Odderons, Glueballs and Holography

Saturation and Diffraction at the LHC and the EIC

Dmitry Melnikov

International Institute of Physics, Natal

Strings vs hadrons

Regge behavior

for s
$$\gg \Lambda_{\rm QCD}^2 \gg |t|$$
,

$$\mathcal{A}(\mathsf{s},t) \sim \mathsf{s}^{\alpha(t)}$$

• the behavior shared by phenomenology and strings in flat space

High energies, small angle

for
$$s\gg -t\gg \Lambda_{\rm QCD}^2$$

- strings are still Regge
- · hadrons aren't

Elastic, large angle

for $s \simeq -t \gg \Lambda_{\rm QCD}^2$, amplitudes decay

- as powers of s for particles
- exponentially for strings

Pomerons

Soft pomeron

String theory in flat space explains Regge behavior in terms of exchange of a closed string (glueball)

• valid for t > 0 with

$$\alpha(t) \simeq \alpha_0 + \alpha' t$$

Regge trajectory of the graviton (containing 2⁺⁺ glueball)

• single-pomeron exchange dominates for $N_c \to \infty$

BFKL pomeron

In perturbation theory one can resum the leading log terms [Lipatov'76, Kuraev et al'77, Balitsky et al'78]

- valid at $-t \gg \Lambda_{\rm OCD}^2$ to ignore confinement
- hard BFKL pomeron

Strings in AdS

[Brower,Polchinski,Strassler,Tan'06]

AdS/CFT correspondence

Strings in anti de Sitter space are dual to gauge theories [Maldacena'97]

- type IIB strings in $AdS_5 \times S^5$ dual to $\mathcal{N}=4$ supersymmetric Yang-Mills
- strong coulpling regime of SYM

 $N_{\rm c} \to \infty$, $\lambda \equiv g_{\rm YM}^2 N_{\rm c} \to \infty$ is accessible to classical gravity

BFKL regime

hard scattering regime is accessible to strings in anti de Sitter space [Polchinski,Strassler'01'02]

- the additional dimension is interpreted as energy scale
- this scale corresponds to the transverse momentum

for large N_c and large λ analytical structure of the amplitudes is accessible [**Brower** et al'06]

• for $s \gg \Lambda_{\rm OCD}^2$ and any t

$\mathcal{N}=4$ SYM pomeron

BFKL approach can be applied to a conformal theory

• calculations up to NNNLA

Phenomenology

Total cross sections of particle-particle and particle-anti-particle scattering

$$\sigma_{\mathrm{T}}^{\pm} \sim \mathrm{s}^{j_0^{\pm}-1}$$

• $j_0^+ - j_0^- > 0$ can be fitted from the imaginary parts of amplitudes or differences in $\sigma_{\rm T}$

C-odd closed string

It is straightforward to generalize pomeron to *C*-odd string exchange [**Brower** et al.'08]

- pomeron: graviton Regge trajectory (perturbation of background G_{MN})
- odderon: perturbation of B_{MN} (Kalb-Ramond) field – spin 1 alueball

С	weak coupling	strong coupling
+	$j_0^+ = 1 + (\log 2)\lambda/\pi^2 + O(\lambda^2)$	$j_0^+ = 2 - 2/\sqrt{\lambda} + O(1/\lambda)$
_	$j_0^- = 1 - 0.24717\lambda/\pi + O(\lambda^2)$	$j_0^- = 1 - 8/\sqrt{\lambda} + O(1/\lambda)$

Table: Leading Regge singularities [Brower, Djurić, Tan'08].

Glueballs

[Brower,Polchinski,Strassler,Tan'06]

Coupling to gluons

A closed string can be sourced by the operator

$$\operatorname{Tr}\left[\mathsf{P}\mathsf{e}^{i\oint d\sigma\partial_\sigma x_\mu \mathsf{A}_\mu(x)} \pm \mathsf{P}\mathsf{e}^{-i\oint d\sigma\partial_\sigma x_\mu \mathsf{A}_\mu(x)}\right]$$

- picks even (+) or odd (-) C-parity
- perturbatively expanding obtains leading 2-gluon $(\mathcal{O}_{\mu\nu}^+)$ or 3-gluon $(\mathcal{O}_{\mu\nu\rho}^-)$ sources

Correlators and glueballs

 Pomeron/odderon propagators can be obtained from

$$\langle \mathcal{O}^{\pm}\mathcal{O}^{\pm} \rangle$$

correlators of local operators

 AdS/CFT computes them at strong coupling

$$\left. \frac{\delta^n}{\delta J_1 \cdots \delta J_n} \, e^{i S_{\text{grav}}[J]} \right|_{J=0}$$

- Structure of Regge trajectories can be recovered at strong coupling for pomerons and odderons
- glueball masses are given by the intersection with integer *j*

Towards quantitative agreement

- Glueballs' Regge trajectories control the high energy scattering (in $\lambda \to \infty$, $N_c \to \infty$ picture)
- Are there any interesting quantitative predictions?
- New tools from recent progress in experiments, lattice data and string amplitudes

• I will focus on the example of the glueball spectrum

Lattice results

Glueballs on a lattice

- spectrum of glueballs in pure glue *SU*(3) Yang-Mills
- unquenched approximation (adding quarks)
- effective couplings and decay constants
- limit of large N_c

OZI rule

quarks do not like to mix with purely gluonic states

[Morningstar,Peardon'99]

J ^{PC}	0++	2++	0++*	1+-	0-+	$m_{2^{++}}/m_{0^{++}}$
YM	1710	2390	2670	2980	3640	1.40
QCD ₃	1795	2620	3760	3270	4490	1.46

Table: quenched Yang-Mills vs QCD with 3 flavors [Gregory et al.'12].

Holographic limit

Large N_c results

• Light dependence of masses on N_c ($SU(N_c)$)

$$m \, \simeq \, m_{\infty} + rac{c}{N_c^2}$$

• $N_c \to \infty$ is the limit where one expects holography to work

G	SU(2)	SU(3)	SU(4)	SU(6)	SU(8)	$SU(\infty)$
$m_{0^{++}}$	3.78	3.55	3.36	3.25	3.55	3.31
$m_{2^{++}}/m_{0^{++}}$	1.44	1.35	1.45	1.46	1.32	1.46
G	Sp(1)	Sp(2)	Sp(3)	Sp(4)		$\mathit{Sp}(\infty)$
$m_{2^{++}}/m_{0^{++}}$	1.41	1.41	1.48	1.41	_	1.47

Table: 0^{++} and 2^{++} mass in $SU(N_c)$ [Lucini,Teper,Wenger'04] and $Sp(N_c)$ [Bennett et al.'20]

Hard wall model (Light front holography)

Wave equation

• Spin ℓ particle in the anti de Sitter (AdS_5) geometry

$$z^5 \partial_z \left(\frac{1}{z^3} \partial_z \Psi \right) + z^2 \partial^\mu \partial_\mu \Psi - L^2 \ell (\ell+1) \Psi \ = \ 0$$

- Bessel equation, $\Psi = e^{ik \cdot x} z^2 J_{\ell+2}(kz)$
- Introducing a cutoff (hard wall) at $z=1/\Lambda_{\rm QCD}$ leads to a discrete spectrum of $k^2=m^2$

$$\mbox{Dirichlet}: \quad J_{\ell+2}\big(\frac{m_{\ell+2}^{(n)}}{\Lambda_{\rm QCD}}\big) \; = \; 0 \label{eq:continuous}$$

Regge trajectories

Regge trajectories $j_n(t)$ are found from a modified equation

[Brower et al'06'08]

$$L^2 \left(j_n - j^c \right) \Psi + \frac{2}{\sqrt{\lambda}} \left(z^5 \partial_z \left(\frac{1}{z^3} \partial_z \Psi \right) + z^2 \frac{t}{t_0} \Psi - L^2 m_{\rm AdS}^2 \Psi \right) \; = \; 0$$

[Brower,Mathur,Tan'00]

[Lucini,Teper,Wenger'04] [Bennett et al.'20] [Brower,Mathur,Tan'00] [Boschi,Braga,Carrion'05]

WM against the hard wall

- Type IIA string theory compactified on $AdS_6 \times S^4$ (D4 branes)
- further compactified on S¹ breaking SUSY, introducing scale (Λ_{QCD})

J^{PC}	SU(∞)	$Sp(\infty)$	BMT	BBC_{D}	BBC _N
0++	1.63	1.63	1.63	1.63	1.63
2 ⁺⁺	2.37	2.41	2.83	2.41	2.54
0-+	_	2.51	3.41	_	_
1+-	_	4.19	4.41	_	_
0++*	2.99	3.16	4.13	2.67	2.98
2++*	_	-	4.50	3.51	4.06
R	1.46	1.47	1.74	1.48	1.56

Table: lightest glueballs in WM and hard wall model normalized to the lightest mass on the lattice.

non-AdS/non-CFT

- type IIB string theory compactified on $AdS_5 \times S^3 \times S^2$ with warping (breaking of conformal symmetry)
- ullet the compactification is compatible with ${\cal N}=1\, {
 m SUSY}$
- the dual theory is SU(N + M) × SU(M) supersymmetric Yang-Mills theory with bifundamental matter multiplets.
- the theory has global $SU(2) \times SU(2)$, anomalous $U(1)_R$ and spontaneously broken $U(1)_B$ baryon symmetries

Pros and Cons

- Flows to confined SU(M) YM in IR
- lightest states are SYM JPC glueballs
- · has additional fields and symmetries
- has massless particles (Goldstones of U(1)_B)

Early contributions

- E. Caceres and R. Hernandez, Phys. Lett. B **504** (2001), 64-70
- S. S. Gubser, C. P. Herzog and I. R. Klebanov, JHEP 09 (2004), 036
- M. Berg, M. Haack and W. Mück, Nucl. Phys. B 736 (2006), 82-132; Nucl. Phys. B 789 (2008), 1-44

- A. Y. Dymarsky and D. Melnikov, JETP Lett. 84 (2006), 368-371; JHEP 05 (2008), 035
- M. K. Benna, A. Dymarsky,
 I. R. Klebanov and A. Solovyov,
 JHEP 06 (2008), 070
- A. Dymarsky, D. Melnikov and A. Solovyov, JHEP 05 (2009), 105
- I. Gordeli and D. Melnikov, JHEP 08 (2011), 082; arXiv: 1311.6537 [hep-th]

Recent results

- D. Melnikov and C. R. Filho, JHEP 01 (2021) 024
- C. Rodrigues Filho, Braz. J. Phys. 51 (2021) no.3, 788

m² in the singlet sector

• 6+2 scalar multiplets, graviton multiplet, 3 vector multiplets, 2 gravitino multiplets

Figure: from [Gordeli,DM'13]

Comparison with the lattice

• in the units of 2⁺⁺ mass

Figure: from [DM,Rodrigues'20]

Holography vs lattice

- Klebanov-Strassler theory yields a very reasonable match for all (5) lightest states with spin < 2.
- Higher spin states cannot be captured by the classical gravity approximation
- Excited states are more susceptible to mixing

J ^{PC}	MP	$SU(\infty)$	ВМТ	BBC_{D}	BBC _N	ВНМ	MR
0++	1.63	1.63	1.63	1.63	1.63	1.63	1.63
2++	2.26	2.38	2.83	2.41	2.54	2.54	2.33
R	1.4	1.46	1.74	1.48	1.56	1.56	1.43
0++	2.51	2.99	4.13	2.67	2.98	3.18	2.94
2++	_	_	4.50	3.51	4.06	3.83	3.51

J ^{PC}	2++	0++	0-+	1+-	1	0+-
KS/MP	1	1.01	1.07	1.03	1.05	1.01

- Two C-odd spin one glueballs corresponding to fluctuations of B_{MN} and C_{MN} (Neveu-Schwarz and Ramond forms in type IIB)
- · Ground state mass predictions

$$\frac{m_{1^{+-}}}{m_{2^{++}}} = 1.30 \qquad \frac{m_{1^{--}}}{m_{2^{++}}} = 1.64$$

in very good agreement with lattice calculations

• Operator dimensions $\Delta = 6$ ($m_{\rm AdS}^2 = 15$),

$$\mathcal{O}_{\mu\nu} = \operatorname{Tr}\left[F_{\mu\nu}F^2\right]$$

they actually mix and acquire anomalous dimensions

• no $m_{\text{AdS}}^2 = 0$ mode (no j = 1 cut at finite λ)

Conclusions and Outlook

- String theory offers a unified picture of high energy scattering
- Corrections beyond the leading order in strong coupling are desirable in both conformal and non-conformal models
- Klebanov-Strassler theory is an appealing model of a confining gauge theory. Some of its predictions are valid beyond the holographic limit
- Is there any integrable structure beyond the KS model and can it be used for other interesting predictions?