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How spins of quarks and gluons evolve in QGP in
weakly coupled limit of QCD?

As a start, we consider a simple case of
massive quark

N.B. Λ = (uds) spin mostly arises from the spin of the
s-quark
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Why density matrix for spin 1/2?

Two spin states are almost degenerate
∆E ∼ S · ω + S · B ∼ ~.

Quantum correlation time is classical

τq ∼
~

∆E
∼ O(~0)

We need to keep 2× 2 spin density matrix in the
kinetic theory of time evolution in the classical

domain ∆t ∼ O(~0).

quantum kinetic theory
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We expect a Lindblad-type of kinetic equation

d ρ̂
dt

= − i
~

[H0, ρ̂]− Lρ̂L† +
1
2

L†Lρ̂ +
1
2
ρ̂L†L

= − i
~

[H0, ρ̂]− Γ · ρ̂

The first term contains free streaming advective flow
and background EM field, and has been worked out in

Refs:Gao-Liang, Weickgenannt-Sheng-Speranza-Wang-Rischke,
Hattori-Hidaka-Yang

The Γ · ρ̂ is the relaxational “collision" operator, that
we aim to construct in perturbative QCD framework

to leading log in QCD coupling constant g
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We consider the case of dilute (Boltzmann), massive
quarks (strange, bottom), interacting with the

background thermal QGP
1-particle quantum mechanics of a single quark
moving in QGP (Improvement: Yang-Hattori-Hidaka)

Further simplification: Spatial homogeneity limit or
“local collision" limit

Γ = Γ0 +O(~∂x/T ), ω ∼ ∂xu

(Improvement:Liu-Sun-Ko,
Weickgenannt-Speranza-Sheng-Wang-Rischke)

See the talks by Yifeng Sun and Qun Wang
The equilibrium density matrix is expected to be

Boltzmann ρ̂eq = ze−βEp12×2, where Ep =
√

p2 + m2.
Γ0 · ρ̂eq = 0

Γ0 ∼ g4 log(1/g)T gives the relaxation of spin
polarization to equilibrium
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Spin density matrix
(Becattini-Chandra-Del Zanna-Grossi,

Florkowski-Friman-Jaiswal-Ryblewski-Speranza)
( See Leonardo Tinti’s talk)

ρ̂ =
∑
s,s′

ρs,s′ |s >< s′| (1)

In the sz basis, ρ̂ becomes a 2× 2 matrix, and the
(non-relativistic) spin expectation value is

< ~S >=
~
2

Tr(~σρ̂) (2)

N.B. The relativistic “canonical" spin is

〈S i〉relativistic =
~
8
εijk ψ̄γ0[γ j , γk ]ψ = K ij〈S j〉 (3)

where K ij = 1
4Ep

Tr(
√

p · σσi√p · σσj +
√

p · σ̄σi√p · σ̄σj)

(D.-L Yang) Other spin vectors can be computed as well
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Position and momentum

Density matrix in the momentum basis

ρ̂ =

∫
p1

∫
p2

ρs,s′(p1,p2)|p1, s〉〈p2, s′| (4)

Going to the position basis,

ρ̂ =

∫
p1

∫
p2

∫
x1

∫
x2

ei(p1x1−p2x2)ρs,s′(p1,p2)|x1, s〉〈x2, s′| (5)

Write p1x1 − p2x2 = paxr + pr xa where

xr =
1
2

(x1 + x2) ,pr =
1
2

(p1 + p2) ,xa = x1 − x2 ,pa = p1 − p2

i.e. [xr ,pa] = i~ and [xa,pr ] = i~, and (xr ,pr ) are
simultaneously diagonalizable
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We map 〈p2| to |p2〉∗ ∈ H∗ in the conjugate space, i.e.,
the time-reversed (T) space (Thermo-Field Theory).

The H and H∗ are naturally described by the
Schwinger-Keldysh contours, labeled by 1 and 2

respectively,

[x1,p1] = i~, [x2,p2] = −i~

from which we have

[xr ,pa] = i~, [xa,pr ] = i~, [xr ,pr ] = 0

This means we can have the basis of simultaneous
eigenstates of (xr ,pr ) in H⊗H∗, and we introduce the

Wigner function ρ(xr ,pr ),

ρ̂ =

∫
xr

∫
pr

ρ(xr ,pr )|xr ,pr 〉
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Since [xr ,pa] = i~, they are conjugate to each other

ρ̂(xr ,pr ) =

∫
pa

eixr ·pa ρ̂(p1,p2)

We consider the cases where ∂
∂xr
∼ pa � pr ∼ T , that

is, xr -gradients can be neglected→ homogeneous
limit

This means that the density matrix in momentum
space is approximately diagonal, pa = 0,

ρ̂ =

∫
p
ρs,s′(p)|p, s〉〈p, s′|

Ho-Ung Yee Quantum relaxation operator of spin density matrix in Perturbative QCD



Relativistic massive fermion

Field quantization

ψ(x) =

∫
p

1√
2Ep

∑
s

u(p, s)eip·xap,s + anti quark

1-quark states: |p, s〉 = a†p,s|0〉, [a,a†] = 1
It is most convenient to use the helicity basis,

u(p, s) ∼
( √

Ep − spξs(p)√
Ep + spξs(p)

)
, (σ · p)ξs(p) = s|p|ξs(p)

For 1-quark states, this is the usual QM of spin 1/2
particle, where |p, s〉 ∼ ξs(p). The only modification

from relativity is that the interaction matrix elements
are given by the overlap of spinors ψ∗(x), i.e. u(p, s)
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The interaction vertices with the background gluon
fields Aa

µ, through the relativistic spinors u(p, s)

HI(t) = g
∫

dx ψ̄(x)γµtaψ(x)Aa
µ(x , t)

∼
∫

p,p′,q
ū(p′, s′)γµu(p, s)Aµ(q)a†p′,s′ap,sδp′−p−q

The amplitudes ū(p′, s′)γµu(p, s)Aµ(q) give the matrix
elements of HI in the QM of 1-quark Hilbert space of

spin 1/2.
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Relation to the field theory Wigner function

ρ̂(xr ,pr ) is the Wigner transform of as(x) =
∫

p eip·xap,s

ρ̂2×2(xr ,pr ) =

∫
xa

e−ixa·pr 〈as(xr − xa/2)a†s′(xr + xa/2)〉ρ̂

Recall ψ(x) =
∫

p
1√
2Ep

eip·xu(p)ap, so ψ(x) and a(x) are

non-locally related, and ρ̂(xr ,pr ) is not equal to the
Wigner transform of ψ(x) field. However, for the

spatially homogeneous case, they are related by

Wαβ(p) =

∫
dxa〈ψα(x − xa/2)ψ†β(x + xa/2)〉eip·xa

=
∑
s,s′

1
2Ep

uα(p, s)u†β(p, s′)ρs,s′(p)
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The explicit 2× 2 spin density matrix in momentum
space in the helicity basis

ρ̂2×2(p) =
∑
s,s′

ξp,sρs,s′(p)ξ†p,s′ ≡
1
2

f (p) + σ · S(p)

and

〈S(p)〉 =
~
2

Tr(σρ̂(p)) = ~S(p)

This object is unambiguous under a phase
redefinition of ξp,s, since ρ̂2×2(p) is physical. Note that

u(p, s) and ξp,s share the same phase.
We are going to derive the evolution equation for this

physical object

N.B. : The spin-traced object f (p) = Tr(ρ̂(p)) is the
usual number distribution in momentum space
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Time evolution of density matrix

ρ̂(t + ∆t) = U1(∆t)ρ̂(t)U†2(∆t)

where U1,2 are unitary evolution operators with QCD
gluons in Schwinger-Keldysh contours 1 or 2, with

the Hamiltonians

H1,2 = Hkinetic + g
∫

dxψ̄(x)γµψ(x)A(1)/(2)
µ
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Time evolution of density matrix

A(i)
µ are the gluon fields on the Schwinger-Keldysh

contour i = 1,2. Note U1 6= U2, and H1,2 are
time-dependent due to time-dependent gluon fields.

We average over quantum/thermal fluctuating
Schwinger-Keldysh gluon fields A(i)

µ , given by
equilibrium two-point functions of

〈A(i)
µ (p)A(j)

ν (p)〉 = G(ij)
µν (p), satisfying the thermal KMS

relations G(12)(q0) = nB(q0)/(nB(q0) + 1)G(21)(q0)

N.B: The 1-point average is zero, 〈A(i)
µ 〉 = 0, and we

need to do the second order perturbation theory in
the interaction HI ∝ Aµ

Ho-Ung Yee Quantum relaxation operator of spin density matrix in Perturbative QCD



Do the second order perturbation theory in the
interaction picture

ρ̂(∆t) = U0(∆t)ρ̂(0)U†0 (∆t)

+

∫ ∆t

0
dt1
∫ ∆t

0
dt2U0(∆t)〈H int(1)

I (t1)ρ̂(0)H int(2)
I (t2)〉AU†0 (∆t)

+ (−i)2U0(∆t)
∫ ∆t

0
dt1
∫ t1

0
dt ′1〈H

int(1)
I (t1)H int(1)

I (t ′1)〉Aρ̂(0)U†0 (∆t)

+ (+i)2U0(∆t)ρ̂(0)

∫ ∆t

0
dt2
∫ t2

0
dt ′2〈H

int(2)
I (t ′2)H int(2)

I (t2)〉AU†0 (∆t)

N.B. Compare this with the Lindblad form
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The thermal average 〈H(i)
I H(j)

I 〉 contains the gluon
two-point functions G(ij)

µν (Q) that include the Hard
Thermal Loop (HTL) self-energy. These contributions
represent interactions with background hard thermal

particles with t-channel gluon exchange.

=
2

Q

Q

G12(q0) = nB(q0)ρ(q0), where ρ(q0) is the HTL spectral
density
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G(ij)(t , t ′) have correlation time of τc ∼ (gT )−1 because
the leading log contribution comes from soft
t-channel momentum exchange gT � q � T

When ∆t � τc (but ∆t � 1/Γ ∼ 1/(g4 log(1/g)T ) to
neglect multi-interactions within ∆t), we have linear

terms in ∆t∫ ∆t

0
dt
∫ ∆t

0
dt ′G(ij)

µν (t − t ′)eiω(t−t ′) ∼ G(ij)(ω)∆t + · · ·

that gives the evolution equation first order in time.

N.B. In diagrammatic language, this corresponds to
the ladder approximation, which is justified because

of the scale separation
τc ∼ 1/gT � 1/Γ ∼ 1/g4 log(1/g)T
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Times scales of perturbative QCD in finite T plasma
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Small angles versus large angles

Small angle scatterings (Γ ∼ g2 log(1/g)T ):
Total damping rates, Color transports

Large angle scatterings (Γ ∼ g4 log(1/g)T ):
Conserved charge transports, Spin transports
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Why small angle scatterings are suppressed for spin
transports?

(From discussions with K. Hattori and D.-L. Yang in
Kyoto, Dec. 2019)

Spin flipping interactions are magnetic moment
interactions µ · B ∼ σ · B

The Gordon identity

ū(p′)γµu(p) =
1

2m
((p + p′)µ + iσµν(p′ − p)ν) (6)

The second part flips spin, and vanishes when
q = p′ − p → 0
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Explicitly

d
dt
ρs,s′(p, t) = g2C2(F )(Γcross + Γself energy)

Γcross =

∫
d3p′

(2π)3

1
4EpEp′

∑
s′′,s′′′

[ū(p, s)γµu(p′, s′′)]ρs′′,s′′′(p
′)[ū(p′, s′′′)γνu(p, s′)]G(12)

µν (Ep − Ep′ ,p − p′)

Γself energy = −γ ρ̂(p)

where

γ =
1
2

∫
d3q

(2π)3

1
4EpEp′

∑
s,s′′

[ū(p, s)γµu(p′, s′′)][ū(p′, s′′)γνu(p, s)]G(21)
µν (Ep − Ep′ ,q)

The spin sum is challenging, but can be done with
great effort
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Expanding in soft momentum exchange
q ∼ gT � p ∼ T , i.e. θ ∼ q/p ∼ g � 1 ("momentum

diffusion approximation")
we need to compute typically

JL/T
n =

∫ q0
max

q0
min

dq0

(2π)
(q0)2n−1ρL/T (q0,q)

jL
0 = p

Ep
jT
0 = ηp

2

jL
1/2 = − p

2Ep
jT
1/2 = − pEp

4m2

jL
1 = p3

3E3
p

jT
1 = ηp

2 −
p

2Ep

jL
3/2 = −2p3

E3
p

jT
3/2 = − p3

4m2Ep

jL
2 = p5

5E5
p

jT
2 = ηp

2 −
p

2Ep
− p3

6E3
p

JL/T
n =

m2
D

q(4−2n)
jL/T
n (n = integer) , JL/T

n =
m2

D

q(3−2n)

m2

E3
p

jL/T
n (n = half integer)
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Result

Write ρ̂(p) = 1
2 f (p)12×2 + σ · S(p)

∂f (p, t)

∂t
= C2(F )

m2
Dg2 log(1/g)

(4π)

1
2pEp

Γf

∂S(p, t)

∂t
= C2(F )

m2
Dg2 log(1/g)

(4π)

1
2pEp

ΓS

where

m2
D =

g2T 2

6
(2Nc + NF )
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Γf

2pEp
= ∇pi

(
T (

3
4
−

E2
p

4p2 +
ηpm4

4p3Ep
)∇pi f (p) +

pi

2p2 (Ep −
ηpm2

p
)f (p)

+ pi Tm2

4p3Ep
(ηp +

3Ep

p
−

3ηpE2
p

p2 )p ·∇pf (p)
)

Γi
S =

(
2p +

TEp

p
− ηpm2T

p2

)
S i (p) +

(
pTEp −

m2TEp

2p
+
ηpm4T

2p2

)
∇2

pS i (p)

+

(
ηpm2T

2p2

(
1−

3E2
p

p2

)
+

3m2TEp

2p3

)
(p ·∇p)2S i (p)

+
1
p2

(
pE2

p −
3m2TEp

2p
+ ηpm2

(
−Ep −

T
2

+
3TE2

p

2p2

))
(p ·∇p)S i (p)

+ 2T

(
ηp

(
1
2
−

E2
p

p2 +
mEp

2p2 +
E3

p

2p2(Ep + m)

)
+

Ep

p
− m

2p
− m2

2p(Ep + m)

)
pi (∇p · S(p))

− 2T

(
ηp

(
1
2
−

E2
p

p2 +
mEp

2p2 +
E3

p

2p2(Ep + m)

)
+

Ep

p
− m

2p
− m2

2p(Ep + m)

)
∇i

p(p · S(p))

− T
p2

(
Ep(Ep + 2m)

p(Ep + m)
+
ηpmEp

Ep + m

(
−3Ep

p2 +
1

Ep + m

))
pi (p · S(p))
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These results pass very non-trivial tests of
1) Detailed balance: f (p) = ze−Ep/T is equilibrium, that

is, Γf = 0 for this
2) Chirality in massless limit: When formally m = 0,

the density matrix factorizes as

ρ̂(p) = f+(p)P+(p) + f−(p)P−(p)

where P±(p) = 1
2(1± p̂ · σ) are the chirality projection

operators, and f±(p) satisfy the same equation in
parity-even background. This means that it should
admit the consistent Ansatz S(p) = fs(p)p̂ · σ, and
moreover f (p) and fs(p) should satisfy the same

evolution equation. Also, fs(p) = ze−|p|/T should be the
equilibrium solution of ΓS = 0.

All these are true in the above result
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Thank you very much !
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We consider a hard scale quark mass m� gT . This
justifies neglecting quark-gluon conversion process
(Compton scattering) in our leading log computation,

since the t-channel fermion exchange momentum
becomes hard q & m� gT , and leading log is absent

For light quarks, we need to consider both quark
spins and gluon spins in leading log

It should be doable with fermion/boson statistics:
A nice future problem!
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