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Systems with E, B, and J are controversial!
Two examples from:

Fukushima-Pu: 2001.00359 [hep-ph]
Fukushima-Hidaka-Yee: 2010.xxxxx
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Favors the canonical analysis and the density operator results
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Rotating and 
positively charged 
matter in B

Total angular momentum ?
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already included. In the analogy to the QCD spin physics, the angular momentum
identification as in Eq. (21) is known as the Ji decomposition.

3 Dirac fermions and physical and pure gauge potentials

Discussions on the gauge part are a little cumbersome, and in this article we will
mainly focus on the fermion part only, which, however, does not mean we drop the
gauge fields. Let us reiterate basic definitions from the previous overview. In the
canonical identification, in Eq. (10), the OAM and the SAM are given, respectively,
by

L ,can ⌘ �i †x ⇥ r , S ,can ⌘ �1
2
 ̄�5� , (22)

where we defined L
i ⌘ 1

2"
i jk

L
jk and S

i ⌘ 1
2"

i jk
S
jk . As we already discussed, L ,can

is not gauge invariant, thus it cannot be a physical observable supposedly. Then, what
about the Belinfante form? We can make a decomposition using Eq. (19). The latter
term may well be called the spin part, with which we can compute J

�µ⌫
 ,Bel according

to Eq. (21), and subtract added terms in Eq. (20). Some calculations yield,

S̃ ,Bel = �1
2
 ̄�5� � 1

2
ix ⇥ r( † ) . (23)

This expression is not gauge invariant, thus we shall redefine the spin to the same
form as the canonical one which is manifestly gauge invariant and move unwanted
terms to the orbital part. Thus, in this convention, we can reasonably adopt the
following definitions,

L ,Bel ⌘ �i †x ⇥ D , S ,Bel ⌘ S ,can . (24)

In the high-energy physics context, the above identification is called Ji’s orbital and
spin angular momentum of quarks. Again, we make a caution remark; the Belinfante
form has the total angular momentum that looks like the OAM, but this does not
mean that the spin vanishes. Some people may say that the latter in Eq. (24) cannot
be true since the Belinfante EMT has no antisymmetric part. This kind of criticism is
meaningful when we need to construct the angular momentum in terms of the EMT,
which is the case in the spin hydrodynamics for example [7, 8] 2. See also Refs. [9, 10]
for observable e�ects of di�erent spin tensors, which may be significant especially in
nonequilibrium [11]. Probably one way to define the spin part out from the Belinfante
symmetrized form of the EMT is the Gordon decomposition (as Berry defined the
gauge-invariant optical spin [12]) which is also applicable to massless theories. In
any case, if we do not have to refer to the EMT, Eq. (24) is just a natural way of our

2 K. F. thanks Wojciech Florkowski and Hidetoshi Taya for simulating conversations on this point
which seem not to be very consistent to each other and thus we just refer to their review and original
literature here.
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Canonical = Total Angular Momentum (gauge dep.?)

Belinfante = Angular Momentum of Matter

Difference = Angular Momentum of Electromagnetic Fields
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Charged object produces E and the Poynting vector goes 
around this object, leading to an electromagnetic J

12 Kenji Fukushima and Shi Pu

B

E m

Fig. 2 A charged thin sphere (red circle) and a magnetic moment at the center of the sphere. The
dipolar magnetic fields and the Coulomb electric fields make circulating Poynting vectors.

5 Feynman’s angular momentum paradox and possible relevance
to the relativistic nucleus-nucleus collision

Careful readers might have realized that the argument about J
field
z is essentially rooted

in Feynman’s angular momentum paradox in classical physics. The paradox is articu-
lated in The Feynman Lectures and the original setup is composed from a conductor
disk with a solenoid that controls the magnetic strength. For detailed analysis of
the original version of Feynman’s angular momentum paradox, see Ref. [21] for
example. Here, let us discuss a simplified version of Feynman’s angular momentum
paradox.

We suppose that a thin sphere is uniformly charged (whose total amount is denoted
by Q) and a finite magnetic moment m is fixed at the center of the sphere (see Fig. 2).
The electric (outside of the sphere) and the magnetic profiles are, respectively,

E =
Q

4⇡
x

r3 , B =
1

4⇡r3

✓
3m · xx

r2 � m

◆
. (38)

If m changes as a function of time, the magnetic field changes as well, which also
results in an induction electric field due to Ampère’s law. Then, the charged sphere
feels a moment of force under this induced electric field, Eind, and the sphere is
accelerated for rotation. The space integrated moment of force is, after some patient
calculations, found to take a form of

N =

π
dS · x ⇥ QEind

4⇡R2 = �Q €m
6⇡R
, (39)

where R denotes the radius of the sphere. Therefore, if m decreases, the sphere takes
a positive moment of force to acquire a mechanical angular momentum. The question
is; how can the angular momentum conservation law be satisfied? This phenomenon
may sound similar to the Einstein–de Haas e�ect, but one should recall two important
di�erences. One is that the object should be charge neutral in the Einstein–de Haas
e�ect, and another is that in this classical example there is no magnetization at all.
There are many variants of Feynman’s paradox, and they usually belong to classical
physics (no spin e�ects).

B from rotating matter 
(with the magnetic moment m)

OAM/SAM decomposition 13

Fig. 3 A net induced angular momentum with faster rotating positively and negatively charged par-
ticles. There are more positively charged particles in a plasma because of protons in the participant
particles.

Readers should be already aware of the resolution. As indicated in Fig. 2, the
electromagnetic field generates circulating Poynting vectors. Actually, from explicit
expressions of Eq. (38), we can obtain the angular momentum distribution as

x ⇥ (E ⇥ B) = Q

(4⇡)2r6 (r
2m � xx · m) . (40)

Therefore, the total angular momentum integrated in space outside of the sphere
turns out to be,

Jfield =
Qm

6⇡R
. (41)

It is obvious that the angular momentum in mechanical rotation originates from
the loss in Jfield, so that the total angular momentum is surely conserved. See
Ref. [22] for related discussions on the Poynting vector contributions in classical
electromagnetism. Interestingly this result of Eq. (41) was extended to the one-loop
QED level which turned out to be free from a short-distance cuto� [23].

In this classical example of Feynman’s paradox the essential point is that either E
or B changes to make a finite di�erence in x ⇥ (E ⇥ B) from which the mechanical
rotation is induced. The novelty in the quantum mechanical example seen in the
previous section is that quantum oscillations exhibit time dependence even for con-
stant E and B. In both cases the important lesson is that, as long as we prefer to use
the Belinfante improved form for the EMT and the angular momenta, the covariant
derivative in the matter sector makes all the expressions manifestly gauge invariant,
and then we can access the kinetic angular momentum of the matter which is not
necessarily conserved.

So far, we have been having general discussions not specifying any experimental
realizations at all. Let us now consider some possible applications to the high-energy
nucleus-nucleus collisions. It is known that the OAM in the non-central nucleus-
nucleus collision can reach a gigantic value as large as ⇠ 105~ as evaluated in the
AMPT model [24], supported by experimental data [25]. Here, we can make an order
of magnitude estimate of extra angular momentum from the decay of the magnetic
field using Eq. (37). Our following discussions may look di�erent from Ref. [26]
which addresses a possibility of the spin polarization by the induced electric fields.
There are some discrepancies from spatial inhomogeneity as well as temporally
decaying magnetic properties and also from hydrodynamic treatments, but we note
that microscopically underlying physics is common.

Sphere 
charged 
with Q
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Monopole + Charge
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Similar to a textbook example:

Magnetic Monopole

Electric Particle

Conserved AM

J = r × p + S −
1
2

̂r

Bosons have half integer J, 
while fermions integer J

B
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Magnetic Vortices

8

Fukushima-Hidaka-Yee: 2010.xxxxx

Angular momentum of superfluid vortex is 
topological, but that of magnetic vortex is not.

8

with D ⌘ r� ieneA. Instead of solving this equation directly, we would like to make the

problem close to a more conventional situation in condensed matter physics, by considering

the nonrelativistic reduction. Because the nonrelativistic energy is measured from the rest

mass energy m (where we use the natural unit system with c = 1), we should split the mass

term and rescale the field as

µ ! m+ µ̃ , �2 ! �m
2 + �̃2 , �!  p

2m
, (2.6)

where µ̃ denotes the nonrelativistic chemical potential. Equation (2.5) multiplied by 1/
p
2m

then becomes

(�̃2 + µ̃� eneA
0) +

D2

2m
 � �4

4m2
| |2 = 0 , (2.7)

where we have dropped a subleading term proportional to (µ̃� eneA
0)2/(2m).

We should solve Eq. (2.7) together with Eq. (2.4) for EM fields. For ⌫ = 0 Eq. (2.4) reads

r2
A

0 + ene| |2 + q = �ene

m
(µ̃� eneA

0)| |2 ' 0 , (2.8)

where we again drop the last term which is subleading according to the approximation

made in Eq. (2.7), while we still keep the kinetic term D2
/(2m) in Eq. (2.7). For notational

brevity, let us rename our variables as follows

�̃2 + µ̃ ! µ ,
�4

4m2
! g , A

0 =
µ

ene

a ,  !
r

µ

g
 . (2.9)

Here, we note that this µ is di↵erent from the original one in Eq. (2.5). Together with the

spatial components of Eq. (2.4), our equations finally become

(1� a) +
1

m
2
H

(r� ieneA)2 � | |2 = 0 , (2.10)

r⇥ (r⇥A) +m
2
V


A| |2 � i

2ene

�
 r † � †r 

��
= 0 , (2.11)

r2
a+ 2m2m

2
V

m
2
H

(| |2 + q̃) = 0 , (2.12)

where q̃ ⌘ (g/eneµ)q, and we also introduce the two typical mass scales as

m
2
H
⌘ 2mµ , m

2
V
⌘ (ene)2µ

mg
. (2.13)

Physically, 1/mH represents the coherent length of the field  , while 1/mV represents the

penetration length of the magnetic field. If the penetration length is smaller than the coher-

ent length, mV > mH , the Meissner screening e↵ect is dominant and the phase separation is

dimensionless static potential (~ E)

electric charge density
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Vortex Solution

9

more preferred than forming magnetic vortices, which corresponds to Type-I superconductiv-

ity. We are interested in Type-II superconductivity in the opposite regime with mH > mV .

The Ansatz for the vortex solution with the winding number ⌫ is

 = f(r) ei⌫' , a = a(r) , A
i = � ⌫

ene

"
ij
x
j

r2

⇥
1� h(r)

⇤
, (2.14)

where r ⌘
p

x2 + y2 and tan' ⌘ y/x. Introducing a dimensionless radial coordinate,

⇢ ⌘ mV r, we can rewrite the di↵erential equations (with 0 ⌘ d

d⇢
) as

� (⇢ f 0)0 +
⌫
2
h
2

⇢
f + � ⇢ f(f 2 � 1 + a) = 0 , (2.15)

⇢

✓
h
0

⇢

◆0

� f
2
h = 0 , (2.16)

1

⇢
(⇢ a0)0 +

2

�

m
2

m
2
V

(f 2 + q̃) = 0 , (2.17)

where � ⌘ m
2
H
/m

2
V
> 1. For the total charge neutrality condition, we impose the condition

Z

x

q̃ = �
Z

x

f
2
. (2.18)

This neutrality condition is demanded by the fact that the static potential would behave as

a(⇢ � 1) = Q

2⇡ log ⇢ if the total net charge Q is nonzero. The combination of (µ � eneA
0)

appears in the equations of motion and it plays a role of an e↵ective chemical potential. To

have a well-defined e↵ective chemical potential at spatial infinity, we should impose Q = 0.

We can numerically solve these di↵erential equations with appropriate boundary con-

ditions. Let us first consider the conventional “locally neutral” vortex solution without

coupling to electric field, so that a(r) = 0 simply. This can be achieved by choosing a space

dependent background charge density q̃(x) that locally neutralizes the net charge; that is,

f
2 + q̃ = 0, leading to a(r) = 0 from Eq. (2.17). Most Type-II vortices behave this way,

but there are examples where this does not happen in general; see Refs. [3, 4]. We will

be considering more general q̃(x) later when we discuss the total angular momentum. The

regularity of  at ⇢ = 0 requires f(0) = 0, and at infinity it should approach the vacuum

value of f(1) = 1. In the absence of a, thus, the boundary conditions should be

f(0) = 0 , f(1) = 1 , h(0) = 1 , h(1) = 0 . (2.19)

We can easily obtain the numerical solutions using the shooting method to satisfy these

boundary conditions. The left panel of Fig. 1 shows an example of the profile of the magnetic

vortex for � = 1.5. We see that h(⇢) extends more widely than f(⇢), reflecting mH > mV .
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Global Neutrality

Electric fields from local charge density
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local charge density and electric field certainly exist. We see that the profile of condensate

slightly shrinks as compared to the locally neutral case shown in the left panel.

Let us now compute the angular momenta carried by the matter and the EM fields. The

matter part of the angular momentum is

L
kin
z

=

Z

x

 
†
⇣~
i
D'

⌘
 , D' ⌘ @' � iene

~ A' , A' =
⌫~
ene

[1� h(r)] , (2.22)

where we reinstate ~ as a common unit for the angular momentum and also change

the variables back to r and '. We note that the boundary condition (2.21) guarantees

D'[f(r)ei⌫'] ! 0 as r ! 1, and the above integral is convergent. It should be mentioned

that the above form of the angular momentum using D' corresponds to the kinetic angular

momentum, that is the angular momentum carried by matter alone. We could have defined

the canonical angular momentum using @'. It is straightforward to find

L
can
z

=

Z

x

 
†
⇣~
i
@'

⌘
 = ⌫(2⇡~)µ

g

Z
R

0

dr r f
2(r) = ⌫~N , (2.23)

where N ⌘ µ

g

R
x f

2 is the total number of particles, and R is the size of the system in radial

direction. This expression is identical to the well-known one for the quantized angular

momentum of a superfluid vortex. Usually the canonical angular momentum represents the

total angular momentum, which is conserved. Alternatively we can consider the conserved

angular momentum as the sum of L
kin
z

and the EM contribution, L
EM
z

, i.e., L
kin,total
z

=

L
kin
z

+ L
EM
z

. Which of Lcan
z

or L
kin,total
z

is the relevant angular momentum depends on the

physical setup. In our present setup we can gradually turn on the magnetic field, so that

the magnetic vortex emerges. In this case, it makes sense to consider Lkin,total
z

, not Lcan
z

. If

we increased e gradually on top of a superfluid vortex, Lcan
z

would be a sensible choice, but

in reality we cannot change the gauge coupling constant.

With the explicit forms of the vortex profile and the associated vector potential, the

matter part of the angular momentum become

L
kin
z

= ⌫(2⇡~)µ
g

Z
R

0

dr r h(r) f 2(r) . (2.24)

The di↵erence from the canonical expression (2.23) is the presence of h(r) in the integrand.

Because h(r) decays when f(r) increases as in Fig. 1, we see that Lkin
z

is smaller than L
can
z

.

Let us next consider the EM contribution, i.e.,

L
EM
z

=

Z

x

⇥
x⇥ (E ⇥B)

⇤
z
. (2.25)

Canonical angular momentum looks a quantized AM 
of superfluid vortex…?
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FIG. 2. The integrand of Eq. (2.26) in terms of dimensionless variables for � = 1.5 andm2/m2
V
= 1,

which represents the local distribution of the EM angular momentum.

Plugging the explicit forms of E and B into the above, we find L
EM
z

as

L
EM
z

= �(2⇡)
⌫µ

(ene)2

Z
R

0

dr


r
da(r)

dr

�
dh(r)

dr
. (2.26)

In Fig. 2 the integrand corresponding to the local angular momentum density is plotted,

where the variables are made dimensionless again.

The angular momentum distribution is peaked around ⇢ ⇠ 1 and decays at large ⇢. We

can perform an integration by part and use the equation of motion to transform the above

expression into

L
EM
z

= �(2⇡)
⌫µ

(ene)2

⇢
r
da(r)

dr
h(r)

����
R

0

+2~ m
2

�

Z
R

0

dr r h(r)
⇥
f
2(r) + q̃(r)

⇤�
. (2.27)

Because of the boundary conditions (2.21), the surface contribution vanishes. Using � =

m
2
H
/m

2
V
we can simplify the above expression into

L
EM
z

= �⌫(2⇡~)µ
g

Z
R

0

dr r h(r)
⇥
f
2(r) + q̃(r)

⇤
. (2.28)

Comparing with the matter contribution L
kin
z

in Eq. (2.24), the first term is remarkably

equal to �L
kin
z

, and the total kinetic angular momentum is thus,

L
kin,total
z

= �⌫(2⇡~)µ
g

Z
R

0

dr r h(r)q̃(r) . (2.29)

We see that L
kin,total
z

is proportional to q̃ and this nonzero value of the total angular mo-

mentum is attributed to the presence of the background. If we had no background, q̃ = 0,

then L
kin
z

and L
EM
z

would have perfect cancellation, but we must allow for the “charged”

magnetic vortex. This might be possible due to finiteness of the system bounded by R. A

natural realization of this possibility will be discussed as Class II in the next section.

Cancel out

Finite AM remains from 
the background charge 
needed for neutrality

10

FIG. 1. (Left panel) Profile of the conventional elementary (⌫ = 1) magnetic vortex; f and h

without coupling to a for � = 1.5. (Right panel) Profile of the elementary vortex with the electric

field; f , h, and a for � = 1.5 and m2/m2
V
= 1.

As a nontrivial example where the local charge density and the electric field are nonva-

nishing, let us consider a constant background charge density q̃, that is determined by the

total charge neutrality condition (2.20) as

q̃ = � 1

S

Z

x

f
2
, (2.20)

with S ⌘
R
x. In the limit of infinitely large system q̃ would approach unity. In this case we

should revise the boundary conditions accordingly. That is, f needs not to be unity at large

⇢, but f 2 � 1 + a should be vanishing as ⇢ gets large. Also, we physically require vanishing

electric field at ⇢ = 0 and ⇢ ! 1. Therefore, we impose the following boundary conditions:

f(0) = 0 , f(1) =
p
1� a(1) , h(0) = 1 , h(1) = 0 , a

0(0) = 0 , a
0(1) = 0 .

(2.21)

Actually, these boundary conditions are not su�cient to determine the numerical solution

uniquely, but the gauge transformation of a(⇢) ! a(⇢) + c with a constant c still exists.

This shift would change the value of µ, and the magnitude of condensate would also be

modified, which would result in a di↵erent value of q̃ in Eq. (2.20). In other words, we can

adjust q̃ to make a constant shift on a(⇢). To fix this gauge freedom, a natural condition

to impose would be to set a ! 0 at large ⇢, so that the e↵ective chemical potential, by

definition, remains to be µ. We choose � = 1.5 and m
2
/m

2
V

= 1 to find that a(1) ! 0

is realized with q̃ ' �0.985. In the right panel of Fig. 1 we present the numerical solution

with these parameters. This explicitly demonstrates that nontrivial solutions with nonzero
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2

properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
our convention is �µ⌫

⌘ gµ⌫ �uµu⌫ with the four-vector
fluid velocity uµ. We use T µ⌫ to represent the Belinfante
EMT, while ⇥µ⌫ is the canonical one. Also, we define
J

µ↵� for the TAM in the Belinfante form and Jµ↵�
can for

the TAM in the canonical form. For an arbitrary tensor
Aµ⌫ , we define its symmetric and antisymmetric parts
as Aµ⌫

(s) = A(µ,⌫)
⌘

1
2 (A

µ⌫ + A⌫µ) and Aµ⌫
(a) = A[µ,⌫]

⌘

1
2 (A

µ⌫
�A⌫µ). We also use a symbol, < ... >, to mean the

traceless part, i.e., A<µ⌫>
⌘

1
2 [�

µ↵�⌫�+�⌫↵�µ� ]A↵��
1
3�

µ⌫(A⇢��⇢�).

Canonical vs. Belinfante formulations: To make our
point clear we shall make a brief review of the spin hy-
drodynamics from the canonical EMT as discussed in
Ref. [13]. In the canonical form the TAM can be decom-
posed into

J↵µ⌫
can = xµ⇥↵⌫

� x⌫⇥↵µ + ⌃↵µ⌫ , (1)

where xµ⇥↵⌫
�x⌫⇥↵µ and ⌃↵µ⌫ represent the OAM and

the SAM tensors, respectively. From the conservation
laws of the TAM and the EMT we readily find,

@↵⌃
↵µ⌫ = �2⇥µ⌫

(a) (2)

with ⇥µ⌫
(a) being the antisymmetric part of the canonical

EMT, which is understood as spin nonconservation in
relativistic systems.

Recalling that the spin in the quantum field theory is
⌃0ij

⇠ Sij = ✏ijkSk, we can decompose the spin tensor
in terms of hydrodynamical variables as follows:

⌃↵µ⌫ = u↵Sµ⌫ + ⌃↵µ⌫
(1) . (3)

We can understand Eq. (3) in analogy to decomposition
of the charge current; jµ = nuµ+jµ(1) (where u ·j(1) = 0),

with the charge density n and the dissipative current jµ(1)
from the higher order in the gradient expansion. Corre-
spondingly, we can identify Sµ⌫ as the spin density and
⌃↵µ⌫

(1) as the dissipative higher order correction. We can

neglect ⌃↵µ⌫
(1) since only @↵⌃

↵µ⌫
(1) ⇠ O(@2) appears that is

beyond the order focused in this work.
In deriving the hydrodynamic equations the entropy

current and the second law of thermodynamics are es-
sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
relation in equilibrium reads,

e+ p = Ts+ µn+ !µ⌫S
µ⌫ , (4)

where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
de = Tds+µdn+!µ⌫dSµ⌫ and dp = sdT+ndµ+Sµ⌫d!µ⌫ .
In the present convention e is a function of Sµ⌫ , while p
is a function of !µ⌫ .
Now, let us introduce a nonequilibrium entropy cur-

rent S
µ
can following a prescription of Ref. [34]. In the

presence of the spin density and the spin potential we
can postulate:

S
µ
can =

u⌫

T
⇥µ⌫ +

p

T
uµ

�
µ

T
jµ �

1

T
!⇢�S

⇢�uµ +O(@2)

= suµ +
u⌫

T
⇥µ⌫

(1) �
µ

T
jµ(1) +O(@2) , (5)

where ⇥µ⌫
(1) as well as j

µ
(1) denotes dissipative terms. This

explicit form clearly shows that the entropy current has
a definite relation to the equilibrium entropy up to the
leading order, but the higher orders are not uniquely con-
strained. Therefore, Eq. (5) should be regarded as an
Ansatz.
Using Eq. (4) and u⌫@µ⇥µ⌫ = 0, we can prove

T@µ(suµ)�µ@µj
µ
(1)+!⇢�@µ(S⇢�uµ)+u⌫@µ⇥

µ⌫
(1) = 0. This

significantly simplifies the divergence of the entropy cur-
rent into

@µS
µ
can = �jµ(1)@µ

µ

T
�

!⇢�

T
@µ(u

µS⇢�) +⇥µ⌫
(1)@µ

u⌫

T
. (6)

In the right-hand side we can use @µ(uµS⇢�) = �2⇥⇢�
(a)+

O(@2) which comes from Eqs. (2) and (3). At the
first order, moreover, the tensor decomposition leads to
⇥µ⌫

(1) = ⇥µ⌫
(1s) +⇥µ⌫

(1a) with

⇥µ⌫
(1s) = 2h(µu⌫) + ⇡µ⌫ , ⇥µ⌫

(1a) = 2q[µu⌫] + �µ⌫ . (7)

As usual ⇡µ⌫ is the viscous tensor and �µ⌫ is its antisym-
metric counterpart. Likewise, hµ is the heat flow and qµ

is its counterpart in the antisymmetric sector. In calcu-
lational steps uµ⇡µ⌫ = uµ�µ⌫ = u · q = u · h = 0 will
be useful. As discussed in Ref. [13] we can collect terms
involving ⇡µ⌫ , �µ⌫ , hµ, and qµ and identify their tenso-
rial forms from the su�cient condition for the second law
of thermodynamics, @µSµ

can � 0, as realized in a form of
sum of squares.
Then, ⇡µ⌫ and hµ are found to have no spin correc-

tions, while qµ and �µ⌫ are found to have terms / !µ⌫

as

qµ = �
⇥
T�1�µ↵@↵T + (u · @)uµ

� 4!µ⌫u⌫

⇤
, (8)

�µ⌫ = ��(⌦µ⌫
� 2T�1�µ↵�⌫�!↵�) , (9)

2

properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
our convention is �µ⌫

⌘ gµ⌫ �uµu⌫ with the four-vector
fluid velocity uµ. We use T µ⌫ to represent the Belinfante
EMT, while ⇥µ⌫ is the canonical one. Also, we define
J

µ↵� for the TAM in the Belinfante form and Jµ↵�
can for

the TAM in the canonical form. For an arbitrary tensor
Aµ⌫ , we define its symmetric and antisymmetric parts
as Aµ⌫

(s) = A(µ,⌫)
⌘

1
2 (A

µ⌫ + A⌫µ) and Aµ⌫
(a) = A[µ,⌫]

⌘

1
2 (A

µ⌫
�A⌫µ). We also use a symbol, < ... >, to mean the

traceless part, i.e., A<µ⌫>
⌘

1
2 [�

µ↵�⌫�+�⌫↵�µ� ]A↵��
1
3�

µ⌫(A⇢��⇢�).

Canonical vs. Belinfante formulations: To make our
point clear we shall make a brief review of the spin hy-
drodynamics from the canonical EMT as discussed in
Ref. [13]. In the canonical form the TAM can be decom-
posed into

J↵µ⌫
can = xµ⇥↵⌫

� x⌫⇥↵µ + ⌃↵µ⌫ , (1)

where xµ⇥↵⌫
�x⌫⇥↵µ and ⌃↵µ⌫ represent the OAM and

the SAM tensors, respectively. From the conservation
laws of the TAM and the EMT we readily find,

@↵⌃
↵µ⌫ = �2⇥µ⌫

(a) (2)

with ⇥µ⌫
(a) being the antisymmetric part of the canonical

EMT, which is understood as spin nonconservation in
relativistic systems.
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the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
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tions di↵erential forms of Eq. (4) are convenient; namely,
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properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
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where e, p, T , s, and µ are the energy density, the
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chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
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charge. If necessary, we can easily extend our discus-
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We can understand Eq. (3) in analogy to decomposition
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spondingly, we can identify Sµ⌫ as the spin density and
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(1) as the dissipative higher order correction. We can
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sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
relation in equilibrium reads,
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where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
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nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
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⌃0ij

⇠ Sij = ✏ijkSk, we can decompose the spin tensor
in terms of hydrodynamical variables as follows:
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We can understand Eq. (3) in analogy to decomposition
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from the higher order in the gradient expansion. Corre-
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current and the second law of thermodynamics are es-
sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
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where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
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properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
our convention is �µ⌫

⌘ gµ⌫ �uµu⌫ with the four-vector
fluid velocity uµ. We use T µ⌫ to represent the Belinfante
EMT, while ⇥µ⌫ is the canonical one. Also, we define
J

µ↵� for the TAM in the Belinfante form and Jµ↵�
can for

the TAM in the canonical form. For an arbitrary tensor
Aµ⌫ , we define its symmetric and antisymmetric parts
as Aµ⌫

(s) = A(µ,⌫)
⌘

1
2 (A

µ⌫ + A⌫µ) and Aµ⌫
(a) = A[µ,⌫]

⌘

1
2 (A

µ⌫
�A⌫µ). We also use a symbol, < ... >, to mean the

traceless part, i.e., A<µ⌫>
⌘

1
2 [�

µ↵�⌫�+�⌫↵�µ� ]A↵��
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µ⌫(A⇢��⇢�).

Canonical vs. Belinfante formulations: To make our
point clear we shall make a brief review of the spin hy-
drodynamics from the canonical EMT as discussed in
Ref. [13]. In the canonical form the TAM can be decom-
posed into

J↵µ⌫
can = xµ⇥↵⌫

� x⌫⇥↵µ + ⌃↵µ⌫ , (1)

where xµ⇥↵⌫
�x⌫⇥↵µ and ⌃↵µ⌫ represent the OAM and

the SAM tensors, respectively. From the conservation
laws of the TAM and the EMT we readily find,

@↵⌃
↵µ⌫ = �2⇥µ⌫

(a) (2)

with ⇥µ⌫
(a) being the antisymmetric part of the canonical

EMT, which is understood as spin nonconservation in
relativistic systems.

Recalling that the spin in the quantum field theory is
⌃0ij

⇠ Sij = ✏ijkSk, we can decompose the spin tensor
in terms of hydrodynamical variables as follows:

⌃↵µ⌫ = u↵Sµ⌫ + ⌃↵µ⌫
(1) . (3)

We can understand Eq. (3) in analogy to decomposition
of the charge current; jµ = nuµ+jµ(1) (where u ·j(1) = 0),

with the charge density n and the dissipative current jµ(1)
from the higher order in the gradient expansion. Corre-
spondingly, we can identify Sµ⌫ as the spin density and
⌃↵µ⌫

(1) as the dissipative higher order correction. We can

neglect ⌃↵µ⌫
(1) since only @↵⌃

↵µ⌫
(1) ⇠ O(@2) appears that is

beyond the order focused in this work.
In deriving the hydrodynamic equations the entropy

current and the second law of thermodynamics are es-
sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
relation in equilibrium reads,

e+ p = Ts+ µn+ !µ⌫S
µ⌫ , (4)

where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
de = Tds+µdn+!µ⌫dSµ⌫ and dp = sdT+ndµ+Sµ⌫d!µ⌫ .
In the present convention e is a function of Sµ⌫ , while p
is a function of !µ⌫ .
Now, let us introduce a nonequilibrium entropy cur-

rent S
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can following a prescription of Ref. [34]. In the
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where ⇥µ⌫
(1) as well as j

µ
(1) denotes dissipative terms. This

explicit form clearly shows that the entropy current has
a definite relation to the equilibrium entropy up to the
leading order, but the higher orders are not uniquely con-
strained. Therefore, Eq. (5) should be regarded as an
Ansatz.
Using Eq. (4) and u⌫@µ⇥µ⌫ = 0, we can prove
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As usual ⇡µ⌫ is the viscous tensor and �µ⌫ is its antisym-
metric counterpart. Likewise, hµ is the heat flow and qµ

is its counterpart in the antisymmetric sector. In calcu-
lational steps uµ⇡µ⌫ = uµ�µ⌫ = u · q = u · h = 0 will
be useful. As discussed in Ref. [13] we can collect terms
involving ⇡µ⌫ , �µ⌫ , hµ, and qµ and identify their tenso-
rial forms from the su�cient condition for the second law
of thermodynamics, @µSµ

can � 0, as realized in a form of
sum of squares.
Then, ⇡µ⌫ and hµ are found to have no spin correc-

tions, while qµ and �µ⌫ are found to have terms / !µ⌫

as
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properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
our convention is �µ⌫

⌘ gµ⌫ �uµu⌫ with the four-vector
fluid velocity uµ. We use T µ⌫ to represent the Belinfante
EMT, while ⇥µ⌫ is the canonical one. Also, we define
J

µ↵� for the TAM in the Belinfante form and Jµ↵�
can for

the TAM in the canonical form. For an arbitrary tensor
Aµ⌫ , we define its symmetric and antisymmetric parts
as Aµ⌫
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Canonical vs. Belinfante formulations: To make our
point clear we shall make a brief review of the spin hy-
drodynamics from the canonical EMT as discussed in
Ref. [13]. In the canonical form the TAM can be decom-
posed into

J↵µ⌫
can = xµ⇥↵⌫

� x⌫⇥↵µ + ⌃↵µ⌫ , (1)

where xµ⇥↵⌫
�x⌫⇥↵µ and ⌃↵µ⌫ represent the OAM and

the SAM tensors, respectively. From the conservation
laws of the TAM and the EMT we readily find,
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↵µ⌫ = �2⇥µ⌫

(a) (2)

with ⇥µ⌫
(a) being the antisymmetric part of the canonical

EMT, which is understood as spin nonconservation in
relativistic systems.

Recalling that the spin in the quantum field theory is
⌃0ij

⇠ Sij = ✏ijkSk, we can decompose the spin tensor
in terms of hydrodynamical variables as follows:

⌃↵µ⌫ = u↵Sµ⌫ + ⌃↵µ⌫
(1) . (3)

We can understand Eq. (3) in analogy to decomposition
of the charge current; jµ = nuµ+jµ(1) (where u ·j(1) = 0),

with the charge density n and the dissipative current jµ(1)
from the higher order in the gradient expansion. Corre-
spondingly, we can identify Sµ⌫ as the spin density and
⌃↵µ⌫

(1) as the dissipative higher order correction. We can

neglect ⌃↵µ⌫
(1) since only @↵⌃

↵µ⌫
(1) ⇠ O(@2) appears that is

beyond the order focused in this work.
In deriving the hydrodynamic equations the entropy

current and the second law of thermodynamics are es-
sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
relation in equilibrium reads,

e+ p = Ts+ µn+ !µ⌫S
µ⌫ , (4)

where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
de = Tds+µdn+!µ⌫dSµ⌫ and dp = sdT+ndµ+Sµ⌫d!µ⌫ .
In the present convention e is a function of Sµ⌫ , while p
is a function of !µ⌫ .
Now, let us introduce a nonequilibrium entropy cur-

rent S
µ
can following a prescription of Ref. [34]. In the

presence of the spin density and the spin potential we
can postulate:
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can =
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where ⇥µ⌫
(1) as well as j

µ
(1) denotes dissipative terms. This

explicit form clearly shows that the entropy current has
a definite relation to the equilibrium entropy up to the
leading order, but the higher orders are not uniquely con-
strained. Therefore, Eq. (5) should be regarded as an
Ansatz.
Using Eq. (4) and u⌫@µ⇥µ⌫ = 0, we can prove

T@µ(suµ)�µ@µj
µ
(1)+!⇢�@µ(S⇢�uµ)+u⌫@µ⇥
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significantly simplifies the divergence of the entropy cur-
rent into
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In the right-hand side we can use @µ(uµS⇢�) = �2⇥⇢�
(a)+

O(@2) which comes from Eqs. (2) and (3). At the
first order, moreover, the tensor decomposition leads to
⇥µ⌫

(1) = ⇥µ⌫
(1s) +⇥µ⌫

(1a) with

⇥µ⌫
(1s) = 2h(µu⌫) + ⇡µ⌫ , ⇥µ⌫

(1a) = 2q[µu⌫] + �µ⌫ . (7)

As usual ⇡µ⌫ is the viscous tensor and �µ⌫ is its antisym-
metric counterpart. Likewise, hµ is the heat flow and qµ

is its counterpart in the antisymmetric sector. In calcu-
lational steps uµ⇡µ⌫ = uµ�µ⌫ = u · q = u · h = 0 will
be useful. As discussed in Ref. [13] we can collect terms
involving ⇡µ⌫ , �µ⌫ , hµ, and qµ and identify their tenso-
rial forms from the su�cient condition for the second law
of thermodynamics, @µSµ

can � 0, as realized in a form of
sum of squares.
Then, ⇡µ⌫ and hµ are found to have no spin correc-

tions, while qµ and �µ⌫ are found to have terms / !µ⌫

as
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properties between di↵erent EMTs have been revealed in
nonequilibrium environments [31–33], but this di↵erence
would not necessarily exclude a possibility to derive the
spin hydrodynamics from the Belinfante EMT. Actually
we will pursue this possibility and eventually reach a con-
clusion to support discussions by those preceding works
in an illuminating way.

Here, let us summarize our notation. The metric is
gµ⌫ = diag(+,�,�,�) and the projection operator in
our convention is �µ⌫

⌘ gµ⌫ �uµu⌫ with the four-vector
fluid velocity uµ. We use T µ⌫ to represent the Belinfante
EMT, while ⇥µ⌫ is the canonical one. Also, we define
J

µ↵� for the TAM in the Belinfante form and Jµ↵�
can for

the TAM in the canonical form. For an arbitrary tensor
Aµ⌫ , we define its symmetric and antisymmetric parts
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Canonical vs. Belinfante formulations: To make our
point clear we shall make a brief review of the spin hy-
drodynamics from the canonical EMT as discussed in
Ref. [13]. In the canonical form the TAM can be decom-
posed into

J↵µ⌫
can = xµ⇥↵⌫

� x⌫⇥↵µ + ⌃↵µ⌫ , (1)

where xµ⇥↵⌫
�x⌫⇥↵µ and ⌃↵µ⌫ represent the OAM and

the SAM tensors, respectively. From the conservation
laws of the TAM and the EMT we readily find,
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↵µ⌫ = �2⇥µ⌫

(a) (2)

with ⇥µ⌫
(a) being the antisymmetric part of the canonical

EMT, which is understood as spin nonconservation in
relativistic systems.

Recalling that the spin in the quantum field theory is
⌃0ij

⇠ Sij = ✏ijkSk, we can decompose the spin tensor
in terms of hydrodynamical variables as follows:

⌃↵µ⌫ = u↵Sµ⌫ + ⌃↵µ⌫
(1) . (3)

We can understand Eq. (3) in analogy to decomposition
of the charge current; jµ = nuµ+jµ(1) (where u ·j(1) = 0),

with the charge density n and the dissipative current jµ(1)
from the higher order in the gradient expansion. Corre-
spondingly, we can identify Sµ⌫ as the spin density and
⌃↵µ⌫

(1) as the dissipative higher order correction. We can

neglect ⌃↵µ⌫
(1) since only @↵⌃

↵µ⌫
(1) ⇠ O(@2) appears that is

beyond the order focused in this work.
In deriving the hydrodynamic equations the entropy

current and the second law of thermodynamics are es-
sential. For this purpose we need to express the entropy
current involving the spin tensors. The thermodynamic
relation in equilibrium reads,

e+ p = Ts+ µn+ !µ⌫S
µ⌫ , (4)

where e, p, T , s, and µ are the energy density, the
pressure, the temperature, the entropy density, and the
chemical potential, respectively. We also introduced
the spin potential, !µ⌫ , according to the prescription
of Ref. [13]. For simplicity, we only consider one U(1)
conserved charge, e.g., the electric charge or the baryon
charge. If necessary, we can easily extend our discus-
sion to multiple conserved charges. For actual calcula-
tions di↵erential forms of Eq. (4) are convenient; namely,
de = Tds+µdn+!µ⌫dSµ⌫ and dp = sdT+ndµ+Sµ⌫d!µ⌫ .
In the present convention e is a function of Sµ⌫ , while p
is a function of !µ⌫ .
Now, let us introduce a nonequilibrium entropy cur-

rent S
µ
can following a prescription of Ref. [34]. In the

presence of the spin density and the spin potential we
can postulate:

S
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can =
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where ⇥µ⌫
(1) as well as j

µ
(1) denotes dissipative terms. This

explicit form clearly shows that the entropy current has
a definite relation to the equilibrium entropy up to the
leading order, but the higher orders are not uniquely con-
strained. Therefore, Eq. (5) should be regarded as an
Ansatz.
Using Eq. (4) and u⌫@µ⇥µ⌫ = 0, we can prove

T@µ(suµ)�µ@µj
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In the right-hand side we can use @µ(uµS⇢�) = �2⇥⇢�
(a)+

O(@2) which comes from Eqs. (2) and (3). At the
first order, moreover, the tensor decomposition leads to
⇥µ⌫

(1) = ⇥µ⌫
(1s) +⇥µ⌫

(1a) with

⇥µ⌫
(1s) = 2h(µu⌫) + ⇡µ⌫ , ⇥µ⌫

(1a) = 2q[µu⌫] + �µ⌫ . (7)

As usual ⇡µ⌫ is the viscous tensor and �µ⌫ is its antisym-
metric counterpart. Likewise, hµ is the heat flow and qµ

is its counterpart in the antisymmetric sector. In calcu-
lational steps uµ⇡µ⌫ = uµ�µ⌫ = u · q = u · h = 0 will
be useful. As discussed in Ref. [13] we can collect terms
involving ⇡µ⌫ , �µ⌫ , hµ, and qµ and identify their tenso-
rial forms from the su�cient condition for the second law
of thermodynamics, @µSµ

can � 0, as realized in a form of
sum of squares.
Then, ⇡µ⌫ and hµ are found to have no spin correc-

tions, while qµ and �µ⌫ are found to have terms / !µ⌫

as
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∼ Θρσ
(a) = Θμν

(1s) + Θμν
(a)

Constitutive equations for           are obtained.Θμν
(a)

Why not symmetric EMT ?
“Quantum Spin Vorticity Theory” 
    (to describe the spin Hall effect)

Fukuda-Ichikawa- 
-Senami-Tachibana 
                    (2016)



October 14, 2020 @ ECT*, Online 

Entropy favors Canonical?

16

What happens with symmetric EMT ? 
[Fukushima-Pu, arXiv: 2010.01608]

3

where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1

2

�
⌃�µ⌫

� ⌃µ�⌫ + ⌃⌫µ�
�
. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
↵⌫

� x⌫
T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,

T
µ⌫ = ⇥µ⌫ +

1

2
@�(u

�Sµ⌫
� uµS�⌫ + u⌫Sµ�) +O(@2)

= ⇥µ⌫
(s) +

1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
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We should emphasize that T
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respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic
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stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
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With this choice we can get rid of the spin source and it
is easy to confirm that T
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⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
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from Eqs. (3) and (11). This equation corresponds to the
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vanishing in the Belinfante form. Precisely speaking,
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leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between
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If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
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�
h(µ + �h(µ

�
u⌫) + ⇡µ⌫ + �⇡µ⌫ .

(17)

Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by

�e = u⇢@�S
⇢� ,

�hµ =
1

2

⇥
�µ

�@�S
�� + u⇢S

⇢�@�u
µ
⇤
,

�⇡µ⌫ = @�(u
<µS⌫>�) + �⇧�µ⌫ ,

�⇧ =
1

3
@�(u

�S⇢�)�⇢� ,

(18)

where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

3

where ⌦µ⌫
⌘ ��µ⇢�⌫�@[⇢(�u�]) is usually referred to

as the thermal vorticity [33], and � and � are nonneg-
ative transport coe�cients. We can reasonably under-
stand the physical interpretation: The rotation carried
by the fluid velocity and the thermal gradient together
with the spin chemical potential plays a role of the source
to produce/absorb the spin. Then, the spin hydrodynam-
ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
connection between them.

From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
gauge transformation:

T
µ⌫ = ⇥µ⌫ + @�K

�µ⌫ , (10)

K�µ⌫ =
1

2

�
⌃�µ⌫

� ⌃µ�⌫ + ⌃⌫µ�
�
. (11)

With this choice we can get rid of the spin source and it
is easy to confirm that T

µ⌫ is symmetric; T µ⌫ = T
⌫µ.

Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,

@µ@�
�
u�Sµ⌫ + uµS⌫� + u⌫Sµ�

�
= 0 , (12)

from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,

J
↵µ⌫ = xµ

T
↵⌫

� x⌫
T

↵µ , (13)

where J
↵µ⌫

⌘ J↵µ⌫ + @⇢(xµK⇢↵⌫
� x⌫K⇢↵µ). Equa-

tion (13) looks like an OAM relation [see the first part
in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with
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If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)
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We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

Tensor structures to be absorbed in renormalizations.
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ics dictates the evolution of !µ⌫ or Sµ⌫ and the local ther-
mal equilibrium relation, Sµ⌫ = @p/@!µ⌫ |T,µ, imposes a
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From above discussions it is clear that Eq. (2) is cru-
cial for constructing hydrodynamics with spin degrees of
freedom, and it seems to be indispensable to keep ⇥µ⌫

(a).
The EMT, however, has pseudo-gauge invariance, and
one can always choose a symmetrized or Belinfante im-
proved EMT form without losing physics contents.

Spin strikes back: The confusion lies in the absence
of the antisymmetric part of the Belinfante EMT which
implies no spin degrees of freedom at all. We obtain
the symmetric Belinfante EMT by the following pseudo-
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Here, K�µ⌫ is antisymmetric with respect to � and µ,
so that @µT µ⌫ = 0 still holds as long as @µ⇥µ⌫ = 0. In
other words we have an identity,
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from Eqs. (3) and (11). This equation corresponds to the
“quantum spin vorticity principle” in the quantum spin
vorticity theory [35].

The Belinfante improved TAM, which is a counterpart
of Eq. (1), reads,
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where J
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in Eq. (1)] and it is often said that the spin is identically
vanishing in the Belinfante form. Precisely speaking,
since the energy-momentum conservation, @µT µ⌫ = 0,
leads to the TAM conservation, @↵J ↵µ⌫ = 0, in the Be-
linfante form, one cannot find a counterpart of Eq. (2).
Our point is that we do not have to go through the EMT
to write down such a tensor decomposition.

Before addressing the entropy analysis, we shall discuss
a possibility to introduce terms with Sµ⌫ in the symmet-
ric EMT form; the tensor indices we can use are not
only gµ⌫ , uµ, @µ, but also Sµ⌫ in general. The guid-
ing principle is provided from a transformation between

T
µ⌫ and ⇥µ⌫ . We can utilize Eq. (10) together with

⌃µ↵� = uµS↵� +O(@), to find,
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(s) +

1

2

⇥
@�(u

µS⌫� + u⌫Sµ�)
⇤
+O(@2) . (14)

If we need to construct the hydrodynamics using the sym-
metric EMT as demanded in the case with gauge fields,
we must employ the above form of symmetric spin cor-
rections. One might think that @µT µ⌫ = 0 may look dif-
ferent from @µ⇥µ⌫ = 0, but they are equivalent thanks
to Eq. (12); therefore, Eq. (12) constitutes an evolution
equation. The hydrodynamic expansion leads to

T
µ⌫ = (e+ p)uµu⌫

� pgµ⌫ + T
µ⌫
(1) +O(@2) , (15)

where

T
µ⌫
(1) = 2h(µu⌫) + ⇡µ⌫ +

1

2
@�(u
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We should emphasize that T
µ⌫
(1) is still symmetric with

respect to µ and ⌫ even with spin involving terms.
The heat flow, hµ, is defined from the symmetric index

structure involving u⌫ . Therefore, once T µ⌫
(1) is given, one

can identify hµ from the tensor decomposition of T µ⌫
(1) . In

the presence of spin correction terms, the tensor decom-
position leads to the heat flow coupled to the spin. We
can readily see this from the following decomposition:
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Here, we have the energy density correction, �e, the heat
flow correction, �hµ, and the viscous tensor correction,
�⇡µ⌫ , given respectively by
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where �⇧ is the bulk viscous correction. We note that the
above correction of �hµ is consistent with the momentum
density induced by the spin vorticity that has been dis-
cussed in the quantum spin vorticity theory [35]. We will
later discuss the physical meaning in more details.
One may wonder how qµ and �µ⌫ can be retrieved in

the Belinfante formalism at all, since they are extracted
from the antisymmetric EMT as in Eq. (7), which is iden-
tically vanishing in the Belinfante form. As we exercised
for the canonical EMT, let us consider the entropy cur-
rent. The Belinfante counterpart of the thermodynamic

If spin is injected, these are spin-induced corrections.
Talk by Umut Gursoy: Corrections by contorsion tensors

Gallegos-Gursoy, arXiv:2004.05148
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FIG. 3. Concept based on the quantum spin vorticity theory. (a) The SHE is understood as the generation of the spin vorticity
by the applied electric field. (b) The ISHE is understood as the acceleration of the electron by the rotation of the spin torque
density as driving force accompanying the generation of half of the spin vorticity.

stress tensor
$

⌧e A at each point in space-time (see Eqs. (17) and (18)). Of course, the value and
direction of the spin vorticity induced by a bias voltage depend on the species of nuclei and struc-
tures. Therefore, we will try to evaluate local physical quantities of more complex structures which
are used in the fields of spintronics and multiferroics in our near future work.

V. CONCLUSIONS

In this paper, we have proposed the dynamical local picture of the spin Hall e↵ect based on the
quantum spin vorticity principle. In the quantum spin vorticity principle, half of the spin vorticity
is introduced naturally as a component of the electron momentum density. We have performed
numerical calculations of the local distributions of the kinetic momentum density and the spin
vorticity induced by a finite bias voltage by using a relativistic quantum mechanical wave packet as
an approximation to the state vector of the quantum field theory. We also proposed new dynamical
pictures of the SHE and ISHE based on the quantum spin vorticity theory. The SHE is described
as the generation of the spin vorticity by the applied electric field in a conductor. The ISHE is
described as the acceleration of the electron by the rotation of the spin torque density as driving
force accompanying the generation of the spin vorticity in a conductor. The spin vorticity will be a
key to give unified understanding of physical phenomena related to spin in condensed matter and
molecular systems beyond the field of spintronics.
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Let us now focus on Eq. (12). It implies that the vorticity of the electronic spin contributes to
the momentum of the electron. We can see the fact clearly from the expression of the electronic
momentum density P̂i

e =
1
c T̂ i0

e , which includes half of the spin vorticity as follows14:

~̂Pe = ~̂⇧e +
1
2

rot~̂se. (15)

Although the second term, which is the contribution from spin, as well as the zeta force density
disappears after integration over the whole of space, its contribution cannot be neglected in a
local region. In other words, the electronic momentum density, which is derived by the covariant
symmetry of the general coordinate transformation, includes the local contribution of half of the
spin vorticity unlike the definition of the momentum in quantum mechanics. Furthermore, the time
derivative of the electronic momentum density is given as

@

@t
~̂Pe = ~̂Le + ~̂⌧e

S, (16)

where ~̂Le = ~̂E ĵ0
e +

1
c
~̂je ⇥ ~̂B is the Lorentz force density, ĵµe = Zeec ˆ̄ �µ ̂ is the electronic charge

current density, ~̂E = �gradÂ0 �
1
c
@ ~̂A
@t is the electric field and ~̂B = rot ~̂A is the magnetic field. The

second term on the right-hand side, ~̂⌧eS = div
$̂

⌧eS, is the tension density,24,25 which is defined as the

divergence of the symmetric parts of the electronic stress tensor
$̂

⌧eS. Since the tension density as
well as the spin vorticity disappears after integrating over the whole region, the above equation is
reduced to @

@t

⇤
~̂⇧ed3~r =

⇤
~̂Led3~r , which is a well known equation of motion in the framework of

relativistic quantum mechanics.20 By using Eq. (11), the time derivative of half of the spin vorticity
is given easily as follows:

@

@t

 
1
2

rot ~̂se
!
=

1
2

rot~̂te = � div
$̂

⌧e
A. (17)

This means that the divergence of the anti-symmetric part of the stress tensor
$̂

⌧eA generates spin
vorticity. By using Eq. (17), Eq. (16) can be rewritten as

@

@t
~̂⇧e = ~̂Le + ~̂⌧e

S
�

1
2

rot~̂te. (18)

Equations (17) and (18) express that the rotation of the spin torque density ~̂te as driving force gener-
ates the kinetic momentum density ~̂⇧e accompanying the generation of half of the spin vorticity,
1
2 rot~̂se. This interpretation is a consequence of the quantum spin vorticity theory.

Thus, in the spin vorticity theory, the equations regarding operators of the physical quantities
derived from the energy-momentum tensor are discussed. When we calculate a physical quantity,
we need both the operator of the physical quantity and the state vector of quantum field theory.
The equations of operators discussed in the spin vorticity theory can be applied to QED systems
universally, though the validity of the result of the physical quantity depends on how the state vector
of the system is calculated.

III. NUMERICAL CALCULATIONS OF SPIN VORTICITY

As an application example of the quantum spin vorticity theory, we demonstrate the generation
of the spin vorticity in a local region by using a simple carbon chain, attaching both edges to
electrodes in the presence of a finite bias voltage. The carbon chain is one of the ideal model
systems for studying the electronic structure under a bias voltage and is also applicable in molec-
ular device design as one of the nano carbon systems (such as rings, fullerenes, and graphenes).
Therefore, the carbon chain is suitable for our first demonstration to understand spin phenomena in
condensed matter and molecular systems from a unified viewpoint. Although, rigorously speaking,
the electronic bound state of quantum field theory is required for calculations of the local physical
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T̂EMµ⌫ = �
1

4⇡
g⇢�F̂µ⇢F̂⌫� � gµ⌫ L̂EM = T̂EM⌫µ, (7)

where g = det gµ⌫ and ⌘µ⌫ = diag(1,�1,�1,�1) = ⌘µ⌫. The concrete expression of Eq. (5) is writ-
ten in Ref. 13. Note that "̂⇧µ⌫ and ⌧̂⇧eµ⌫(g) are not necessarily symmetric tensors. To emphasize
this, we put the superscript ⇧ and call them symmetry-polarized geometrical tensor and symmetry-
polarized electronic stress tensor, respectively.13 These tensors can be decomposed into a symmetric
part and an anti-symmetric part as "̂⇧µ⌫ = "̂Sµ⌫ + "̂Aµ⌫ and ⌧̂⇧µ⌫e (g) = ⌧̂Sµ⌫e (g) + ⌧̂Aµ⌫

e (g).
Since the energy-momentum tensor is symmetric, the anti-symmetric parts "̂Aµ⌫ and ⌧̂Aeµ⌫ cancel

with each other:

"̂Aµ⌫ + ⌧̂Aµ⌫
e (g) = 0. (8)

Eq. (8) is called the quantum spin vorticity principle. In the limit to the Minkowski space-time,
it is revealed that Eq. (8) describes spin dynamics. In the limit of eaµ ! �aµ and gµ⌫ ! ⌘µ⌫, the
symmetric energy-momentum tensors T̂ µ⌫

e and T̂ µ⌫
EM are reduced to

T̂ µ⌫
e = �"̂⇧µ⌫ � ⌧̂⇧µ⌫e � ⌘µ⌫ L̂e, T̂ µ⌫

EM = �
1

4⇡
⌘⇢�F̂µ

⇢F̂⌫
� � ⌘

µ⌫ L̂EM, (9)

"̂⇧µ⌫ = �
~

4Zee
✏ µ⌫��@� ĵ5�, ⌧̂⇧µ⌫e =

c
2
�
 ̂†�0�⌫

�
�i~D̂µ

e

�
 ̂ + h.c.

�
, (10)

where ✏ µ⌫�� is the Levi-Civita tensor, ĵµ5 = Zeec ˆ̄ �µ�5 ̂ is the chiral current and �5 = i�0�1�2�3.
Then, Eq. (8) is also reduced to the following equations:

@

@t
~̂se = ~̂te + ~̂⇣ e, (11)

rot~̂se =
1
2

⇣ ˆ̄ ~�
�
i~D̂e0

�
 ̂ + h.c.

⌘
� ~̂⇧e, (12)

where the spin angular momentum density ~̂se, the spin torque density ~̂te, the zeta force density ~̂⇣ e,
and the kinetic momentum density ~̂⇧e are defined as

ŝie =  ̂
†
~

2
⌃i ̂ =

~

2Zeec
ĵ i5, t̂ ie = �✏ i jk ⌧̂

Ajk
e , (13)

⇣̂ ie = �@i�̂5, �̂5 =
~

2Zee
ĵ0
5, ⇧̂

i
e =

1
2

⇣ ˆ̄ �0 �i~D̂i
e

�
 ̂ + h.c.

⌘
. (14)

In the equations above, ⌃i is the 4 ⇥ 4 Pauli matrix, and ✏ i jk is the Levi-Civita tensor. Hereafter,
Latin letters run from 1 to 3. As are clear from the above definitions, these operators are expressed
by using the field operators of the electron  ̂ and the photon Âµ. The physical quantities are
given as expectation values for a time-independent state vector in the Heisenberg picture such as
O = h�|Ô |�i � h0|Ô |0i. Actual e↵ects of condensed matter, which may break some symmetry, are
included in the state vector.

Apparently, Eq. (11) and Eq. (12) are the equation of motion of the spin angular momentum
density and the equation for the vorticity of spin, respectively. We note that Eqs. (11) and (12)
are related to the angular momentum and momentum, respectively. The equation of motion of
spin angular momentum density shown in Eq. (11) is derived in the framework of quantum field
theory, and hence it does not average out the local contribution, while the Heisenberg equation
in relativistic quantum mechanics20 cannot describe local spin dynamics since a physical quantity
in quantum mechanics is defined by the inner product, which is derived by the integration over
the whole region. The zeta force density does not appear in the equation of motion of spin in the
framework of relativistic quantum mechanics. In present experimental apparatuses, the local e↵ect
of the zeta force density is integrated into a small surface e↵ect, so that it has not been observed
experimentally yet. For example, the details of the spin torque and the zeta force for atomic and
molecular systems were discussed in Refs. 21–23.

Relativistic hydro — in Landau frame:

4

extension (5) reads,

S
µ =

u⌫

T
T

µ⌫ +
p

T
uµ

�
µ

T
jµ �

1

T
!⇢�S

⇢�uµ +O(@2)

= suµ +
u⌫

T
T

µ⌫
(1) �

µ

T
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with which the divergence of the entropy current takes
the following form:
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)
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T
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =

✓
jµ(1) �

n

e+ p
hµ

◆
+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed

5

form in Eq. (24). Namely, Eq. (24) gives si = Si0

and Si = 1
2✏

ijkSjk. The complete expression of �hµ in
Eq. (18) involves many terms, and we can simplify them
by taking the nonrelativistic reduction of uµ = (1,v) with
v ! 0, while derivatives of v are still kept nonvanishing.
Then, in the three-vector representation, we find,

�j(1) = �
n

2(e+ p)

⇥
r⇥ S + v̇ ⇥ S

+ (r · v)s� 2(s ·r)v + ṡ
⇤
.

(28)

One may think that the overall sign is opposite to that
in the quantum spin vorticity theory [35]. This di↵erence
is attributed to the frame choice. We are working in a
frame comoving with the heat flow, and this reverses the
overall direction of the induced current.

Summary: We formulated the spin hydrodynamics
using the symmetric EMT which is commonly considered
to be physical. The added terms satisfy an identity for
the spin tensor which corresponds to the quantum spin
vorticity principle. The equations of motion are equiv-
alent, but we found that the entropy analysis makes an
inequivalent deviation. The entropy current derived from
the canonical formulation is di↵erent from the one from
the symmetric EMT by a total derivative. Therefore, if
we impose a constraint not globally but locally from the
second law of thermodynamics, the pseudo-gauge trans-
formation would lead to di↵erent physical contents in
nonequivalent systems. With our formulation based on
the symmetric EMT, we established a relation between
the spin vorticity (i.e., the rotation of the spin) and the
(electric) current, �j / r⇥S, in a hydrodynamical way.
One may find a similar relation using the Dirac equa-
tion in quantum field theories, and our formula is more
complete with fluid velocity terms. Applications to the
heavy-ion phenomenology should deserve further investi-
gations.
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the symmetric EMT by a total derivative. Therefore, if
we impose a constraint not globally but locally from the
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extension (5) reads,
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with which the divergence of the entropy current takes
the following form:
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(21)
Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,

� =
1

2
@µ


@�(u

�Sµ⌫ + uµS⌫� + u⌫Sµ�)
u⌫

T

�

�
1

2

⇥
@�(u

�Sµ⌫)
⇤
@µ

u⌫

T
�

!⇢�

T
@�(u

�S⇢�) .

(22)

Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T
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L = (e + �e)uµ

Lu
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L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫
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L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:
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with
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The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)
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T
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T

◆
. (23)

In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:
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with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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extension (5) reads,
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with which the divergence of the entropy current takes
the following form:
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at

�0 = �@�(u
�Sµ⌫)
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =
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e+ p
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+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed

4

extension (5) reads,
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with which the divergence of the entropy current takes
the following form:
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =
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jµ(1) �
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e+ p
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+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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extension (5) reads,
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with which the divergence of the entropy current takes
the following form:
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at
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�Sµ⌫)
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +

1

e+ p
(hµ + �hµ) . (25)

We can also transfer the Belinfante EMT in Eq. (15) to
the one in the Landau frame as T

µ⌫
L = (e + �e)uµ

Lu
⌫
L �

(p+ �⇧)�µ⌫
L + ⇡µ⌫

L + �⇡µ⌫
L +O(@2) and there is no term

corresponding to the heat flow.
In this frame with the fluid velocity given by Eq. (25)

the heat flow is absent but the modified current remains
finite, which reads:

jµL(1) =
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jµ(1) �
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+ �jµ(1) (26)

with

�jµ(1) = �
n

e+ p
�hµ . (27)

The first part in the parentheses, (jµ(1) �
n

e+ph
µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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extension (5) reads,
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with which the divergence of the entropy current takes
the following form:
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
we will transform Eq. (21) using Eq. (12). We can add
Eq. (12) to find,
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
turns out to be a total derivative. We recall that Eq. (19)
is an Ansatz and we could have defined an entropy, S 0,
to absorb the total derivative and then we arrive at
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In this case @µS 0µ is given by Eq. (20) with � replaced by
�0. Interestingly, S 0µ is just the same as Sµ

can. Then, the
constrains from the entropy principle amount to those in
the canonical formulation from Eqs. (7), (8), and (9). In
principle, alternatively, one may constrain Sµ⌫ directly
from Eq. (21) employing the following tensor decompo-
sition:

Sµ⌫ = 2s[µu⌫]
� ✏µ⌫⇢�u⇢S� (24)

with u · s = 0. We have tried but this is a di�cult task
to constrain sµ and Sµ from the entropy principle due to
the presence of derivatives. The di�culty seems to favor
the canonical choice of Sµ.

We emphasize that such a di↵erence by the total
derivative is irrelevant to bulk thermodynamics proper-
ties and a stringent condition of the local thermal equilib-
rium gives rise to the physical di↵erence in the entropy
current. We make a remark here; this total derivative
shift is quite analogous to V µ in Refs. [36, 37]. There, the
shift by V µ appears from the dynamical KMS condition
in the e↵ective field theory approach to hydrodynamics.
It would be a very interesting future work to pursue a

possible relationship. Our transformation from S
µ to S

0µ

is actually analogous to the hydrodynamical treatment of
the triangle anomaly in Ref. [38], where the EMT is also
symmetric and some terms proportional to the vortic-
ity are added to the entropy flow. We also emphasize
that our observation is consistent with the claim made
in Refs. [31, 32]. They found using the density operator
that the canonical and the Belinfante EMTs are equiv-
alent only in equilibrium but they are not in nonequi-
librium systems [39]. In our analysis the pseudo-gauge
transformation generates conserved EMTs and leads to
di↵erent expressions for the entropy current. With those
di↵erent expressions the physics is not equivalent once we
take account of dissipative terms and impose the second
law of thermodynamics, @µSµ

� 0, for dynamics out of
equilibrium.

Physical interpretation of spin correction terms: We
have seen that we must introduce a modified entropy cur-
rent and then the entropy principle supports the canon-
ical results in Eqs. (8) and (9). Nevertheless, we em-
phasize that the Belinfante EMT should be physical and
the spin corrections by Eq. (18) are physical as well. We
must be, however, careful of the physical interpretation
in relativistic hydrodynamics. The heat flow correction
by �hµ, for example, is not physical by itself.
In relativistic hydrodynamics uµ is not unique in gen-

eral and one should make a choice of the frame; the com-
mon choice is the Landau frame or the energy frame.
Then, in this frame, the heat flow is absent by construc-
tion. More specifically, we should impose the Landau
condition for the relativistic hydrodynamics and choose
the fluid velocity uµ

L to satisfy �L
⇢µT

µ⌫
L uL⌫ = 0, where

“L” denotes the quantities in the Landau frame. We can
introduce the fluid velocity, uµ

L, as

uµ
L = uµ +
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We can also transfer the Belinfante EMT in Eq. (15) to
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the heat flow is absent but the modified current remains
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The first part in the parentheses, (jµ(1) �
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µ), is

an invariant combination in di↵erent frames [34], which
also appeared in Eq. (20). We can represent the in-
duced current in terms of the spin or the decomposed
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Here, we emphasize that Eqs. (20, 21) are not equivalent
to Eq. (6) even with Eq. (12). For more clarification
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Therefore, the di↵erence between Eqs. (20, 21) and (6)
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In this case @µS 0µ is given by Eq. (20) with � replaced by
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Total derivative

Canonical results
𝒮μ → 𝒮′ μ

Absorbed in the entropy, 
then it is canonical!
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Entropy analysis ? 
[Fukushima-Pu, arXiv: 2010.01608]

- Different EMTs lead to not equivalent entropy flows 
   even with the spin tensor identity (EOMs are the same).

- Second law of thermodynamics consistent with 
   the canonical treatment if wµn is given in thermodynamics.

- This observation seconds the density operator analysis.
Becattini, Tinti, Florkowski, Speranza,…

Any way for the entropy analysis with the symmetric EMT???
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Two examples from:
Fukushima-Pu: 2001.00359 [hep-ph]
Fukushima-Hidaka-Yee: 2010.xxxxx

Entropy analysis makes everybody happy!?
Favors the canonical analysis and the density operator results

Fukushima-Pu: 2010.01608 [hep-th]

Complementary approaches in QFT… but…

Systems with E, B, and J are controversial!
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Fluid

r⇥ u

Rotating QFT

Global rotation — the system 
must have a finite size (causality)

v.s.
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be then a delicate quantitative competition which of |⌦ j| and
R�1| j| can be larger. Our explicit calculations (at zero temper-
ature) will show that the energy gap ⇠ R�1| j| is always larger
than the e↵ective chemical potential |⌦ j|, and so no mode is
actually Pauli blocked. This means that the chiral condensate
cannnot be modified at all so long as the temperature is smaller
than the e↵ective chemical potential.

Our results imply that the phase transition scenario needs
judicious refinements in the low-temperature region. At finite
temperature the situation could be qualitatively changed, be-
cause there is no strict Pauli blocking, and moreover the anoma-
lous e↵ects are turned on. In the end we will briefly mention on
non-trivial interplay between the rotation and the finite temper-
ature and magnetic field.

2. Reviewing the Dirac equation in a rotating frame

We explain our notation by making a quick summary of ba-
sic formulas for Dirac fermions in a rotating frame. The free
Dirac equation in curved spacetime reads [33],

⇥
i�µ(@µ + �µ) � m

⇤
 = 0 , (1)

where the covariant derivatives associated with finite rotation
are specified as �µ = � i

4!µi j�i j with the Dirac spin matri-
ces �i j = i

2 [�i, � j]. The spin connection is given by !µi j =

g↵�e↵i (@µe
�
j + �

�
µ⌫e⌫j) in terms of the metric and the vierbine,

where Greek and Latin letters represent coordinate (µ = t, x, y, z)
and tangent (i = 0, 1, 2, 3) space, respectively. In a rotating
frame with the angular frequency vector,⌦ = ⌦ ẑ, we can write
the explicit form of the metric down as

gµ⌫ =

0
BBBBBBBBBBBB@

1 � (x2 + y2)⌦2 y⌦ �x⌦ 0
y⌦ �1 0 0
�x⌦ 0 �1 0

0 0 0 �1

1
CCCCCCCCCCCCA
. (2)

The corresponding vierbine is not unique and for convenience
we shall choose them as

et
0 = ex

1 = ey
2 = ez

3 = 1, ex
0 = y⌦, ey

0 = �x⌦ , (3)

and zero for other components. We can simplify the Dirac ma-
trix structure of Eq. (1) converting �µ to �i, and then the Dirac
equation in these rotating (t, x, y, z) coordinates with �i takes the
following form,
n
i�0⇥@t+⌦(�x@y+y@x� i

2�
12)
⇤�i�1@x�i�2@y�i�3@z�m

o
 = 0 .

(4)
The solutions of the above Dirac equation provide us with a
complete set of bases. The positive-energy particle solutions
with positive and negative helicity take the following explicit
form in the Dirac representation of �i’s;

u+ =
e�iEt+ipzz
p
" + m

0
BBBBBBBBBBBB@

(" + m)�`
0

pz �`
ip`, k �`+1

1
CCCCCCCCCCCCA
, u� =

e�iEt+ipzz
p
" + m

0
BBBBBBBBBBBB@

0
(" + m)�`+1
�ip`, k �`
�pz �`+1

1
CCCCCCCCCCCCA
,

(5)

where " ⌘ |E + ⌦ j|. Here j represents the z-component of the
total angular momentum and we introduce ` = `+ = `� � 1 with
the azimuthal quantum number `± for spin “up” and “down”
states, so that j = ` + 1/2 holds for any spin states. Also,
we defined scalar functions of the radial momentum as �` =
ei`✓J`(p`, kr) and �`+1 = ei(`+1)✓J`+1(p`, kr), which lead to the
dispersion relation "2 = p2

`, k + p2
z + m2. In the same way the

negative-energy antiparticle solutions with positive and nega-
tive helicity are obtained from v± = i�2u⇤± as

v+ =
eiEt�ipzz
p
" + m

0
BBBBBBBBBBBB@

�ip`, k �⇤`+1
�pz �

⇤
`

0
(" + m)�⇤`

1
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, v� =

eiEt�ipzz
p
" + m

0
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�pz �
⇤
`+1

�ip`, k �⇤`
�(" + m)�⇤`+1

0

1
CCCCCCCCCCCCA
.

(6)
As we discuss later, we will compute the vacuum expectation
value of field operators using these basis functions.

3. Momentum discretization

In a finite box the momenta should be discrete reflecting the
(sharp) boundary condition imposed on the edge of the box. We
are considering a cylinder that has a boundary at r =

p
x2 + y2 =

R and is infinitely long along the z-axis. Thus, pz is not modi-
fied, while the radial momenta should take discrete values gapped
by / R�1, which was the reason why we denoted them as p`, k.
Since this discretization property is such crucial for our quan-
titative comparisons, let us carefully see how the discretization
condition is physically required.

To this end, we see how the current conservation follows in
a finite-size cylindrical system [34]. For the fermion in curved
spacetime the vector current conservation law reads,

rµ jµ =
1
p
|g|
@µ(
p
|g| jµ) = 0 , (7)

where rµ represents the covariant derivative and jµ =  ̄�µ .
Thus, to keep the total charge constant in a cylinder, we must
impose a condition of no incoming flux at the spatial boundary
as

Z

V
dV @↵(

p
|g|  ̄�↵ ) =

Z

@V
d⌃↵
p
|g|  ̄�↵ = 0 . (8)

Here ↵ stands for the spatial components x, y, z in coordinate
space. In cylindrical coordinates the above condition turns into

R
Z 1

�1
dz
Z 2⇡

0
d✓  ̄�r 

����
r=R
= 0 . (9)

We note that �r ⌘ �1 cos ✓ + �2 sin ✓ that follows from �1@1 +
�2@2 = �r@r + r�1�✓@✓. For arbitrary fermionic fields we can
expand  (x) using the complete set of u±(x) and v±(x), and then
after the ✓-integration which constrains possible combinations
of `, we find a superposition of four linear independent quanti-
ties;

J`(p`�1,kR)J`(p`,k0R) , J`(p`,kR)J`(p`�1,k0R) ,
J`(p`�1,kR)J`(p�`�1,k0R) , J`(p`,kR)J`(p�`,k0R) .
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Solve this in a finite cylinder (radius R)

Not only the affine connection but gamma’s changed

Hrot = H � !Jz Thermal Model
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Jiang-Liao, PRL (2017)

3

coordinate — specifically dependent only on r by virtue
of symmetry. Using the mean-field propagator one can
compute the grand potential of the system:

⌦ =

Z
d3~r

⇢
(M �m)2

4G
� NfNc

16⇡2

X

n

Z
dk2t

Z
dkz

⇥ [Jn(ktr)
2 + Jn(ktr)

2]

⇥T


ln

⇣
1 + e(✏n�µ)/T

⌘
+ ln

⇣
1 + e�(✏n�µ)/T

⌘

+ ln
⇣
1 + e(✏n+µ)/T

⌘
+ ln

⇣
1 + e�(✏n+µ)/T

⌘� �
(8)

In the above the mean-field quasiparticle dispersion ✏n is
given by ✏n =

p
k2z + k2t +M2 � (n + 1

2 )!. The mean-
field chiral condensate (or equivalently the mass gap M)
at given values of temperature T , chemical potential µ
and rotation !, can then be determined from the usual
gap equation through variation of the order parameter:

�⌦
�M(r) = 0 and �2⌦

�M(r)2 > 0. We will numerically solve
the gap equation for the case of Nf = 2 and Nc = 3 and
present the results below. For the parameters G, Gd and
a cuto↵ scale ⇤ of this model, we choose the standard
values (see e.g. [36]).
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FIG. 1: The mean-field mass gapM (at radius r = 0.1GeV
�1

)

as a function of ! for various fixed value of T .

Let us focus on the zero density case (i.e. µ = 0) and
study how the mass gap changes with T and !. As al-
ready pointed out, the condensate will depend on the
transverse radius r: we have found that the mass gap M
smoothly decreases with r . In the following we will show
results for a particular value of r for simplicity. In Fig. 1
we show M (at radius r = 0.1GeV�1) as a function of
! for various fixed value of T . At all values of temper-
ature, the mass gap decreases with increasing values of
!: this clearly confirms the rotational suppression e↵ect
on the quark-anti-quark pairing in the chiral condensate.
We also see that at low temperature the chiral conden-
sate experiences a first-order transition when ! exceeds
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FIG. 2: The mean-field mass gap M (at radius r =

0.1GeV
�1

) as a function of T for various fixed value of !.

a critical value !c, while at high temperature the chi-
ral condensate vanishes with increasing ! via a smooth
crossover. The !c decreases with increasing temperature.
In Fig. 2 we show M (at radius r = 0.1GeV�1) as a func-
tion of T for various fixed value of !. At very small !, the
mass gap decreases smoothly toward zero with increasing
temperature, indicating a smooth crossover transition as
expected. However when ! becomes large, the transition
becomes stronger and stronger, eventually becoming a
first-order transition as signaled by a sudden jump. The
transition temperature Tc becomes smaller at larger !.
These results could be understood by considering ! as
a sort of “chemical potential” for angular momentum.

Indeed this is evident from Eq.(4): the term ~! · ~̂J is in
direct analogy to a term µ · Q̂ for a conserved charge Q̂.
It is therefore not surprising that the phase transition
behavior at finite ! is very similar to that at finite µ in
the same model.
With the above observation, it is tempting to envi-

sion a new phase diagram of the chiral phase transition
on the T � ! parameter space: see Fig. 3 (as computed
from the present model). It features a chiral-symmetry-
broken phase at low temperature and slow rotation while
a chiral-symmetry-restored phase at high temperature
and/or rapid rotation. A smooth crossover transition
region at high T and low T and a first-order transi-
tion line at low T and high ! are connected by a new
critical end point. Given the present model parameters,
this critical point is located at TCEP = 0.020GeV and
!CEP = 0.644GeV. As already discussed previously,
the “rotational suppression” of the scalar condensate is a
quite generic e↵ect. It is conceivable that similar phase
transition behaviors under rotation would also occur in
other dynamical models for studying chiral condensate.
Superconducting Pairing in Rotating Matter.— To

demonstrate that the “rotational suppression” of the
scalar condensate is a generic e↵ect, we also study an-
other quite di↵erent type of pairing: the fermion-fermion
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate
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In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.
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FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Vorticity looks like density common to particles/antiparticles
Okay for specific particles (L etc) but unstable for bulk…

(Mean-field calc. → fRG?)
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portional to y ~ p in S,'"'(p, g, ) vanishes upon integration over p and that terms independent of y'
drop out after taking the trace. Omitting a11 these terms we get

0 g(0)) =-(2p-'(2n) '+exp(eg, ) I d'p Tr/0 Z~ exp(-0 ~ Zs/8$, )]g,(f,'-p') ',
where I have used that Z =y yy'.
Since 0 ~ Z =QZ, and Z, =diag(1, -1,1,—1), we easily find

Tr(Q ~ Z exp(-,' 0 Zs/sg, )].=20[exp(-,'Qs/eg, ) —exp(——,Qs/sg, )].
Using the relation

exp(nd/dx) f(x) =f(x+n),
we can now rewrite Eq. (Dl) as

0 ~ (J(0)) =—QP '(2n) 'g exp(qg, ) d'P((g, +0/2)[(f, +0/2)'-P'] '-(g, —0/2)[(g, —0/2)' p']-'].
l

(D2)

(D8)

(D4)

Using the same device as in Sec. IV to replace the
sum over l by an integral, we find

0 g(o))

=0(2P&') ')) dPP'[f, (P+0/2) f,(P- 0/-)2]
0

where g =QP/2. The integral in Eq. (D5) can be
evaluated, '

f 00
(coshx+ cosh)) 'x'dx = $(m'+ g') /8 sinh$

(De)

= —(2n'p') ' sinhg)) (coshx+coshg) 'x'dx,
0

and we obtain

( J(0) ) =—0(T '/12+0'/48m'),
in agreement with Ref. 3.

(D7)

~For a review see, e.g., A. A. Abrikosov, L. P. Gorkov,
and 1. K. Dzyaloshinski, Methods of Quantum Field
Theory in Statistical Physics, translated and edited
by B. Silverman (Prentice-Hall, Englewood Cliffs,
N. Y., 1963).
C. W. 33ernard, Phys. Bev. D 9, 3312 (1974); L. Dolan
and R. Jackiw, ibid. 9, 3320 (1974); S. Weinberg, ibid.
9, 3357 (1974). Other references can be found in
B.Hakim, Biv. Nuovo Cimento 1, No. 6 (1S78).
A. Vilenkin, Phys. Rev. D 20, 1807 (1979); Phys. Lett.
80B, 150 (1978).
L. D. Landau and E.M. Lifshitz, Statistical Physics
(Pergamon, London, 1969).

~Note that n„has a singularity at&= mQ. This singu-
larity, however, is unphysical. A rotating system
cannot have size greater than Q (otherwise the velo-
city at the boundary would exceed the velocity of light),
and in a finite system the energy is quantized in such
a way that u is always greater than mQ. (There are
some exceptions in which the field has exponentially
growing modes. See Bef. 6.) As an example, consider
an infinite cylinder of radius R rotating around its ax-
is. Requiring that 4 vanishes at the boundary, we find
the energy levels ~nmp = @ +p + gmz R )~, where ~mn
is the nth root of J~(x). It can be shown (Bef. 7) that
$~„&m. Thus, „~p& $~„R & mQ. In the present
paper we shall assume that the lowest energy modes
are unimportant and thus the infinite-space solutions
(17) can be used.
Ya. B. Zeldovich, Pis'ma Zh. Eksp. Teor. Fiz. 14, 270

(1971) [JETP Lett. 14, 180 (1971)];W. M. Press and
S. A. Teukolsky, Nature 238, 211 (1972); A. Vilenkin,
Phys. Lett. 788, 301 (1978).
I. S. Gradshteyn and I.M. Byzhik, Table of Integrals,
Series and Products (Academic, New York, 1S65).
In fact, Eq. (24) follows directly from the definition of
the temperature Green's function (see Bef. 2) and holds
for interacting as well as for free fields.
In this paper I use physical, not coordinate components
of vectors, so that A&=A @, where e&, e&, e3 are unit
vectors parallel to the local coordinate axes.

~ The matrices y ~ and y are taken in the representation
of J.D. Bjorken and S. D. Drell, Relativistic Quantum
Mechanics (McGraw-Hill, New York, 1964).
In Bef. 3, the matrix y and the argular quantum num-
ber m were taken with a wrong sign. The correct equa-
tions are obtained by changing L -L and m -m in
Eqs. (15), (19), and (20) of Bef. 3. All the following
equations, including the final results, do not change.

~2See, e.g. , S. S. Schweber, An Introduction to Relativis-
tic Quantum Field Theory (Bow, Peterson, Evanston,
Illinois, 1961).

~3A nonvanishing zero-temperature value of (J (0)) in Eq.
(83) is due. to the fact that the Fermi distribution func-
tion

f~~= {exp[P(~—~Q)i +1)
does not vanish for ~& mQ, even at T = 0. It seems
reasonable to assume that the finite size of the system
modifies the particle spectrum in such a way that co is
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Here,
—(es(&o-mo ~ 1)-& (23)

A =(4n'R) ' sinP, R,
where

is the Bose-Einstein distribution for a rotating
system, ' 7 =v, —v'„ the upper and lower lines in
parentheses correspond to r, &v2 and 7; & T„re-
spectively, and I have used the fact that

(a„' „a„., „,), =n„„6„„.6(P -P')6((o —(o'),
(a„«„a',«. ,), = (n„+1)6„„,6(p —p' )6 (&o —~ ' ),

It is easily seen from Eq. (22) that' for -p& v &0,
D(&+0) =D(&) (24)

and thus the function D in the interval —P& 7.&P ca.n
be expanded in a Fourier series as

D(x„r„.x„v,) =g ' g e '"'D(x„x„v„), (25)

R
I
x x

I
(r +x,' —2r, x, cos(&f&, —(f),)
+(e, -e.)'l'".

Another representation for the Green's func-
tion D can be obtained if we note that Eq. (28) can
be rewritten in the form

D(x„x„v„)=g (k. ) ' —iQ «D, (x„x„v„)8 v„9&]&,

8 8=exp —iO, Do x] x2 pev„e,
(31)

Here, D, is the scalar Green's function for a non-
rotating system which is given by the well-known
expression'

where v„=2minP '. The function D(x„x„v„)can
be found from

D,(x„x„v„)= —(2m) 'J d'pe"'"' *"

8
D(x„x„v„)=—,

' e'"'D(x„r; x„0)dr
«g

8
e"~' D(x „v;x „0)dr . (26)

Noticing tha. t
Qs/sy, =Q (x, x v, ),

we obtain finally

x(v„P —P ) -(32)

(33)

Substituting Eq. (22) in Eq. (26) and integrating
over v, we obtain

D(x~~x~~ „)

dp i«~pm & Ql pm 2
p —co +m(3ft

4*.,.(x,) 4., (x.)
~ (27)v„+co —mQ

In most physical situations, Q«T and one can
be interested in calculating the first few terms in
the expansions of physical quantities in powers
of PQ =(O'Q/k T). Expanding (v„—u+mQ) ' and
(v„+v —mQ) ' in powers of Q, we obtain

f" dw g(iQ 8),

D(x„x„v„)=exp —iQ ~ (x, x V, ) 8 v~

&&D,(x„x„v„).
B. Spinor field

The spinor field equation in cylindrical co-
ordinates is'

where'"

(35)

d(d ~ zQ 8
vn+~ «=u vn+~ sfx

(28)

r, =—2 O'3

2 0

0 (37)

where

dP „, x, *„x,.
-po m

(29)

The quantity A can be calculated directly from Eq.
(29) using the cylindrical wave functions (17). This
is done in Appendix B. The result is

(I+y')e'(x, i) =O. (38)
The primes in Eqs. (35), (36), and (38) indicate
that the corresponding quantities are taken in
cylindrical coordinates. Unprimed quantities
correspond to Cartesian coordinates.

For neutrinos p, =0, and Eq. (35) is supplemented
by the condition"
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Is it really possible to change the QCD vacuum 
  just by rotation ???

The answer is negative (nontrivial for fermions)
Ebihara-Fukushima-Mameda, PLB (2017)

Causality System size should be finite ~ R
Energy dispersion should be gapped ~ J/R!R < 1

<latexit sha1_base64="qsnRBAvj3mJsR6eky5zPGZIUP64="></latexit>

Induced chemical potential ~ wJ

Gap is always bigger than the energy shift
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Is it really possible to change the QCD vacuum 
  just by rotation ???

The answer is negative (nontrivial for fermions)
Ebihara-Fukushima-Mameda, PLB (2017)

µ B T
Gauge CVE Chiral Pumping Effect Gravity CVE

If one wants to see nontrivial effects of rotation, 
it should be coupled with…
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FIG. 1. Schematic illustration of the LLLs for negatively
charged particles (electrons) and positively charged anti-
particles (positrons). The preferred spin and orbital align-
ments are consistent with classical motion of charged parti-
cles.

LLLs are found to be (↑) states with n = 0 and l ≥ 0 (i.e.,

Jz > 0), for which "̄(↑)n=0,l≥0,k =√k2 +m2. The range of l is(−∞,∞) but the LLLs span over −S⊥�eB��(2⇡) < Jz < 0
for the (↓) particles and 0 < Jz < S⊥�eB��(2⇡) for the(↑) anti-particles for su�ciently large S⊥�eB��(2⇡) (see
Ref. [46] for details).

We note that the preferred (↑, ↓) and the range of l for
these LLLs are completely consistent with our intuition
based on classical physics; the energy is lowered by the
spin alignment anti-parallel to B for negatively charged
particles, while the spin alignment should be parallel to
B for positively charged anti-particles. The orbital dy-
namics is in accord to the Larmor motion in classical
electrodynamics and Jz < 0 for electrons and Jz > 0 for
positrons are naturally concluded, respectively. For a
schematic illustration, see Fig. 1.

III. MODE DECOMPOSED DENSITY
DISTRIBUTIONS

We will consider mode-by-mode contributions to the
expectation values of the scalar (density), the pseudo-
scalar (chirality density), the vector, and the axial-vector
operators. We will later make use of the results in this
section to propose the mode decomposed version of the
CME. Also we apply our results for a canonical formula-
tion of rotating fermions.

A. Density and Chirality Density

The fermion number density is given by ⇢ = � ̂† ̂�,
where  ̂ represents a Dirac field operator. It is a standard
procedure to expand  ̂ in terms of the complete basis of

u(↑,↓)n,l,k with particle annihilation operators â(↑,↓)n,l,k and v(↑,↓)n,l,k

with anti-particle creation operators b̂(↑,↓)†n,l,k in the second
quantization method. Then, we can express ⇢ as a linear
superposition of di↵erent (n, l, k) contributions, which we
can symbolically represent in the following form:

⇢ = �
n,l,k
(⇢(↑)n,l,k + ⇢(↓)n,l,k + ⇢̄(↑)n,l,k + ⇢̄(↓)n,l,k) , (12)

where the first two (and the last two) represent the par-
ticle (and the anti-particle) contributions. The sum-
integral is a short-hand representation of the phase space
sum over (n, l, k) with the proper weight having the mass
dimension three. More explicitly, the phase space inte-
gral is replaced as

� d2k⊥(2⇡)2 ⇔
1

S⊥�n,l
′ → �eB�

2⇡
�
n,l

, (13)

where S⊥ is the transverse area and∑′ denotes a weighted
sum that can reproduce the phase space integral in the
zero magnetic limit and the weight goes to S⊥�eB��(2⇡)
for su�ciently large S⊥�eB��(2⇡). For a precise definition,
see Ref. [46]; we need to cope with a finite sized boundary
condition and this is beyond the current scope.

These expectation values of ⇢(↑,↓)n,l,k and ⇢̄(↑,↓)n,l,k depend on

the state. If we take an expectation value with â(↑)†n,l,k �0�,
we can immediately find the density constituent, using
the explicit solutions of the Dirac equation, as

⇢(↑)n,l,k = ("
(↑)
n,l,k +m)2 + k2

2"(↑)n,l,k("(↑)n,l,k +m) ��n,l�2

+ �e�B(2n + �l� + l + 2)
2"(↑)n,l,k("(↑)n,l,k +m) ��n,l+1�2 .

(14)

In the same way, we consider an expectation value cor-

responding to a state, â(↓)†n,l,k �0�, which turns out to be

⇢(↓)n,l,k = ("
(↓)
n,l,k +m)2 + k2

2"(↓)n,l,k("(↓)n,l,k +m) ��n,l+1�2

+ �e�B(2n + �l + 1� + l + 1)
2"(↓)n,l,k("(↓)n,l,k +m) ��n,l�2 .

(15)

Similarly, for the anti-particle contributions, states

b̂(↑,↓)†n,l,k �0� lead to the expectation values as given by

⇢̄(↑)n,l,k = − ("̄
(↑)
n,l,k +m)2 + k2

2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l�2

− �e�B(2n + �l� − l)
2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l−1�2 ,

(16)

and

⇢̄(↓)n,l,k = − ("̄
(↓)
n,l,k +m)2 + k2

2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l−1�2

− �e�B(2n + �l + 1� − l + 1)
2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l�2 .

(17)

For our later quantitative discussions it is important to
note that the spatially integrated quantities (denoted by

9

For the calculation of the density ⇢, as discussed in
Ref. [45], only the LLL contribution remains finite up
to the linear order in !. For the LLLs, then, Jz < 0
for ! > 0 is chosen out for the negatively charged parti-
cles, and Jz > 0 is for the anti-particles. It is clear from
the above step-function distribution functions that only
the anti-particle LLL states make nonzero contributions.
Therefore, the density is attributed solely to the anti-
particle LLL states with !Jz > 0, and this is along the
direction of the anti-particle LLL motion as illustrated
in Fig. 1. To summarize, for m = 0, we can express the
spatially averaged density as follows:

⇢ = −� 1

S⊥
2⇡

�eB� �
�eB�
2⇡

S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − �k�)

= − !

⇡S⊥
S⊥�eB��(2⇡)�

Jz

�l + 1

2
�

= −!�eB�
4⇡2

+ (orbital part) . (43)

Therefore, the spin contribution to an induced density
reads:

⇢spin = −!�eB�
4⇡2

, (44)

which correctly coincides with Ref. [45]. The orbital part
may look proportional to S⊥ which diverges in the ther-
modynamic limit. This pathological behavior arises from
the magnetic contribution to the angular momentum and
we need careful treatments of the canonical and the ki-
netic orbital angular momenta [71]. They are di↵erent
by �eB�r2�2 [72] and this extra contribution (coming from
the Poynting vector) cancels the orbital part. We will
present more detailed and explicit discussions on this
subtle but interesting point in another publication.

D. Chiral Vortical E↵ect

The CVE is characterized by an axial vector current
induced in matter at ! ≠ 0. The current can exist at
finite value of either temperature or density, and we will
consider the finite density situation only in this paper.
Then, the CVE formula should be; j5 = µ2�(2⇡2)! in
the case of m = 0 and �eB� = 0. The coexistence of finite
magnetic field may change the formula and it would be an
intriguing question to generalize the CVE formula to the
finite magnetic case. The extra magnetic contribution
to the orbital angular momentum is, however, a subtle
problem and we will discuss it in another publication.

In the massless limit the axial vector current (after the

spatial average) is given by

jz5 = � 1

S⊥
2⇡

�eB� �
�eB�
2⇡
�
n,l
� dk

2⇡
� k2

"(↑)2n,l,k

✓(!Jz + µ − "(↑)n,l,k)
− k2

"(↓)2n,l,k

✓(!Jz + µ − "(↓)n,l,k) + k2

"̄(↑)2n,l,k

✓(!Jz − µ − "̄(↑)n,l,k)
− k2

"̄(↓)2n,l,k

✓(!Jz − µ − "̄(↓)n,l,k)� . (45)

One might think that only the LLLs remain with incre-
mented n, but in this case Jz enters the step functions
and the cancellation is incomplete. Namely, the LLLs
give:

jz5,LLL = 1

S⊥ �−
−S⊥�eB��(2⇡)�

Jz<0 � dk

2⇡
✓(!Jz + µ − �k�)

+ S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − µ − �k�)�

= �! − 2µ� �eB�
4⇡2
+ (orbital part) , (46)

and the first term is completely consistent with a com-
bination of the LLL relation (36) and the induced den-
sity (44). The second term is nothing but the CSE for-
mula (38).

For higher LL contributions, we note that "(↑)n,l,k =
"(↓)n+1,l−1,k and "̄(↓)n,l,k = "̄(↑)n+1,l+1,k. By incrementing n and
shifting l accordingly, we get:

jz5 = 1

S⊥ �n>0,l�
dk

2⇡
� k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k)� + k2

"̄(↑)2n,l,k

�✓(!Jz − µ − "̄(↑)n,l,k)
− ✓(!Jz − ! − µ − "̄(↑)n,l,k)��

= 1

S⊥ �n>0,l�
dk

2⇡

k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k) + ✓(−!Jz − µ − "(↓)n,l,k)
− ✓(−!Jz − ! − µ − "(↓)n,l,k)�

� 1

S⊥ �n>0,l�
dk

2⇡

k2 !

"(↓)2n,l,k

��(µ − "(↓)n,l,k) + �(−µ − "(↓)n,l,k)� .
(47)

Here, in the last step, we made expansion in terms of
! � 1, which is adopted in the standard derivation of
the CVE formula. For µ > 0 the second term from the
anti-particle is vanishing. The term involving Jz is of
higher order in the ! expansion. Then, in the limit of
eB → 0, we can replace (1�S⊥)∑n,l ∫ dk2⊥�(2⇡)2 [as we
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Lowest Landau level exists only for one spin state. 

If rotation is along the spin direction (for positively charged 
positrons in the above illustration), excitations with this 
spin direction are energetically favored.



October 14, 2020 @ ECT*, Online 

w + B = Density

32

4

B

electron positron

spin spin

FIG. 1. Schematic illustration of the LLLs for negatively
charged particles (electrons) and positively charged anti-
particles (positrons). The preferred spin and orbital align-
ments are consistent with classical motion of charged parti-
cles.

LLLs are found to be (↑) states with n = 0 and l ≥ 0 (i.e.,

Jz > 0), for which "̄(↑)n=0,l≥0,k =√k2 +m2. The range of l is(−∞,∞) but the LLLs span over −S⊥�eB��(2⇡) < Jz < 0
for the (↓) particles and 0 < Jz < S⊥�eB��(2⇡) for the(↑) anti-particles for su�ciently large S⊥�eB��(2⇡) (see
Ref. [46] for details).

We note that the preferred (↑, ↓) and the range of l for
these LLLs are completely consistent with our intuition
based on classical physics; the energy is lowered by the
spin alignment anti-parallel to B for negatively charged
particles, while the spin alignment should be parallel to
B for positively charged anti-particles. The orbital dy-
namics is in accord to the Larmor motion in classical
electrodynamics and Jz < 0 for electrons and Jz > 0 for
positrons are naturally concluded, respectively. For a
schematic illustration, see Fig. 1.

III. MODE DECOMPOSED DENSITY
DISTRIBUTIONS

We will consider mode-by-mode contributions to the
expectation values of the scalar (density), the pseudo-
scalar (chirality density), the vector, and the axial-vector
operators. We will later make use of the results in this
section to propose the mode decomposed version of the
CME. Also we apply our results for a canonical formula-
tion of rotating fermions.

A. Density and Chirality Density

The fermion number density is given by ⇢ = � ̂† ̂�,
where  ̂ represents a Dirac field operator. It is a standard
procedure to expand  ̂ in terms of the complete basis of

u(↑,↓)n,l,k with particle annihilation operators â(↑,↓)n,l,k and v(↑,↓)n,l,k

with anti-particle creation operators b̂(↑,↓)†n,l,k in the second
quantization method. Then, we can express ⇢ as a linear
superposition of di↵erent (n, l, k) contributions, which we
can symbolically represent in the following form:

⇢ = �
n,l,k
(⇢(↑)n,l,k + ⇢(↓)n,l,k + ⇢̄(↑)n,l,k + ⇢̄(↓)n,l,k) , (12)

where the first two (and the last two) represent the par-
ticle (and the anti-particle) contributions. The sum-
integral is a short-hand representation of the phase space
sum over (n, l, k) with the proper weight having the mass
dimension three. More explicitly, the phase space inte-
gral is replaced as

� d2k⊥(2⇡)2 ⇔
1

S⊥�n,l
′ → �eB�

2⇡
�
n,l

, (13)

where S⊥ is the transverse area and∑′ denotes a weighted
sum that can reproduce the phase space integral in the
zero magnetic limit and the weight goes to S⊥�eB��(2⇡)
for su�ciently large S⊥�eB��(2⇡). For a precise definition,
see Ref. [46]; we need to cope with a finite sized boundary
condition and this is beyond the current scope.

These expectation values of ⇢(↑,↓)n,l,k and ⇢̄(↑,↓)n,l,k depend on

the state. If we take an expectation value with â(↑)†n,l,k �0�,
we can immediately find the density constituent, using
the explicit solutions of the Dirac equation, as

⇢(↑)n,l,k = ("
(↑)
n,l,k +m)2 + k2

2"(↑)n,l,k("(↑)n,l,k +m) ��n,l�2

+ �e�B(2n + �l� + l + 2)
2"(↑)n,l,k("(↑)n,l,k +m) ��n,l+1�2 .

(14)

In the same way, we consider an expectation value cor-

responding to a state, â(↓)†n,l,k �0�, which turns out to be

⇢(↓)n,l,k = ("
(↓)
n,l,k +m)2 + k2

2"(↓)n,l,k("(↓)n,l,k +m) ��n,l+1�2

+ �e�B(2n + �l + 1� + l + 1)
2"(↓)n,l,k("(↓)n,l,k +m) ��n,l�2 .

(15)

Similarly, for the anti-particle contributions, states

b̂(↑,↓)†n,l,k �0� lead to the expectation values as given by

⇢̄(↑)n,l,k = − ("̄
(↑)
n,l,k +m)2 + k2

2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l�2

− �e�B(2n + �l� − l)
2"̄(↑)n,l,k("̄(↑)n,l,k +m) ��n,−l−1�2 ,

(16)

and

⇢̄(↓)n,l,k = − ("̄
(↓)
n,l,k +m)2 + k2

2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l−1�2

− �e�B(2n + �l + 1� − l + 1)
2"̄(↓)n,l,k("̄(↓)n,l,k +m) ��n,−l�2 .

(17)

For our later quantitative discussions it is important to
note that the spatially integrated quantities (denoted by

9

For the calculation of the density ⇢, as discussed in
Ref. [45], only the LLL contribution remains finite up
to the linear order in !. For the LLLs, then, Jz < 0
for ! > 0 is chosen out for the negatively charged parti-
cles, and Jz > 0 is for the anti-particles. It is clear from
the above step-function distribution functions that only
the anti-particle LLL states make nonzero contributions.
Therefore, the density is attributed solely to the anti-
particle LLL states with !Jz > 0, and this is along the
direction of the anti-particle LLL motion as illustrated
in Fig. 1. To summarize, for m = 0, we can express the
spatially averaged density as follows:

⇢ = −� 1

S⊥
2⇡

�eB� �
�eB�
2⇡

S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − �k�)

= − !

⇡S⊥
S⊥�eB��(2⇡)�

Jz

�l + 1

2
�

= −!�eB�
4⇡2

+ (orbital part) . (43)

Therefore, the spin contribution to an induced density
reads:

⇢spin = −!�eB�
4⇡2

, (44)

which correctly coincides with Ref. [45]. The orbital part
may look proportional to S⊥ which diverges in the ther-
modynamic limit. This pathological behavior arises from
the magnetic contribution to the angular momentum and
we need careful treatments of the canonical and the ki-
netic orbital angular momenta [71]. They are di↵erent
by �eB�r2�2 [72] and this extra contribution (coming from
the Poynting vector) cancels the orbital part. We will
present more detailed and explicit discussions on this
subtle but interesting point in another publication.

D. Chiral Vortical E↵ect

The CVE is characterized by an axial vector current
induced in matter at ! ≠ 0. The current can exist at
finite value of either temperature or density, and we will
consider the finite density situation only in this paper.
Then, the CVE formula should be; j5 = µ2�(2⇡2)! in
the case of m = 0 and �eB� = 0. The coexistence of finite
magnetic field may change the formula and it would be an
intriguing question to generalize the CVE formula to the
finite magnetic case. The extra magnetic contribution
to the orbital angular momentum is, however, a subtle
problem and we will discuss it in another publication.

In the massless limit the axial vector current (after the

spatial average) is given by

jz5 = � 1

S⊥
2⇡

�eB� �
�eB�
2⇡
�
n,l
� dk

2⇡
� k2

"(↑)2n,l,k

✓(!Jz + µ − "(↑)n,l,k)
− k2

"(↓)2n,l,k

✓(!Jz + µ − "(↓)n,l,k) + k2

"̄(↑)2n,l,k

✓(!Jz − µ − "̄(↑)n,l,k)
− k2

"̄(↓)2n,l,k

✓(!Jz − µ − "̄(↓)n,l,k)� . (45)

One might think that only the LLLs remain with incre-
mented n, but in this case Jz enters the step functions
and the cancellation is incomplete. Namely, the LLLs
give:

jz5,LLL = 1

S⊥ �−
−S⊥�eB��(2⇡)�

Jz<0 � dk

2⇡
✓(!Jz + µ − �k�)

+ S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − µ − �k�)�

= �! − 2µ� �eB�
4⇡2
+ (orbital part) , (46)

and the first term is completely consistent with a com-
bination of the LLL relation (36) and the induced den-
sity (44). The second term is nothing but the CSE for-
mula (38).

For higher LL contributions, we note that "(↑)n,l,k =
"(↓)n+1,l−1,k and "̄(↓)n,l,k = "̄(↑)n+1,l+1,k. By incrementing n and
shifting l accordingly, we get:

jz5 = 1

S⊥ �n>0,l�
dk

2⇡
� k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k)� + k2

"̄(↑)2n,l,k

�✓(!Jz − µ − "̄(↑)n,l,k)
− ✓(!Jz − ! − µ − "̄(↑)n,l,k)��

= 1

S⊥ �n>0,l�
dk

2⇡

k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k) + ✓(−!Jz − µ − "(↓)n,l,k)
− ✓(−!Jz − ! − µ − "(↓)n,l,k)�

� 1

S⊥ �n>0,l�
dk

2⇡

k2 !

"(↓)2n,l,k

��(µ − "(↓)n,l,k) + �(−µ − "(↓)n,l,k)� .
(47)

Here, in the last step, we made expansion in terms of
! � 1, which is adopted in the standard derivation of
the CVE formula. For µ > 0 the second term from the
anti-particle is vanishing. The term involving Jz is of
higher order in the ! expansion. Then, in the limit of
eB → 0, we can replace (1�S⊥)∑n,l ∫ dk2⊥�(2⇡)2 [as we
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Mechanism ~ Thouless pumping (Floquet theory)
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FIG. 1. Experimental setup with the magnetic field and the
circularly polarized laser onto a 3D Dirac semimetal.

of the CPE has an advantage that we can easily manipu-
late A5. Moreover, the balanced configuration of charge
and axial-charge (i.e. chirality) turns out to be a system
of capacitor of chirality which should be useful for more
direct CME studies.

The aim of this work is to propose a tractable experi-
mental setup to manifest the CPE in 3D Dirac systems.
A key step to realize the axial-vector field A5 experi-
mentally is, as discussed below, that we utilize a rotating
electric field, i.e., circularly polarized laser rotating in a
two dimensional plane (see Fig. 1 for a schematic illus-
tration). We also refer to a related idea with circular
polarizations in 3D Dirac semimetals20 and more general
photo-induced e↵ects21. Using a simple fermionic de-
scription, we will show that the Dirac point splits into two
Weyl points. With an additional magnetic field22, a finite
density arises from the lowest Landau level (LLL) of one
chirality, which manifests a concrete picture of the CPE
in (1+1)-dimensionally reduced theory of fermions23.

This paper is organized as follows. In Sec. II we discuss
the Floquet e↵ective Hamiltonian to confirm an axial-
vector field. In Sec. III we consider a combination with
a magnetic field and perform explicit calculations for the
charge density and the axial current. Inhomogeneous
electric charge and chirality should be balanced with each
other. We solve these coupled equations of the CPE and
the CME to obtain a balanced distribution of the elec-
tric charge and the chirality in Sec. IV. Finally, Sec. V is
devoted to our discussions and conclusions.

II. FLOQUET EFFECTIVE HAMILTONIAN
AND AXIAL-VECTOR FIELD

We explain how to realize the axial-vector field in a
3D gapless Dirac system by applying a circularly polar-
ized laser. We note that concrete calculations below are
known ones, but a clear recognition of the axial-vector
field has not been established. When continuous laser
fields are imposed externally, the Hamiltonian H(t) be-
comes periodically time-dependent, i.e., H(t+T ) = H(t)
where T = 2⇡/⌦ is the periodicity. Quantum states in
time periodic driving are described by the Floquet the-
ory24,25, that is, a temporal version of the Bloch theorem.

The essence of the Floquet theory is a mapping between
the time-dependent Schrödinger equation and a static
eigenvalue problem. The eigenvalue is called the Floquet
pseudo-energy and plays a role similar to the energy in
a static system. Applications of the Floquet theory to
periodically driven systems with topology changing has
been a recent hot topic26–29 and experiments have also
been done30–33.
To make this paper as self-contained as possible, in this

section, we derive the e↵ective Hamiltonian in an explicit
way, though the final result is not very new but already
known. Let us consider a Hamiltonian, Htot = H0+Hint,
with

H0 = �
0� · p+ �

0
m , Hint = �e�

0� ·A , (3)

that describes the one-particle Dirac system coupled to
an external gauge field and �

µ are the Dirac matrices
satisfying {�µ

, �
⌫} = 2⌘µ⌫ . In an electric field with cir-

cular polarization in the x-y plane, we can write the time-
dependent vector potentials down as

Ax =
E

⌦
cos(⌦t) , Ay =

E

⌦
sin(⌦t) Az = 0 , (4)

where ⌦ is the frequency. We can conveniently de-
compose the interaction part of the Hamiltonian into
two pieces as Hint = e

i⌦t
H� + e

�i⌦t
H+ where H± =

�(eE/⌦)�0
�
± with �

± = 1
2 (�

x ± i�
y). Now we assume

that the the period T = 2⇡/⌦ of the circular polarization
is small enough as compared to the typical observation
timescale. We can then expand the theory in terms of
!/⌦ (with ! being a frequency corresponding to some
excitation energy). Taking the average over T we can
readily find the following e↵ective Hamiltonian27,34–36:

He↵ =
i

T
ln
h
T e

�i
R T
0 dtH(t)

i
' H0 +

1

⌦
[H�, H+] , (5)

to the first order in the expansion. We can also find
the same form from the Floquet Hamiltonian using the
Van Vleck perturbation theory37. Interestingly we can
express the induced term as

Hind ⌘ 1

⌦
[H�, H+] = � (eE)2

⌦3
i�

x
�
y = ���

0
�
z
�5 , (6)

where we defined � ⌘ (eE)2/⌦3. This means that the
circular polarized electric field would induce an axial-
vector background field A5 = �ẑ perpendicular to the
polarization plane. Essentially the same expression was
obtained in the context of “Floquet Weyl semimetal” and
the corresponding Floquet bands were figured out29. The
physics is basically the same as this preceding work29, but
we use a di↵erent language here and, for completeness,
we shall see the energy dispersion relations in the rest of
this section.
The e↵ect of finite � is easily understandable from the

energy dispersion relations. We can immediately diago-
nalize He↵ and the four pseudo-energies read:

"±(p) =
q

p2
x
+ p2

y
+ (

p
p2
z
+m2 ± �)2 (7)
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If you do a naive field-theoretical calculation (Hattori-Yin), 
you encounter severe divergences…

9

For the calculation of the density ⇢, as discussed in
Ref. [45], only the LLL contribution remains finite up
to the linear order in !. For the LLLs, then, Jz < 0
for ! > 0 is chosen out for the negatively charged parti-
cles, and Jz > 0 is for the anti-particles. It is clear from
the above step-function distribution functions that only
the anti-particle LLL states make nonzero contributions.
Therefore, the density is attributed solely to the anti-
particle LLL states with !Jz > 0, and this is along the
direction of the anti-particle LLL motion as illustrated
in Fig. 1. To summarize, for m = 0, we can express the
spatially averaged density as follows:

⇢ = −� 1

S⊥
2⇡

�eB� �
�eB�
2⇡

S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − �k�)

= − !

⇡S⊥
S⊥�eB��(2⇡)�

Jz

�l + 1

2
�

= −!�eB�
4⇡2

+ (orbital part) . (43)

Therefore, the spin contribution to an induced density
reads:

⇢spin = −!�eB�
4⇡2

, (44)

which correctly coincides with Ref. [45]. The orbital part
may look proportional to S⊥ which diverges in the ther-
modynamic limit. This pathological behavior arises from
the magnetic contribution to the angular momentum and
we need careful treatments of the canonical and the ki-
netic orbital angular momenta [71]. They are di↵erent
by �eB�r2�2 [72] and this extra contribution (coming from
the Poynting vector) cancels the orbital part. We will
present more detailed and explicit discussions on this
subtle but interesting point in another publication.

D. Chiral Vortical E↵ect

The CVE is characterized by an axial vector current
induced in matter at ! ≠ 0. The current can exist at
finite value of either temperature or density, and we will
consider the finite density situation only in this paper.
Then, the CVE formula should be; j5 = µ2�(2⇡2)! in
the case of m = 0 and �eB� = 0. The coexistence of finite
magnetic field may change the formula and it would be an
intriguing question to generalize the CVE formula to the
finite magnetic case. The extra magnetic contribution
to the orbital angular momentum is, however, a subtle
problem and we will discuss it in another publication.

In the massless limit the axial vector current (after the

spatial average) is given by

jz5 = � 1

S⊥
2⇡

�eB� �
�eB�
2⇡
�
n,l
� dk

2⇡
� k2

"(↑)2n,l,k

✓(!Jz + µ − "(↑)n,l,k)
− k2

"(↓)2n,l,k

✓(!Jz + µ − "(↓)n,l,k) + k2

"̄(↑)2n,l,k

✓(!Jz − µ − "̄(↑)n,l,k)
− k2

"̄(↓)2n,l,k

✓(!Jz − µ − "̄(↓)n,l,k)� . (45)

One might think that only the LLLs remain with incre-
mented n, but in this case Jz enters the step functions
and the cancellation is incomplete. Namely, the LLLs
give:

jz5,LLL = 1

S⊥ �−
−S⊥�eB��(2⇡)�

Jz<0 � dk

2⇡
✓(!Jz + µ − �k�)

+ S⊥�eB��(2⇡)�
Jz>0 � dk

2⇡
✓(!Jz − µ − �k�)�

= �! − 2µ� �eB�
4⇡2
+ (orbital part) , (46)

and the first term is completely consistent with a com-
bination of the LLL relation (36) and the induced den-
sity (44). The second term is nothing but the CSE for-
mula (38).

For higher LL contributions, we note that "(↑)n,l,k =
"(↓)n+1,l−1,k and "̄(↓)n,l,k = "̄(↑)n+1,l+1,k. By incrementing n and
shifting l accordingly, we get:

jz5 = 1

S⊥ �n>0,l�
dk

2⇡
� k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k)� + k2

"̄(↑)2n,l,k

�✓(!Jz − µ − "̄(↑)n,l,k)
− ✓(!Jz − ! − µ − "̄(↑)n,l,k)��

= 1

S⊥ �n>0,l�
dk

2⇡

k2

"(↓)2n,l,k

�✓(!Jz + ! + µ − "(↓)n,l,k)
− ✓(!Jz + µ − "(↓)n,l,k) + ✓(−!Jz − µ − "(↓)n,l,k)
− ✓(−!Jz − ! − µ − "(↓)n,l,k)�

� 1

S⊥ �n>0,l�
dk

2⇡

k2 !

"(↓)2n,l,k

��(µ − "(↓)n,l,k) + �(−µ − "(↓)n,l,k)� .
(47)

Here, in the last step, we made expansion in terms of
! � 1, which is adopted in the standard derivation of
the CVE formula. For µ > 0 the second term from the
anti-particle is vanishing. The term involving Jz is of
higher order in the ! expansion. Then, in the limit of
eB → 0, we can replace (1�S⊥)∑n,l ∫ dk2⊥�(2⇡)2 [as we

Unphysical divergence!

Even with strong B, 
the boundary effect is 
crucial and must be 
imposed.

Fukushima-Shimazaki-Wang (2020)
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For numerical purposes, solving the Dirac equation is 
the most straightforward strategy (instead of CKT).

Years ago, the classical statistical simulation was quite 
popular, and the CME has been simulated as well.

Fukushima, PRD (2015)

Jurgen Berges, Mark Mace, Niklas Mueller, Soeren Schlichting, Sayantan Sharma, …

Hydrodynamization and consistency with kinetic theory 
have been carefully investigated.

Review: Fukushima, Rept.Prog.Phys.80, 022301 (2017)
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The classical statistical simulation is known to be good 
for distribution functions at small momenta.

Classical paths
Initial fluctuations

Initial fluctuations are convoluted in a form of Wigner func.

⇠ O(~)
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⇠ O(~2)
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Fluctuations from classical paths

Epelbaum-Gelis-Wu, PRD (2014)

from Moyal prod.



Summary

 Interplay between E, B, J is controversial by itself. 
□Whenever charged objects are placed in B, there must 

be electromagnetic angular momenta (with which the 
angular momentum conservation holds). 

 Entropy analysis works well only in the canonical 
EMT with antisymmetric parts. 
□ Belinfante gives a local entropy flow whose divergence 

is different by the total derivative term. 
 QFT provides a complementary guide, but the 

boundary condition must be imposed. 
□ Classical statistical simulation would be promising.
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