hydrodynamics

Kubo formulae and correlators of both Tµν, J
µ
I



Ferrovortetic fluid Causal mode in IR remains

✵ ✷ ✹ ✻ ✽ ✶✵
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☎
❣
t✆
✝
✞
✟
✠
✡
✆✟
✡
❦
❃
❃
☛



But remember that ferromagnetic vaccum is unstable and

〈yµν〉 ≡ lim
k→0

ρ(ωT,L(k))

equivalent to Banks-Casher mode for unstable vacua!

EFT expansion unreliable in this case. Must construct gap equation, fluid
with ferro-magnetic like (ferrovortetic) phase transition!



Phenomenology

Dilepton and photon polarization sensitive to spin density in the early
phase, if measurable (can experiment double as a SG detector for
dileptons? Speranza et al, 1802.02479,Baym et al, 1702.05906

Vector mesons could help in both vector meson and longitudinal spin
discrepancies with hydro!

• Longitudinal polarization timescale different from transverse
(longitudinal spin might not be in equilibrium )

• Cooper-Frye formula cannot work if spin and vorticity already present.
Coalescence Wigner functions? Coherence?

Vector mesons might allow us to test this quantitatively since there is a
more information in their decay distribution...



W (θ, φ) ∼ cos2 θρ00+sin2 θ

(
ρ11 + ρ−1−1

2

)

−sin 2θ

(
cosφReρ10 − sinφImρ10√

2

)

+

+sin 2θ

(
cosφReρ−10 + sinφImρ−10√

2

)

ρ = U−1
θ,π





1 + n8
√
3(n1 − in2) 0√

3(n1 + in2) 1 + n8 0
0 0 1− 2n8



Uθ,φ

To verify would neet both both θ and φ of vector mesons and photons.

ΨMS =
∑

S1S2

(C)LS1S2 Ψ
q1
S1
Ψ22
S2

, L ≡ V orticity

Coherence: ρ2 = ρ Vorticity: S1,2 vs L . Work with Kayman Jhosef



Theory: Global/local equilibrium: 2007.09224
https://www.youtube.com/watch?v=oLYouz0YMHM (2 days ago)
Need to include fluctuations and pseudo-gauge dependence. Only way I can
see it possible is Zubarev hydrodynamics
expanded around equilibrium L ∼ lnZ , Z = ZT0 × ZΠ

ZT0 ⇒ ρ̂ = exp
[

−βµdΣν
(

T̂µν − n̂ν − ωµναĴα

)]

Each part of the free energy is pseudo-Gauge dependent, but free energy
invariant! Π̂µν also an operator determined by Crooks theorem

ZΠ ⇒ P (W )

P (−W )
∼ exp [∆S(〈Π〉)]

Any local equilibrium state will tend to global equilbrium via fluctuations
obeying detailed balance. Speaking of pseudo-gauge symmetries...

https://www.youtube.com/watch?v=oLYouz0YMHM


Another spectacular experimental result

CMS  1606.06198

BSchenke 1603.04349

H.W.Lin 1106.1608

1606.06198 (CMS) : When you consider geometry differences, hydro with
O (20) particles ”just as collective” as for 1000. So mean free path is really
small. What about thermal fluctuations? Nothing here is infinite, not even
Nc Also hydro applicability scale below color domain scale. colored hydro?



The formalism we introduced earlier is ok for quark polarization but
not gluon polarization: Gauge symmetry means one can exchange locally
angular momentum states for spin states. So vorticity vs polarization
is ambiguus. Separation in optics, parton spin structure requires a
preferred static frame,different from comoving frame

Using the energy-momentum tensor for dynamics is even more problematic
for spin Tµν aquires a ”pseudo-gauge” transformation

Tµν → Tµν +
1

2
∂λ
(
Φλ,µν +Φµ,νλ +Φν,µλ

)

Φ fully antisymmetric. T.Brauner, 1910.12224:
φ→ φ+ ζ(x), xµ → xν + ωµ(x), S → S But in a gauge theory, pseudo-

Gauge transformations are gauge transformations (Π̂µ → Π̂µ + Âµ )!
Large gauge configurations change Tµν



From global to gauge conserved currents
A reminder: Within Lagrangian field theory a scalar chemical potential is
added by adding a U(1) symmetry to system.

φI → φIe
iα , L(φI, α) = L(φI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(φI, α) = L(φI, α+ y(φI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy



Generalization from U(1) to generic group easy

α→ {αi} , exp (iα) → exp

(

i
∑

i

αiT̂i

)

One subtlety: Currents stay parallel to uµ but chemical potentials become
adjoint, since rotations in current space still conserved

y = Jµ∂µαi → yab = Jµa ∂µαb

Lagrangian still a function of dF (b, {µ})/dyab , “flavor chemical potentials”

If color was just a global symmetry same thing happens see CFL literature!
But need to covariantize w.r.t. local gauge symmetries



From global to gauge invariance! Lagrangian invariant under

{yab} → y′ab = U−1
ac (x)ycdUdb(x) , Uab(x) = exp

(

i
∑

i

αi(x)T̂i

)

However, gradients of x obviously change y .

yab → U−1
ac (x)ycdUbd(x) = U−1(x)acJ

µ
f UcfU

−1
fg ∂µαgUbg =

= U−1(x)acJ
µ
f Ucf∂µ

(

U−1
fg αdUbd(x)

)

− Jµa (U∂µU)fb αf

Only way to make lagrangian gauge invariant is

F
(
b, Jµj ∂µαi

)
→ F

(
b, Jµj (∂µ − U(x)∂µU(x))αi

)

Which is totally unexpected, profound and crazy



The swimming ghost!

F
(
b, Jµj ∂µαi

)
→ F

(
b, Jµj (∂µ − U(x)∂µU(x))αi

)

Means the ideal fluid lagrangian depends on velocity!. no real ideal fluid limit possible
the system “knows it is flowing” at local equilibrium! NB: For U(1)

T̂i → 1 , yab → µQ , uµ∂
µαi → Aτ

So second term can be gauged to a redefinition of the chemical potential
(the electrodynamic potentials effect on the chemical potential).

Cannot do it for Non-Abelian gauge theory, “twisting direction” in color
space It turns out this has an old analogue...



Nature, 1894

S. Montgomery (2003): How does a cat always fall on its feet without
anything to push themsevles against? The shape of spaces a cat can deform
themselves into defines a “set of gauges” a cat can choose without change
of angular momentum.



Purcell,Shapere+Wilczek,Avron+Raz : A similar process enables swimmers
to move through viscous liquids with no applied force

Gauge direction

Fluid
flow

Now imagine each fluid cell filled with a “swimmer”, with arms and legs
outstretched in “gauge” directions...



In ideal limit all currents proportional to uµ . But gauge symmetry requires
“ghost” excitations, proportional to gradients of currents, to not be physical.
So free energy HAS to depend on flow.
Classic on this, B. Bistrovic, R. Jackiw, H. Li, V. P. Nair and S. Y. Pi,
Phys. Rev. D 67, 025013 (2003) ,“NonAbelian fluid dynamics in Lagrangian
formulation,” missed this subtlety as no local equilibrium defined!



Whats going on? A more statistical mechanics perspective
We perturb the hydrostatic limit, where φI = XI , and isolate a transverse
mode (vortex) and a longitudinal mode (sound wave)

φI = XI + ~πsoundI + ~πvortexI , ∇.~πvortexI = ∇× ~πsoundI = 0

Since the derivative of the free energy w.r.t. b is positive, sound waves and
vortices do “work”. Let us now assume the system has a “color chemical
potential” in some direction Let us change the color chemical potential in
space according to

∆µ(x) =
∑

i

(
µi(x)

swim + µi(x)
swirl

)
T̂i , ∇i.µ

swim
i = ∇i×µswirli = 0

Because of gauge redundancy, the derivatives of the free energy with respect
to color (“color susceptibility”) will typically be negative. So the two can
balance!!!!



But this breaks the ”hyerarchy” of statistical mechanics
It mixes micro and macro perturbations!
In statistical mechanics, what normally distinguishes “work” from “heat”
is coarse-graining, the separation between micro and macro states.
Quantitatively, probability of thermal fluctuations is normalized by 1/(cV T )
and microscopic correlations due to viscosity are ∼ η/(Ts) . Since for a
usual fluid, there is a hyerarchy between microscopic scale, Knudsen number
and gradient

1

cV T
≪ η

(Ts)
≪ ∂uµ

Gauge symmetry breaks it, since it equalizes perturbations at both ends of
this!



Is there a Gauge-independent way of seeing this? Perhaps!
One can write the effective Lagrangian in a Gauge-invariant way using
Wilson-Loops . But the effective Lagrangian written this way will have an
infinite number of terms, in a series weighted by the characteristic Wilson
loop size. For a locally equilibrated system, this series does not commute
with the gradient. Just like with Polymers, the system should have multiple
anisotropic non-local minima which mess up any Knuden number expansion.
Some materials are inhomogeneus and anisotropic at equilibrium, YM could
be like this!

Lattice would not see it , as there are no gradients there. There is an
entropy maximum, and it is the one the lattice sees. The problems arise if
you ”coarse-grain” this maximum into each microscopic cell and try to do a
gradient expansion around this equilibrium, unless you have color neutrality.



Future project Rewrite all of this using

Zubarev hydrodynamics incorporating both microscopic and macroscopic
fluctuations

ρ̂(Tµν0 (x),Σµ, βµ) =
1

Z(Σµ, βµ)
exp

[

−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Crooks fluctuation theorem giving a dynamical off-equilibrium definition
of entropy

P (−W )/P (W ) = exp[∆S] , S ≃ Πµν∂
µβν



Conclusions

Hydrodynamics is not a limit of transport, AdS/CFT or any other
microscopic theory

Hydrodynamics is an EFT built around symmetries and entropy
maximization and should be treated as such

Once you realize this , generalizing it to theories with extra DoFs,
symmetries etc. becomes straight-forward.

Lots of things to do Gauge symmetry looks particularly interesting!


