Introduction	Formalism	and		the	

Final results and perspectives 0000

NLO corrections to dijet production in DIS in the Color Glass Condensate

Paul Caucal with Farid Salazar and Raju Venugopalan

Brookhaven National Laboratory

Saturation and Diffraction at the LHC and the EIC July $1^{\rm st}$ - Trento

ntroduction	Formalism	and		the	calculation	
000						

 $\begin{array}{c} \text{Cancellation of the divergences} \\ \text{000000} \end{array}$

Final results and perspectives

Motivations

- Inclusive dijet (or dihadron) production in DIS at small x:
 - \Rightarrow probe of the saturated regime of QCD
 - \Rightarrow access to the Weizsäcker-Williams gluon distribution
 - \Rightarrow and to the quadrupole correlator of Wilson lines

- Reliable QCD prediction requires to account for NLO corrections.
- Systematic determination of the theoretical uncertainties.

Cancellation of the divergences

Final results and perspectives

Some existing results on NLO dijet in the CGC (NLO impact factor)

- Fully inclusive DIS (= structure functions)
 - computed in light-cone perturbation theory.

Beuf, 1708.06557, Hänninen, Lappi, Paatelainen, 1711.08207

• or using an OPE approach

Balitsky, Chirilli, 1207.3844

• numerical results available, fits to HERA data.

Beuf, Hänninen, Lappi, Mäntysaari, 2007.01645

• Exclusive dijet

Boussarie, Grabovsky, Szymanowski, Wallon. 1606.00419 - 1905.07371

- color correlators in momentum space
- Other related processes
 - dijet+photon Roy, Venugopalan, 1911.04530
 - dijet production in p-A collisions lancu, Mulian, 2009.11930
 - exclusive J/Ψ Mäntysaari, Penttala, 2104.02349

See also yesterday's talks by Jani Penttala and Yair Mulian

Cancellation of the divergences

Final results and perspectives 0000

Goal of this presentation and main results

- Full NLO computation in the Regge limit $s \gg Q^2 \gg \Lambda_{\rm QCD}$, with completely general kinematics of the dijet system.
- Both longitudinal and transverse γ^{\star} .

Two main results

- Conceptual: cancellation of the divergences UV, slow (aka rapidity) and collinear. Proof of JIMWLK factorization for a process with non-trivial final state.
- Practical: numerically tractable expressions for the NLO impact factor (in the spirit of the results for inclusive DIS).

Introduction	Formalism	and		the	calculation
0000					

Final results and perspectives

Outline of my talk

• Overview of the formalism and sketch of the calculation.

• Cancellation of the UV and IR divergences

• Present final formulas relevant for the NLO impact factor.

ntroduction	Formalism	and	outline	of	th
	00000				

Final results and perspectives

Dipole picture and CGC effective field theory

calculation

• We work in the dipole picture of DIS.

- Multiple gluon interactions with the target resummed via path-ordered Wilson lines $V(\mathbf{x}_{\perp}) =$ "shock-wave formalism".
- CGC effective vertex:

$$\mathcal{T}_{ij}^{q}(q,p) \equiv i \xrightarrow{p} q j$$
$$= (2\pi)\delta(q^{-}-p^{-})\gamma^{-} \int d^{2}\mathbf{x}_{\perp} e^{-i(\mathbf{q}_{\perp}-\mathbf{p}_{\perp})\mathbf{x}_{\perp}} V_{ij}(\mathbf{x}_{\perp})$$

Formalism and outline of the calculation 00000

Cancellation of the divergences 000000

Final results and perspectives

The diagrams we need to compute (1/2)

Real diagrams

- Already computed by Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans, 1701.07143 using spinor helicities techniques.
- We recover their results.

Formalism and outline of the calculation 00000

Cancellation of the divergences 000000

Final results and perspectives 0000

The diagrams we need to compute (2/2)

Self-energies

Vertex corrections

Formalism and outline of the calculation 00000

Cancellation of the divergences

Final results and perspectives

Advantages of covariant perturbation theory

- We use standard covariant perturbation theory (not LCPT).
- Setting up the calculation is very easy, standard QFT techniques are applicable.
- Example: dressed vertex correction

$$\mathcal{M}_{V,3}^{\lambda} = \int \frac{d^4 l_1}{(2\pi)^4} \frac{d^4 l_2}{(2\pi)^4} \frac{d^4 l_3}{(2\pi)^4} [\bar{u}(k)(ig\gamma^{\mu}t^a) \underbrace{S^0(k-l_3)}_{F^0(k-l_3)} \mathcal{T}^q(k-l_3,l_1)S^0(l_1) \\ (-ie \notin (\lambda,q))S^0(l_1-q)(ig\gamma^{\nu}t^b)S^0(l_1-q+l_2)\underbrace{\mathcal{T}^q(l_1-q+l_2,-p)}_{CGC \text{ vertex}} v(p)]$$

 $\times \ G^{0,ac}_{\mu\rho}(l_3) \mathcal{T}^{g,\rho\sigma}_{cd}(l_3,l_2) G^{0,db}_{\sigma\nu}(l_2)$

Formalism and outline of the calculation 00000

Final results and perspectives

Recovering instantaneous LCPT diagrams

The amplitude has the following structure

$$\mathcal{M}^{\lambda} = \frac{ee_{f}q^{-}}{\pi} \int_{\mathbf{x}_{\perp}, \mathbf{y}_{\perp}, \mathbf{z}_{\perp}} e^{-i\mathbf{k}_{\perp}\mathbf{x}_{\perp} - i\mathbf{p}_{\perp}\mathbf{y}_{\perp} + \dots} \underbrace{\mathcal{C}(\mathbf{x}_{\perp}, \mathbf{y}_{\perp}, \mathbf{z}_{\perp})}_{\text{perturbative factor}} \underbrace{\mathcal{N}^{\lambda}(\mathbf{x}_{\perp}, \mathbf{y}_{\perp}, \mathbf{z}_{\perp})}_{\text{perturbative factor}}$$

• Computing explicitly the perturbative factor is the tough part!

$$\mathcal{N}^{\lambda}(\mathbf{x}_{\perp}, \mathbf{y}_{\perp}, \mathbf{z}_{\perp}) = \int_{l_1, l_2, \dots} \underbrace{\frac{\mathcal{N}^{\lambda}(l_1, l_2, \dots)}{\mathcal{N}^{\lambda}(l_1, l_2, \dots)} \delta(l_1^- - \dots) \dots e^{i l_{1\perp} \cdot (\dots) + i l_{2\perp} \cdot (\dots) + \dots}}_{[l_1^2 + i\epsilon] [(q - l_1)^2 + i\epsilon] [l_2^2 + i\epsilon] \dots}$$

• Using standard Dirac algebra, cut the propagator

 $N^{\lambda}(l_1, l_2, \ldots) = N^{\lambda}_{\text{reg}}(l_{1\perp}, l_{2\perp}, \ldots) + (l_1 - q)^2 \qquad N^{\lambda}_{\text{ins.a}}(l_{1\perp}, l_{2\perp}, \ldots) + \ldots$

 The cut propagators correspond to instantaneous diagrams in LCPT!

Formalism and outline of the calculation $_{\rm OOOOO}$

Cancellation of the divergences •00000

Final results and perspectives

Cancellation of the divergences

Cancellation of the divergences

Cancellation of the divergences 00000

Final results and perspectives

What kind of divergence do we get?

- UV (short distance) divergences
 - internal momentum goes to ∞ or $|\mathbf{z}_{\perp} \mathbf{x}_{\perp}| \rightarrow 0$.
 - we use dim. reg. in the transverse plane to extract the UV pole of each diagram if any.
- Rapidity divergence, "slow gluon" when $k_g^- \rightarrow 0$.
- Soft divergence $k_g^\mu
 ightarrow 0$: subset of the slow divergence.
- Collinear divergence, $z_q \mathbf{k}_{\perp g} z_g \mathbf{k}_{\perp} \rightarrow 0$ or $z_{\bar{q}} \mathbf{k}_{\perp g} z_g \mathbf{p}_{\perp} \rightarrow 0$.

Cancellation of the divergences 000000

Final results and perspectives

Cancellation of UV divergences

- Massless quark + universality of quark electric charge ⇒ no need for UV renormalization.
- UV divergence cancels between free self-energy before shock-wave and dressed self energy

• The free self-energies after SW turn UV divergence of the free vertex correction before shock-wave into IR

oduction	Formalism	and		the	calculation

Int

Cancellation of the divergences $_{\texttt{OOOOOO}}$

Final results and perspectives 0000

Cancellation of rapidity divergences

- Rapidity divergence is regularized with a longitudinal momentum cut-off $\Lambda^-.$
- The slow gluon phase space is divided using a factorization scale k_f^- .
- One shows then that

$$\mathrm{d}\sigma_{\mathrm{NLO}}^{\gamma^* \to q\bar{q}+X} = \alpha_s \ln\left(\frac{k_f^-}{\Lambda^-}\right) \underbrace{\mathcal{H}_{\mathrm{JIMWLK}} \otimes \mathrm{d}\sigma_{\mathrm{LO}}^{\gamma^* \to q\bar{q}+X}}_{\mathrm{constant}} + \overbrace{\mathrm{finite}}^{\Lambda^- \to 0}$$

action of JIMWLK on the LO x-section

• Thus, the Λ^- dependence of the NLO impact factor is canceled by the JIMWLK evolution of the LO cross-section from Λ^- to k_f^- .

Cancellation of the divergences 000000

Final results and perspectives

Cancellation of collinear divergences

• $1/\varepsilon$ pole from the free vertex correction before shock-wave remains:

$$\mathrm{d}\sigma^{\gamma_{\lambda}^{*} \to q\bar{q}+X} = \frac{\alpha_{s}C_{F}}{\pi} \left(\ln\left(\frac{k^{-}}{k_{f}^{-}}\right) + \ln\left(\frac{p^{-}}{k_{f}^{-}}\right) - \frac{3}{2} \right) \times \frac{2}{\varepsilon} \times \mathrm{d}\sigma_{\mathrm{LO}}^{\gamma_{\lambda}^{*}+A \to q\bar{q}+X} + \int_{k_{f}^{-}} \frac{\mathrm{d}k_{g}^{-}}{k_{g}^{-}} \frac{\mathrm{d}^{2}\boldsymbol{k}_{\perp,g}}{(2\pi)^{2}} \mathrm{d}\sigma^{\gamma_{\lambda}^{*} \to q\bar{q}g+X} \mathcal{J}_{R}(k^{\mu}, p^{\mu}, k_{g}^{\mu}) + \text{finite}$$

$$\stackrel{\longrightarrow}{\bullet} \text{The pole cancels for IRC safe observable only} \Rightarrow \text{jets.}$$

• $\mathcal{J}_R(k^{\mu}, p^{\mu}, k_g^{\mu})$ "recombines" two partons into one jet if they lie inside the same cone of opening angle R.

• The slow gluon phase space is $k_g^- < k_f^-$ is excluded.

Final results and perspectives 0000

Cancellation of collinear divergences

• $1/\varepsilon$ pole from the free vertex correction before shock-wave remains:

$$d\sigma^{\gamma_{\lambda}^{*} \to q\bar{q}+X} = \frac{\alpha_{s}C_{F}}{\pi} \left(\ln\left(\frac{k^{-}}{k_{f}^{-}}\right) + \ln\left(\frac{p^{-}}{k_{f}^{-}}\right) - \frac{3}{2} \right) \times \frac{2}{\varepsilon} \times d\sigma_{\mathrm{LO}}^{\gamma_{\lambda}^{*} + A \to q\bar{q}+X} - \frac{\alpha_{s}C_{F}}{\pi} \left(\ln\left(\frac{k^{-}}{k_{f}^{-}}\right) + \ln\left(\frac{p^{-}}{k_{f}^{-}}\right) - \frac{3}{2} \right) \times \frac{2}{\varepsilon} \times d\sigma_{\mathrm{LO}}^{\gamma_{\lambda}^{*} + A \to q\bar{q}+X} + \text{finite}$$

 The integration in 4 - ε dimension over the gluon when it belongs to the q or q
 jet exactly cancels the virtual pole.

Formalism and outline of the calculation $_{\rm OOOOO}$

Cancellation of the divergences $\circ\circ\circ\circ\circ\circ\bullet$

Final results and perspectives

Some final results

Final expressions (examples)

Cancellation of the divergences

Final results and perspectives • 000

Free gluon propagators before shock-wave

- Identical to the one-loop QCD corrections to the $\gamma^\star \to q\bar{q}$ light-cone wave-function.
- We recover the results obtained by Beuf, 1606.00777Hanninen, Lappi,Paatelainen 1711.08207.

ntroduction	Formalism	and	outline	the	calculation
0000					

 $\begin{array}{c} \text{Cancellation of the divergences} \\ \text{000000} \end{array}$

Final results and perspectives $0 \bullet 00$

Dressed self-energy Longitudinal polarization

• Finite piece extracted following the method in 1711.0820.

$$\mathcal{M}_{\mathrm{SE}}^{\lambda=0} = \frac{ee_{f}q^{-}}{\pi} \int \mathrm{d}^{2}\mathbf{x}_{\perp} \mathrm{d}^{2}\mathbf{y}_{\perp} e^{-i\mathbf{k}_{\perp}\mathbf{x}_{\perp} - i\mathbf{p}_{\perp}\mathbf{y}_{\perp}} (-2)(z_{q}z_{\bar{q}})^{3/2}Q\delta_{\sigma,-\bar{\sigma}}\frac{\alpha_{s}}{\pi^{2}} \int_{0}^{z_{q}} \frac{\mathrm{d}z_{g}}{z_{g}} \left[1 - \frac{z_{g}}{z_{q}} + \frac{z_{g}^{2}}{2z_{q}^{2}}\right] \\ \times \int \frac{\mathrm{d}^{2}\mathbf{z}_{\perp}}{\mathbf{r}_{zx}^{2}} \left\{ e^{-i\frac{z_{g}}{z_{q}}\mathbf{k}_{\perp}\mathbf{r}_{zx}} \mathcal{K}_{0}\left(\bar{Q}\sqrt{\mathbf{R}_{\mathrm{SE}}^{2} + \omega_{\mathrm{SE}}\mathbf{r}_{zx}^{2}}\right) \left[t^{*}V(\mathbf{x}_{\perp})V^{\dagger}(\mathbf{z}_{\perp})t_{s}V(\mathbf{z}_{\perp})V^{\dagger}(\mathbf{y}_{\perp}) - t^{*}t_{s}\right] \\ - e^{-\frac{r_{zx}^{2}}{r_{xy}^{2}}e^{\gamma_{E}}} \mathcal{K}_{0}\left(\bar{Q}r_{xy}\right) \left[\mathcal{C}_{F}V(\mathbf{x}_{\perp})V^{\dagger}(\mathbf{y}_{\perp}) - t^{*}t_{s}\right] \right\} + \mathcal{M}_{\mathrm{UV}}^{\lambda=0}$$

• UV divergent piece in dim. reg.

$$\mathcal{M}_{\mathrm{UV}}^{\lambda=0} = \frac{\mathrm{ee}_{f} q^{-}}{\pi} \mu^{-2\varepsilon} \int \mathrm{d}^{2-\varepsilon} \mathbf{x}_{\perp} \mathrm{d}^{2-\varepsilon} \mathbf{y}_{\perp} e^{-i\mathbf{k}_{\perp}\mathbf{x}_{\perp} - i\mathbf{p}_{\perp}\mathbf{y}_{\perp}} [\mathbf{V}(\mathbf{x}_{\perp})\mathbf{V}^{\dagger}(\mathbf{y}_{\perp}) - 1] \mathcal{N}_{\mathrm{LO},\varepsilon}^{\lambda=0}(\mathbf{r}_{xy}) \\ \times \frac{\alpha_{s} C_{F}}{2\pi} \left\{ \left(2\ln\left(\frac{z_{q}}{z_{0}}\right) - \frac{3}{2}\right) \left(\frac{2}{\varepsilon} + \ln(e^{\gamma_{E}}\pi\mu^{2}\mathbf{r}_{xy}^{2})\right) - \frac{1}{2} \right\}$$

roduction	Formalism	and	outline	the	calculatio	

Final results and perspectives 0000

Dressed vertex correction Longitudinal polarization

$$\begin{split} \mathcal{M}_{\mathrm{V}}^{\lambda=0} &= \frac{\mathrm{e}_{\mathrm{f}} q^{-}}{\pi} \int \mathrm{d}^{2} \mathbf{x}_{\perp} \mathrm{d}^{2} \mathbf{y}_{\perp} \mathrm{d}^{2} \mathbf{z}_{\perp} \mathrm{e}^{-i\mathbf{k}_{\perp}\mathbf{x}_{\perp} - i\mathbf{p}_{\perp}\mathbf{y}_{\perp}} [t^{a} V(\mathbf{x}_{\perp}) V^{\dagger}(\mathbf{z}_{\perp}) t_{a} V(\mathbf{z}_{\perp}) V^{\dagger}(\mathbf{y}_{\perp}) - t^{a} t_{a}] \\ \times \frac{\alpha_{s}}{\pi^{2}} 2(z_{q} z_{\bar{q}})^{3/2} Q \delta_{\sigma, -\bar{\sigma}} \int_{0}^{z_{q}} \frac{\mathrm{d} z_{g}}{z_{g}} \mathrm{e}^{-iz_{g} \mathbf{k}_{\perp}/z_{q} \cdot \mathbf{r}_{zx}} \left(1 + \frac{z_{g}}{z_{\bar{q}}}\right) \left(1 - \frac{z_{g}}{z_{q}}\right) K_{0} \left(\Delta_{\mathrm{V}, 3} \sqrt{\mathbf{R}_{\mathrm{V}}^{2} + \omega_{\mathrm{V}} \mathbf{r}_{zy}^{2}}\right) \\ & \times \left\{ \left[1 - \frac{z_{g}}{2z_{q}} - \frac{z_{g}}{2(z_{\bar{q}} + z_{g})}\right] \frac{\mathbf{r}_{zx} \cdot \mathbf{r}_{zy}}{\mathbf{r}_{zx}^{2} \mathbf{r}_{zy}^{2}} + i\sigma \left[\frac{z_{g}}{2z_{q}} - \frac{z_{g}}{2(z_{\bar{q}} + z_{g})}\right] \frac{\mathbf{r}_{zx} \times \mathbf{r}_{zy}}{\mathbf{r}_{zx}^{2} \mathbf{r}_{zy}^{2}}\right\} \end{split}$$

• UV finite

• Compact expression!

Introduction 0000	Formalism and outline of the calculation	Cancellation of the divergences	Final results and perspectives 000●
Conclus	ion		

- Proof of UV and IR finiteness of the dijet cross-section within the CGC effective field theory.
- In particular: proof of JIMWLK factorization of the rapidity divergence for a process with non-trivial final state.
- We have obtained a numerically tractable NLO impact factor \Rightarrow reach $\alpha_s^3 \ln(1/x)$ accuracy when combined with existing results for NLO BK-JIMWLK.
- Future directions:
 - Clarify the importance of Sudakov-type contributions, by considering the back to back limit of our result. See also next talk by Piotr Kotko
 - Numerical work for EIC predictions e.g. azimuthal correlations.