Mueller–Navelet jets and jet-gap-jet events with the CMS and TOTEM experiments

Cristian Baldenegro (cbaldenegro@ku.edu)

The University of Kansas

Saturation and Diffraction at the LHC and the EIC

ECT*, Trento, Italy

DE-SC0019389

- The CMS and TOTEM detectors.
- Mueller–Navelet jets at $\sqrt{s} = 7$ TeV (arXiv:1601.06713, JHEP08(2016)139).
- ▶ Hard color-singlet exchange in dijet events ("jet-gap-jet") at $\sqrt{s} = 13$ TeV (arXiv:2102.06945, accepted by PRD)
 - ▶ Jet-gap-jet events in proton-proton collisions at $\sqrt{s} = 13$ TeV ("CMS-only" analysis).
 - ▶ Jet-gap-jet events with an intact proton at $\sqrt{s} = 13$ TeV (CMS-TOTEM combined analysis).
- Summary

CMS and TOTEM experiments

CMS:

- General purpose detector at IP5 of the CERN LHC.
- Tracking (|η| < 2.5), and hadronic and electromagnetic calorimetry (|η| < 5.2)
- Jets reconstructed within $|\eta^{\mathsf{jet}}| < 4.7$

TOTEM:

- ▶ Roman pots: Forward tracking detectors at ≈ 220m w.r.t. IP5 that measure the protons scattered at small angles w.r.t. the beam.
- Measurement of total cross section, elastic scattering, and soft and hard diffractive processes in pp collisions.

The high-energy limit of QCD

The high-energy limit is defined by $\hat{s} \gg -\hat{t} \gg \Lambda_{QCD}^2$, where \hat{s} , \hat{t} are the Mandelstam variables at parton-level, the fixed-order pQCD approach breaks down.

The perturbative expansion should be rearranged (symbolically) as,

$$\mathrm{d}\hat{\sigma} \simeq \alpha_s^2 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \alpha_s^3 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \alpha_s^4 \sum_{n=0}^{\infty} \alpha_s^n \ln^n \left(\frac{\hat{s}}{|\hat{t}|}\right) + \dots$$

such that $lpha_{s}^{n}\ln^{n}\left(\hat{s}/|\hat{t}
ight)\lesssim1.$

Resummation of large logarithms of \hat{s} to all orders in α_s via **Balitsky-Fadin-Kuraev-Lipatov (BFKL)** evolution equations of pQCD.

Very important test of QCD; very challenging to isolate experimentally

Detailed theory discussion previously presented by Dmitri Ivanov.

Multi-gluon ladder diagrams contribute significantly in the high-energy limit

Mueller-Navelet jets:

Events where the two outermost jets are largely separated by a large interval in $\Delta y \equiv |y_{jet1} - y_{jet2}| \gg 1.$

At large Δy , the $\Delta \phi$ decorrelations between MN jets are stronger due to increased parton emission with the available phase-space.

 $\frac{\Delta \phi \text{ decorrelations are expected to be strong}}{\text{ in the BFKL picture.}}$

Mueller-Tang jets:

Events with two jets separated by a rapidity gap (hard color-singlet exchange).

In $\Delta y \equiv |y_{jet1} - y_{jet2}| \gg 1$, it is expected to be described by perturbative pomeron exchange.

Mueller–Navelet jets in pp collisions at $\sqrt{s} = 7$ TeV by CMS

arXiv:1601.06713, JHEP08(2016)139

Analysis based on low pileup 7 TeV data. The Mueller–Navelet jets have $p_T > 35$ GeV and |y| < 4.7, anti- k_T jets with R = 0.5.

Characterize $\Delta \phi$ decorrelations as a function of $0 < \Delta y < 9.4$.

Average cosine of $\Delta \phi$ vs. $\Delta y \equiv |y_{jet1} - y_{j2}|$

 $\cos(\pi - \Delta \phi) = 1 \iff$ back-to-back jets $\cos(\pi - \Delta \phi) = 0 \iff$ collinear jets

- **BFKL** at NLL + NLO impact factor calculations describe data at large Δy within uncertainties.
- PYTHIA6, PYTHIA8, HERWIG++ (DGLAP splitting functions) are able to describe data over wide range in \Delta y within uncertainties.
- POWHEG+PYTHIA6 and POWHEG+PYTHIA8 (NLO + PS) underestimates or overestimates data at large Δy, respectively.

Other $\langle \cos[n(\pi - \Delta \phi)] \rangle$ can be found in arXiv:1601.06713, JHEP08(2016)139. Cristian Baldenegro (KU)

where $C_n \equiv \langle \cos[n(\pi - \Delta \phi)] \rangle$ is the *n*-th Fourier coefficient of the expansion of $\frac{1}{\sigma} \frac{d\sigma}{d(\Delta \phi)}$.

- BFKL at NLL + NLO impact factor calculations describe data at large Δy within uncertainties (B. Ducloué, L. Szymanowski, S. Wallon, JHEP 1305(2013) 096)
- SHERPA is not able to describe simultaneously the C_2/C_1 ratios and C_n coefficients versus Δy .
- PYTHIA6, POWHEG+PYTHIA6 are able to describe data over wide range in Δy within uncertainties.

Other ratio C_3/C_2 can be found in arXiv:1601.06713, JHEP08(2016)139.

Cristian Baldenegro (KU)

- Difficult to clearly disentangle the onset of BFKL dynamics from other QCD perturbative and nonperturbative effects in Mueller-Navelet jets.
- A possibility for future measurements could be a combination of Δφ analysis and minijet-based observables (A. Sabio Vera, G. Chachamis, BFKLex, JHEP02 (2016) 064).

BFKL dynamics: looking for less inclusive variables

- Looking for multiple gluon emission along ladder characteristic of BFKL: number, p_T, rapidity distributions of "minijets"
- Comparison between BFKL-ex MC and pythia/herwig to find best variables: collaboration with A. Sabio Vera, D, Gordo, G. Chachamis, F. Deganutti, T. Raben

t-channel color-singlet exchange between partons (two-gluon exchange) $\rightarrow \eta$ interval void of particles between jets (pseudorapidity gap)

In the high-energy limit, this corresponds to **perturbative pomeron exchange** (BFKL two-gluon ladder exchange).

DGLAP dynamics are strongly suppressed in events with pseudorapidity gaps (Sudakov form factor to suppress radiation in gap).

Soft-parton activity can destroy the central gap between the jets. This is parametrized with a gap survival probability, $|S|^2$, which is difficult to understand theoretically.

In pp collisions with intact protons, soft-parton activity is largely suppressed \rightarrow Central gap more likely to "survive" (Marquet, Royon, Trzebiński, Žlebčík, Phys.Rev. D 87, 034010 (2013)).

Addressed in study with CMS-TOTEM combined analysis (arXiv:2102.06945). Second part of the analysis.

Turning to CMS measurement

CMS-TOTEM Collaborations, arXiv:2102.06945, accepted by PRD

Analysis based on low-pileup data. Event selection:

- Particle-flow, anti- k_t jets R = 0.4.
- Two highest p_T jets have $p_T > 40$ GeV each.
- ► Leading two jets satisfy $1.4 < |\eta_{jet}| < 4.7$ and $\eta^{jet1}\eta^{jet2} < 0$ → Favors *t*-channel color-singlet exchange.

Pseudorapidity gap is defined by means of the charged particle multiplicity N_{tracks} between the leading two jets. Each charged particle has $p_T > 200$ MeV in $|\eta| < 1$.

Multiplicity of charged particles between the jets

Color-exchange events dominate at large $N_{\text{tracks}} \rightarrow \text{Use}$ as control region to estimate fluctuations at low N_{tracks} . Two data-based approaches:

- Control dijet sample: two jets on the same-side (SS) of the CMS detector, $\eta^{jet1}\eta^{jet2} > 0$. Normalize to events with jets in opposite sides (OS) of CMS, $\eta^{jet1}\eta^{jet2} < 0$, in $N_{tracks} > 3$.
- Negative binomial distribution (NBD) function: Fit data with NBD in 3 ≤ N_{tracks} ≤ 35, extrapolate down to N_{tracks} = 0. (<u>Baseline method</u>)

We extract the fraction f_{CSE} based on the charged particle multiplicity between the jets:

$$f_{CSE} \equiv \frac{N(N_{tracks} < 3) - N_{bkg}(N_{tracks} < 3)}{N_{all}} \equiv \frac{\text{color-singlet exchange dijet events}}{all dijet events}$$

The fraction f_{CSE} is measured as a function of:

- $\Delta \eta_{jj} \equiv |\eta^{jet1} \eta^{jet2}|$: Sensitive to expected BFKL dynamics, since it's related to resummation of large logs of *s*.
- ▶ p_T^{jet2} : Sensitive to expected BFKL dynamics; allows for comparison at lower \sqrt{s} .
- ▶ $\Delta \phi_{ij} \equiv |\phi^{jet1} \phi^{jet2}|$: Sensitive to deviations of 2 → 2 scattering topology of color-singlet exchange.

Results on color-singlet exchange fraction f_{CSE}

- Color-singlet exchange represents $\approx 0.6\%$ of the inclusive dijet cross section for the probed phase-space.
- Bars represent stat uncertainties, boxes represent stat + syst uncertainties.
- Comparison w/ calculations based on BFKL NLL resummation + LO impact factors:
 - Royon, Marquet, Kepka (RMK) predictions (Phys. Rev. D 83.034036 (2011), arXiv:1012.3849), with survival probability |S|² = 0.1.
 - Ekstedt, Enberg, Ingelman, Motyka (EEIM) predictions (Phys. Lett. B 524:273 and arXiv:1703.10919) with MPI to simulate |S|², also be supplemented with soft-color interactions (SCI).

Challenging to describe theoretically all aspects of the measurement simultaneously.

- Measurement of jet-gap-jet events at four different \sqrt{s} in pp̄ and pp collisions at 0.63 TeV, 1.8 TeV, 7 TeV, and 13 TeV (this measurement).
- Generally, f_{CSE} is expected to decrease with increasing \sqrt{s} , due to an increase in spectator parton activity with \sqrt{s}
- Within uncertainties, f_{CSE} stop decreasing with \sqrt{s} at LHC energies, in contrast to trend observed at lower energies 0.63 TeV \rightarrow 1.8 TeV \rightarrow 7 TeV.

Cristian Baldenegro (KU)

$f_{\sf CSE}$ vs. $\Delta \eta_{\sf ii}$ between 7 and 13 TeV CMS results

- CMS 7 TeV analysis performed in three bins of p_T^{jet2} and three bins of $\Delta \eta_{jj} = 3-4, 4-5, 5-7$ (CMS, EPJC 78 (2018) 242)
- For Trend of increasing f_{CSE} with $\Delta \eta_{ii}$ is confirmed with new 13 TeV results.
- New results reach previously unexplored values of $\Delta \eta_{ii}$

Turning to CMS-TOTEM combined measurement

Better understand the role of spectator partons in the destruction of the central gap.

Same dijet and central gap definitions as with CMS-only analysis.

Proton requirements:

- ► The fraction of beam energy lost by the proton must be ξ_P(RP) < 0.2</p>
- ▶ The four-momentum transfer square at the proton vertex must be -4 < t < -0.025 GeV², where $t = (p_f p_i)^2$ of the proton.

Charged particle multiplicity between jets + intact proton

Similar techniques to estimate background from fluctuations in N_{tracks} :

- Control dijet sample: Two jets in same side w.r.t. fixed η region. η interval is be adjusted to account for SD dijets boosts.
- Negative binomial distribution (NBD) approach: NBD is fit in 2 < N_{tracks} < 25, and extrapolated down to N_{tracks} = 0.

Excess of events at low $N_{\text{tracks}} \rightarrow \underline{\text{For the first time these events are studied!}}$ Filled histogram represents beam background contribution.

Results on p-gap-jet-gap-jet

 f_{CSE} fraction in p-gap-jet-gap-jet study is 2.91 ± 0.70 (stat) $^{+1.02}_{-0.94}$ (syst) times larger than jet-gap-jet fraction, for similar dijet kinematics.

Abundance of events with a central gap is larger in events with intact protons.

Lower spectator parton activity in events with intact protons \rightarrow Better chance of central gap surviving the collision.

Unique opportunity to probe BFKL dynamics in jet production at the CERN LHC.

Mueller-Navelet jet analysis at 7 TeV:

- **•** BFKL calculations at NLL with NLO impact factors are able to describe the data at large Δy .
- Challenging to disentangle other higher-order corrections; calls for new family of observables for future measurements.

Analysis of jet-gap-jet events at 13 TeV:

- ► About 0.6% of dijet events are produced by hard color-singlet exchange.
- ▶ No further suppression between 7 and 13 TeV results is observed.
- BFKL NLL calculations with LO impact factor are not able to describe all aspects of the measurement simultaneously. Description improves with SCI and MPI supplements.
- Can NLO impact factor give different trend? Maybe process is combination of perturbative and nonperturbative effects.

Jet-gap-jet events with intact protons:

- First study of this process. Allows for the possibility of future differential measurements with larger luminosity.
- Hard color-singlet exchange fraction f_{CSE} is 2.91 ± 0.70(stat)^{+1.02}_{-0.94} larger than that in standard jet-gap-jet events.

Normalized distributions in:

$$\blacktriangleright p_{\rm T}^{\rm jet2}/p_{\rm T}^{\rm jet1}$$

$$\blacktriangleright \ \Delta \phi_{\rm jj} = |\phi^{\rm jet1} - \phi^{\rm jet2}|$$

Jet multiplicity N_{extra-jets} for jets with p_{T,extra-jet} > 15 GeV.

Jet-gap-jet candidates with $N_{\text{tracks}} = 0$ and events dominated by color-exchange dijet events with $N_{\text{tracks}} \ge 3$.

Distributions reflect underlying quasielastic parton-parton scattering process topology.

Consistent with other two-rapidity gap topology

CDF studied double-pomeron exchange/single-diffractive dijet event ratios, compared them to single-diffractive/non-diffractive (**PRL85,4215**):

 $\mathcal{R} = (\text{DPE/SD}) / (\text{SD/ND}) = 5.3 \pm 1.9$, different from factor of 1 expected from factorization. Comparison of gap-jet-jet-gap/gap-jet-jet topology.

Present CMS-TOTEM result finds a similar effect for a different two-gap topology (proton-gap-jet-gap-jet).

Source	Jet-gap-jet			Proton-gan-jet-gan-jet
	$\Delta \eta_{ m jj}$	$p_{\rm T, jet-2}$	$\Delta \phi_{ m jj}$	i ioton-gap-jet-gap-jet
Jet energy scale	1.0-5.0	1.5-6.0	0.5-3.0	0.7
Track quality criteria	6.0-8.0	5.4 - 8.0	1.5 - 8.0	8
Charged particle $p_{\rm T}$ threshold	2.0 - 5.8	1.6 - 4.0	1.1 - 5.8	11
Background subtraction method	4.7 - 14.6	2 - 14.6	12.0	28.3
NBD fit parameter	0.8-2.6	0.6 - 1.7	0.1-0.6	7
NBD fit interval	_	_	_	12.0
Calorimeter energy scale	_	_	_	5.0
Horizontal dispersion	_	_	_	6.0
Fiducial selection requirements	_	_		2.6
Total	6.8-22.0	8.3-14.9	12.0-17.1	33.4

Relative systematic uncertainties in percentage on f_{CSE} . Uncertainty range is representative of the variation found in the jet-gap-jet fraction in bins of the kinematic variables of interest.

- At least one proton on either side.
- Track-impact point cuts (x, y) based on acceptance studies. For vertical RPs, 0 < x < 20mm and 8 < |y| < 30mm, for horizontal RPs, 7 < x < 25mm and |y| < 25mm.</p>
- Proton fractional momentum loss is \$\xi_p(\mathbf{RP}) < 0.2\$ and four-momentum transfer square is 0.025 < -t < 4 GeV². Based on acceptance studies + validity of optical functions.
- ► To suppress beam bkg contribution (pileup+beam halo), additional cut $\xi_p(PF) \xi_p(RP) < 0$, where $\xi_p(PF) = \frac{\sum_i E_i \pm p_{\mathbf{z},i}}{\sqrt{s}}$ is the proton fractional momentum loss reconstructed with PF candidates of CMS. The \pm is the sign of the intact proton η .

A total of 336 and 341 events in sector 45 and sector 56, respectively, satisfy the above selection requirements + dijet selection requirements.

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP): Evolution in Q^2 (resummation of $\alpha_s^r \ln^n(Q^2/Q_0^2)$) \rightarrow Resolving "smaller" partons with larger Q^2 at fixed x_{Bj} .

BFKL: Evolution in x_{Bj} (resummation of $\alpha_s^n \ln^n(1/x_{Bj})$) \rightarrow Larger parton densities at smaller x_{Bj} at fixed Q^2 .

Very important to understand parton densities QCD evolution in (x, Q^2) plane; need as many experimental probes of QCD evolution effects as possible!

Some standard probes of BFKL dynamics:

- $\Delta \phi$ decorrelations in Mueller–Navelet jets (<u>Plot above</u>)
- Exclusive vector meson production $(\gamma^* p \to V p)$ at large $W_{\gamma p}$, with $V = J/\psi, \psi(2s), \Upsilon, \ldots$
- ▶ PDFs at small- x_{Bj} at small momentum transfer $Q^2 > \Lambda^2_{QCD}$.

It is generally difficult to isolate BFKL from other higher-order effects, such as DGLAP evolution. Processes where DGLAP evolution is expected to be suppressed may aid to unambiguously identify BFKL dynamics.

Estimated with event-mixing: inclusive dijet events paired with protons in zero-bias sample.

Requirement $\xi_p(PF) - \xi_p(RP) < 0$ indicated by dashed line. Region $\xi_p(PF) - \xi_p(RP) > 0$ is dominated by beam bkg contributions \rightarrow Used as control region to estimate residual beam bkg in $\xi_p(PF) - \xi_p(RP) < 0$.

Beam background contributes 18.7 and 21.5% for protons in sector 45 and 56 in $\xi_{P}(PF) - \xi_{P}(RP) < 0$, respectively.

Background contributions to p-gap-jet-gap-jet events

Inclusive dijet production + uncorrelated proton from residual pileup or beam halo activity (estimade from data). Standard diffractive dijet production with no central gap (p-gap-jet-jet topology):

 \rightarrow Fluctuations on particle multiplicity can lead to gaps. Needs to be subtracted (NBD and ES methods).

