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Polarization from vorticity CR:TA

Large global angular momentum created in noncentral heavy-ion collisions.

©

©

Orbital angular momentum is converted into spin
=

L. Adamczyk et al. (STAR), Nature 548 62-65

©

Connect spin polarization and vorticity!
How to describe this with fluid dynamics? (Talk by Enrico Speranza)

o Antisymmetric part of energy-momentum tensor describes conversion
between spin and orbital angular momentum

o Different choices of pseudo-gauge imply different physical interpretations
E. Speranza and NW, arXiv:2007.00138 (2020)

©

How to derive spin alignment with vorticity from microscopic theory?

©

o Kinetic theory with nonlocal collisions
o Equilibrium conditions?

o Calculate nonlocal collision term from quantum field theory.
o Use Wigner function.
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Local vs. nonlocal collisions CR:TA

o Nonrelativistic hydrodynamics with spin from kinetic theory studied long
time ago.

S. Hess and L. Waldmann, Zeitschrift fiir Naturforschung A 26, 1057 (1971)

o Assumes local collision term.

o No orbital angular momentum in collision.

o Spin is conserved separately!

o Hydrodynamic evolution describes diffusion of initial polarization.

o Spin alignment with vorticity cannot be described with local collisions.
o Need nonlocal collision term!

o Spin and orbital angular momentum are converted into one another.

o = Conversion between vorticity and polarization!

o How to calculate nonlocal collision term?
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Wigner function and equation of motion (R:ﬁ

o Wigner function: Wigner transformation of two-point function:

H.-Th. Elze, M. Gyulassy, and D. Vasak, Ann. Phys. 173 (1987) 462

W(x,p):/(zdﬂhyy‘e—%"'u: ot Dywie- 2.

o Dirac equation with general interaction term p = (1/h)0Line/OP:
(ihy -0 —m)t = hp

==>-Equation of motion for Wigner function
S. R. De Groot, W. A. Van Leeuwen, and C. G. Van Weert, Relativistic Kinetic Theory. Principles and
Applications (North-Holland, 1980)

ot

Cas E/(%m*”& ba(xa)pal) 1) -

Collision term

o lIdea: Include nonlocal collision term C,
== Expand Wigner function and collision term up to first order in
gradients (formally equivalent to i expansion).
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Clifford decomposition cR:TR

o Convenient decomposition (Clifford Algebra)
W = % (]-' + i P+ "V + 2y A+ %U“VSW>
also for collision term:
ReC :% <Df +iv°Dp + "Dy +7° v Day + %JWDSW) ,

1 ) 1
ImC =2 (Cf + i’ Cp +7* Cop + 727 Cap + 50“ Csw>

o Concept for free fields: Decompose equation of motion in Clifford algebra,

solve order by order in A.

NW, X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke, PRD100, 056018 (2019)
J.-H. Gao and Z.-T. Liang, PRD100, 056021(2019)

K. Hattori, Y. Hidaka, and D .-L. Yang, PRD100, 096011 (2019)

Z. Wang, X. Guo, S. Shi, and P. Zhuang, PRD 100 (2019) 014015

Y.-C. Liu, K. Mameda, and X.-G. Huang (2020),2002.03753

o Now: Additional complication through collision term.
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o Equation of motion for Wigner function =—>
p-V—mF
h

p"'F — ga,s“‘ 1%
h iz 1 prof M
—58 P + 56 pusaﬁ =+ mA

ga[uv'f] _ 6“Vaﬁpa.Aﬁ — mS*
ho -V
p-A
li o v
iz h praf
PP+ 7€ 0vSap

v h vo
p[“V ]+§6u ﬁaaAﬁ

hD}':
_hD'Py

hD,
—hD",

DL,
2hCrF,
hCP7

he,

—hC*,

—hCl”.
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Quantities of interest CR:TA

o Want to obtain energy-momentum and spin tensor
(see Enrico Speranza’s talk)
1
Thi = o [ 'pp” ("F-1DE) + O()

v 1 v
Saw” = ﬂ/dAPPASH

= #/aﬂlpp}\ (Za[#vu] _ EMVQBPQA,B _ }I,Dgu)

©

Problem: D{j and D%” not immediately given
— expand in most general tensor structure

o Assume: Spin effects at least O(h) == DJ; «x p* + O(h)
p"F — hD = p"F + O(1?)

©

No antisymmetric rank-two tensor at O(1) = D&" = O(h)
Can express currents up to first order.

(]

o Relevant transport equations:
p-OF = mCk, p-O0A" =mCl
with Cr = 2Cr and Cf = — Lerve?

m

Pquaﬁ-
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Spin in phase space CR:TA

©

In order to account for spin dynamics enlarge phase space
J. Zamanian, M. Marklund, and G. Brodin, NJP 12, 043019 (2010)

Introduce new phase-space variable s*
1. =
f(Xv paﬁ) = 5 I:]:(Xv p) -5 A(X7 p)]
Obtain F and A" via

F= / dS(p)f(x. p.s), A" = / dS(p) (. p.s)

with dS(p) = Y22 s §(s2 + 3)
Ensures constralnt

Same formalism as in case of classical spin
= suitable for hydrodynamic calculations
W. Florkowski, R. Ryblewski, and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)

S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar and R. Ryblewski, arXiv: 2002.03937, arXiv:2008.10976
(2020)

Exact, all quantum information about F and A* retained.

Simple, no need to go to matrix-valued distribution function.
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Boltzmann equation cnc’ﬁ

o Boltzmann equation
P Of(x,p,s) = m@[ﬂ )

1
Q:[ﬂ = E(CF —5- CA)
o Want to obtain collision term up to first order in gradients

C[f] = G[f] + h&ulf] -

Local contribution + Nonlocal contribution

o Starting point:
S. R. De Groot, W. A. Van Leeuwen, and C. G. Van Weert, Relativistic Kinetic Theory. Principles and
Applications (North-Holland, 1980)

p-OW = C

with

Co = 3 [ momge 7 (00 (=it T+ m)lov )

—p () [(ifry - 0 + m)p (x2)]a)
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Modified on-shell conditions CR:TA

o Modified on-shell condition

with

Mor = 5 [ e ¥ ([50) (1 0+ i ()

+1s () [(—ifry - 0 + m)p (x2)]a)

(]

By taking traces
(p* — m*)f = A + O(h%)
with )
m 5
M = ETr [(Epﬂyfﬁwyfy )5/\/]}
Quasiparticle approximation: assume solution of the form

f=md(p> —m’ — hom’)f

©

©

Expanding d-function up to first order:
M = 6m*5(p°> — m*)m f
o Next: Calculate C and M explicitly == obtain € and 91 by taking traces.

10/26



Power counting CRC.-;m

o "h-expansion": gradient expansion
h x gradient of Wigner function
< momentum or mass scale x Wigner function
o We treat all gradients on the same level, i.e.
o gradients in formal /-expansion of
w = wO 4 aw® 4 or?),
o gradients in expansion of
€= ¢ + hey + O(R?),
o and gradients in expansion of
f = foq + 6F
considered to be of same order.
o = f(® contains only equilibrium contributions.
o f) contains equilibrium and off-equilibrium contributions.

o ¢, is a functional only of f(©,
€ [f™M] would enter collision term at second order.

11/26



Calculation of collision term C CRC.-;m

Expand ensemble average in
Neglect initial correlations (molecular chaos).
Assume binary scattering (n = 2).

© © © o

Low-density approximation:
Identify initial Wigner function in collision term with interacting Wigner
function Wi, = W.

. 1 A T S S B
Cap = W Z /d x1d" xod" p1d” p2d”urd” uz
r,r2,51,52
1 1 1 1
X in{p1 — Su P2 = Sz, r|®as(p)|lpr + U2 P2 + §U2;51,52>in

2
i _ 1 1
X neXp(ﬁUj - xj) s, (p; + EUJ)VVin(X + X, pj)ur (P — 5“1),
s

outor= ] [ ool [(5) (m 5 4,

on (3-8 (§) om0+ me(-5),}
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Nonlocality expansion

o Wigner function varies slowly over interaction range
== Taylor expansion up to first order

W(x +x;, pj) = W(x + pj) + x; - OW(x + pj)

o Integrate over x; — d-functions

_ (27Th)6 4 4 4 4
Cop = 2(am*) Z d p1d” p2d” tnd U2

n,r2,s1,s2
1 1
X in{p1 — §U1,P2 2U2 I’1,f2\¢aﬁ(P)|P1 + 2Uz,Pz + 2le 51,Sz>

xHus,(p, Su) [WOx )30 w) — 1215 ()0, W (x, 1)) iy — 5 )

S. R. De Groot, W. A. Van Leeuwen, and C. G. Van Weert, Relativistic Kinetic Theory. Principles and
Applications (North-Holland, 1980)

o Consider contribution from local and nonlocal terms at first order in
gradients

cncftﬁ
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Local collision term cR:TR

o Local collision term:

¢[f] :/ dradC2dl’ WF(x, p1,51)f(x, p2,52) — F(x, p,s)f(x, p’,5)]
+/dr2 dS1(p) 2 £(x, p, 51)F (, pa, 52)

dr = d*ps(p? — m?)dS(p)
o Structure: Momentum and spin exchange + Spin exchange only

1
W =6"(p+p" — p1 - p2) 3 > hs(p8)herrr(p',5") hyra (P1,51) hsara (P2, 52)

spins
X (p,p'ir, r'|tlp1, p2i s1, ) (pr, p2i 1, ot p, ' s, 8')

vacuum scattering amplitude

™ v
W = hm E €uvaps' st p ni,h52,2(p2,52)(p,p2;r,r2|t+tT|p,p2;51,sz>
spins
with
1 _
hs(p,s) = {5sr - %Us(P)5 -7 ur(P)
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Calculation of nonlocal collision term | m:;m

o Nonlocal collision term:

B . (271'71)6 4 4 4 4
Caﬁ = Ih2(4m4) Z d p1d pzd U1d uz

ri,r2,s1,s2

1 1 1 1
X in{p1 — SuL P2 — Sl ri, | ®as(p)|pr + Sz, P2+ 5”2;51752>in

_ 1 1
x [ s + 5“1)(95,-5(4)(111))% W (x, pj)uy(pi — 5 uj)
j=1
o Integrate by parts
o Under s-integration and multiplied by scattering-matrix element:

_ 1
9y, {”s(Pj + §U)W(0)(X7 pj)ur(pj — Euj)

u;j=0
i

— —————(p; x 5;) - OFV(x, p;
2(PJ0+m)(pJ 5/) (X pJ)

o = Nonlocality of collision term results in position shift of distribution
functions A - 9f
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Calculation of nonlocal collision term Il CR:TA

o Integration by parts

(27Th) 4 4 4 4
Cop = h2(4m4) > d*prd* pad® uid® un
rn,rz2,s1,s2
(Pt — St pa — S s ra®as(p)|pr + Sii2, 2+ St st 52
in{P1 2 1, P2 5 2,1, R2|Pas(pP)|P1 5 2, P2 2 2, 51, 52)in
2 1 1
< [ as(pi + Euj)(agj.é(“)(uj))au W (x, pj)uy(pi — 5 u;)
j=1

three contributions:
o One contribution vanishes after inserting equilibrium distribution function
for £(0)
o One contribution proportional to momentum derivatives of scattering
amplitude

1 1 1 1
<p+§u1 2U2,P2+ U2yr l’2|t|P+*U1+2u27P2+ u2,51752>

is neglected: consistent with low-density approximation
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in
Statistical Physics (Courier Corporation, 1975)

o Off-shell contribution Cog_gpen!
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Cancellation of off-shell terms cR:Tﬁ

o Off-shell contributions both in § and in nonlocal collision term

p- 6f =m Q:on—shell + Am th'l?—shell

o Remember:
f=mé(p® — m*)f—hmom*8'(p° — m*)f
with )
—mé'(p°> — m*)om’ f = mp - OM
o Explicit calculation of 9t and €
1 : &)
pZ—mb’ M =mCg e
== Same off-shell terms on both sides of Boltzmann equation
o Off-shell contributions cancel!
o On-shell kinetic equation for f

5(p* — m*)p - Of = Conshen[f]
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Nonlocal collision term: result CR:TA

o Collect terms — intuitive result:
Q:[f] :/ drldrzdF/W [f(X =+ A17p1,51)
xf(x + Do, p2,52) — F(x + A, p,s)f (x + A", p',s")]

+/dr2 d51(p)QLBf(x+ A1,p,51)f(X+ Az,pz,ﬁz)

o Collision nonlocal, particle positions displaced by

AM — _ h/\ ENVQB

ufaﬁ"
2m(p -t + m) Putass

with £ = (1,0).
o Interpretation: Particles scatter with finite impact parameter and are
shifted before and after the collision.

o Contrast to massless case: Non-covariant distribution functions lead to
position shifts after Lorentz transformations even for free fields.
== Collision local in one frame — Collision nonlocal in different frame
J-Y. Chen, D.T. Son, and M. Stephanov, PRL 115 (2015) 021601

o Here: distribution functions covariant, position shifts through nonlocal
interactions.
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Equilibrium cncﬁﬁ

o Equilibrium condition: Collision term has to vanish.

o Ansatz for distribution function
F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, AP. 338, 32 (2013)
W. Florkowski, R. Ryblewski, and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)

1 h’ LV
feg(x, P, 5) = (@rh)® exp | —B(x) - p+ ZQHV(X)Zé 5(p* — M?)

B* - Lagrange multiplier for 4-momentum conservation

Spin potential Q#" - Lagrange multiplier for total angular momentum
conservation

o M - mass possibly modified by interactions

Dipole-moment tensor

e ©

[

1 G
Zé”/ = _ ;euua;fpasﬁ

o Insert into €[f] and expand up to first order in h.
— Zeroth-order collision term vanishes due to momentum conservation
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Consistency check: Vanishing zeroth-order polarization mm

o Could Lagrange multiplier of X" also start with zeroth order in A?
o For nonlocal collisions spin is no collisional invariant.

o Zeroth-order polarization would lead to large orbital angular momenta in
collisions by spin-to-orbital conversion, i.e. gradients of zeroth order.
= inconsistent with power-counting scheme

o If collisions are considered to be strictly local, spin is collisional invariant
—> ¥4 can be multiplied by spin potential with contributions starting at
zeroth order.

W. Florkowski, R. Ryblewski, and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)
o Here: Nonlocal terms are considered, spin is not conserved.

o = Leading-order polarization would lead to contradictions in
power-counting scheme.
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Equilibrium at first order CR:TR

At first order in 7i:
C[fg] = _/dr’drldrzﬁefﬁ'("ﬁ"z)

LV v v T ITv 1 h v v v v
|95 (Blpk + Ak — A7 - A7) = 10 3 (Tl 4 Y — B - )|

_ /dr2 dSl(p)dS'(pz)Qﬂe’ﬁ‘(””)

" v ! 1% 1 h 17 v v v
x {o,0 (a1 - 4+ (8 - A" - o B v E - m - mn )

o Conservation of total angular momentum (orbital+spin) in a collision
= g s b
o Conditions for vanishing of collision term at first order:
OupBy + 0ufu=0
Qu = W= —%(9[“6,,] = const.
a

wby) = apby — avby
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Equilibrium - discussion cnm

Discussion
o Collision term vanishes under conditions for global equilibrium!
o But not for (standard) local equilibrium with nonlocal collisions.

o Confirm known result from statistical quantum field theory:
In global equilibrium spin potential equal to thermal vorticity.

F. Becattini, PRL 108, 244502 (2012)
o Interpretation: When approaching equilibrium, non-vanishing vorticity

converts orbital angular momentum into spin through nonlocal collisions
==>Initially unpolarized fluid gets polarized!
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Hydrodynamics from kinetic theory (R:Ta

©

Calculate currents in HW pseudo-gauge: Originally derived for free fields
by applying Noether's theorem to Klein-Gordon Lagrangian for spinors

J. Hilgevoord and S. Wouthuysen, Nuclear Physics 40, 1 (1963)

o Here: obtain energy-momentum and spin tensor by pseudo-gauge
transformation from canonical tensors.

See Enrico Speranza's talk

Choice of pseudo-gauge transformation:

o Recover HVV tensors for zero interactions.
o Obtain physically meaningful equations of motion (see next slide).

©

o Result:
T = [ A e rx ) + 00,
sy = [drp (S — L piea)) £(x, p,s) + O
HW = p 5 &S *mp (x,p,5) + O(R%) .
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Equations of motion and collisional invariants (R:ﬁ

©

Using Boltzmann equation
0. hy = [ dr v efil =0,
hoxNSHLY = / dr gzg” el = ThH.
o Energy-momentum conserved in a collision

o Spin not conserved in nonlocal collisions < T4 = 0
= Conversion between spin and orbital angular momentum

o 7i ~0
(i) for local collisions, as spin is collisional invariant
(ii) in global equilibrium, as collision term vanishes

o With nonlocal collisions out of global equilibrium: dynamics dissipative
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Summary

©

© © o

Derivation of nonlocal collisions from quantum field theory
Start from equations of motion for Wigner function
Main assumptions: Gradient expansion and low density

Spin in phase space leads to simple and intuitive treatment of polarization
effects

Collision term contains local and nonlocal contributions
Off-shell effects cancel on both sides of Boltzmann equation

Nonlocal contribution to collision term can be expressed as position shifts
of distribution functions

Nonlocal collision term vanishes in global equilibrium
Then spin potential is equal to thermal vorticity
Nonlocal collisions are essential to obtain spin alignment with vorticity

Antisymmetric part of HW energy-momentum tensor describes conversion
between spin and orbital angular momentum in presence of nonlocal
collisions

cnc.-rm

25/26



Outlook CRC-TR211

o Comparison to alternative approach to nonlocal collision term:
Kadanoff-Baym equation
= See next talk by Xin-li Sheng
related works:

D .-L. Yang, K. Hattori, and Y. Hidaka, JHEP 20, 070 (2020)
Z. Wang, X. Guo, P. Zhuang, arXiv:2009.10930 (2020)

o Derive second-order dissipative hydrodynamics with spin using method of
moments.

G.S. Denicol, H. Niemi, E. Molnar, D.H. Rischke, PRD 85 (2012) 114047

o Dissipative corrections to Pauli-Lubanski vector including effects of
nonlocal collisions

o Possible explanation for local polarization of A-hyperon?

J. Adam et al. [STAR Collaboration], PRL 123, 132301 (2019)
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