Particle correlations in small systems

Dr. Javier Alberto Murillo Quijada

Universidad de Sonora

Saturation and Diffraction at the LHC and the EIC

29 June to 1 July 2021

Introduction

- 2 Recent explorations with small systems
- **3** Current studies with CMS
- 4 Outlook

Long-range, near-side ridge structure

- Emerges in the two-particle correlation functions
 - High energy nuclear collisions
 - Observed in large collision systems (AA)
 - Absent in MB small collision systems (dAu)

Evidence of collectivity and one of the features of QGP

Long-range, near-side ridge structure

- Emerges in the two-particle correlation functions
 - High energy nuclear collisions
 - Observed in large collision systems (AA)
 - Absent in MB small collision systems (dAu)

Evidence of collectivity and one of the features of QGP

PRC 80 (2009) 064912

Discovery; strong collectivity found in small systems

- ▶ Ridge: near-side long-range 2-particle correlations
 - Observed also in small collision systems (pp, pPb) with high event multiplicity
 - Predicted by Color Glass Condesate (CGC) effective models

DOI: 10.1016/j.physletb.2011.01.024

Discovery; strong collectivity found in small systems

Ridge: only seen in intermediate p_T categories

Small vs large collision systems

Origin of the ridge in small systems?

- Natural question is whether such signatures persist in even smaller collision systems
- Final state effect?, Pure fluctuations? CGC?

Recent explorations with small systems

First measurement with e^+e^- system at $\sqrt{s} = 91$ GeV

▶ ALEPH e⁺e⁻

- Sharp near-side peaks arise from jet-like (non-flow) correlations
- No significant long-range correlations; better consistency with $\ensuremath{\mathsf{Pythia}}$ and $\ensuremath{\mathsf{Sherpa}}$ than Herwig
- Confidence limits on associated yield as a function of $N_{\rm trk}$ have been set

First measurement with e^+e^- system at $\sqrt{s} = 91$ GeV

► ALEPH e⁺e⁻

- Sharp near-side peaks arise from jet-like (non-flow) correlations
- No significant long-range correlations; better consistency with Pythia and Sherpa than Herwig
- Confidence limits on associated yield as a function of $N_{\rm trk}$ have been set

Deep inelastic ep scattering with ZEUS at HERA ($\sqrt{s} = 318$ GeV)

- Dominated by contributions from multijet production
 - $\langle N_{\rm trk} \rangle \approx 5$
 - No indication of same collective behaviour observed in high-multiplicity hadronic collisions

Deep inelastic ep scattering with ZEUS at HERA ($\sqrt{s}=318$ GeV)

Dominated by contributions from multijet production

- $\langle N_{\rm trk}\rangle\approx 5$

- No indication of same collective behaviour observed in high-multiplicity hadronic collisions

Deep inelastic ep scattering with H1 at HERA ($\sqrt{s} = 318$ GeV)

- Dominated by contributions from multijet production
 - $\langle N_{\rm trk} \rangle \approx 5$
 - No indication of same collective behaviour observed in high-multiplicity hadronic collisions

photonuclear ultraperipheral PbPb at 5.02 TeV with ATLAS

Significant non-zero v₂

- Substracting non-flow contribution using template fitting method

photonuclear ultraperipheral PbPb at 5.02 TeV with ATLAS

Significant non-zero v₂

- Substracting non-flow contribution using template fitting method

Crucial CMS detector subsystems

$\gamma {\rm p}$ interactions within ultra-peripheral pPb collisions

CMS-PAS-HIN-18-008

J. A. Murillo Quijada, Quan Wang, Michael Murray et al. "Search for elliptic azimuthal anisotropies in γp interactions within ultra-peripheral pPb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ "

- Being submitted to Physics Letters B (PLB)

- > γ -proton interactions (b>R_{Pb})
 - Minimum-bias (b<R_{Pb}))

https://cds.cern.ch/record/2725477/

Selection requirements; 95% γ p purity

- Pb-going side quiet;
 - \rightarrow No neutrons detected by Zero Degree Calorimer (Pb nucleus is not broken)
 - \rightarrow Rapidity Gap; No activity in Pb-going side using Particle Flow and tracks
- Activity in proton-going side; HF+ calorimeter with at least one tower with energy > 10 GeV

Tracks satisfying following requirements:

- Kinematic range: η < 2.4, p $_{
 m T}$ > 0.4 GeV
- Significance of z separation between track and best vertex: $d_z/\sigma(d_z) < 3.0$
- Impact parameter significance: d $_0/\sigma(d_0)$ < 3.0, Momentum uncertainty: $\sigma(p_{\rm T})/p_{\rm T}$ < 0.1

javier.murillo@cern.ch

ZDC

Available MC for signal γ -proton in pPb

- Recent addition to Pythia8 simulation: Standard Equivalent Photon Approximation (EPA) flux model with low-virtuality γp in pPb collisions¹
- Comparison with montecarlo is being added to final paper
 - It reproduces $N_{\rm trk}$ distribution with limit up to ~ 35 as data sample

CMS Data

Pythia8 + detector fast simulation

[1] Ilkka Helenius, Christine O. Rasmussen, "Hard diffraction in photoproduction with Pythia 8", Eur.Phys.J.C 79 (2019)

javier.murillo@cern.ch

Particle correlations in small systems

Current studies with CMS

Signal pair distribution:

Background pair distribution:

2D ratio distribution

> 2D correlations for γp enhanced and Minimum-bias

- $N_{\rm trk}$ limited up to ${\sim}35$ for $\gamma p \rightarrow$ divided in different bins for two $p_{\rm T}$ categories
- No evidence of ridge-like correlations

1D Long-range projection

- Azimuthal distributions for $|\Delta \eta| > 2.0$
- $V_n\Delta$ Fourier coefficients obtained from the decomposition fit:

$$\frac{1}{N_{\text{trig}}}\frac{dN^{\text{pair}}}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} [1 + \sum_{n} 2V_{n\Delta} \cos(n\Delta\phi)]; \quad n = 1, 2, 3$$

Current studies with CMS

- ▶ Results on two-particle Fourier coefficient; $V_{n\Delta}$
 - $V_{1\Delta}$ negative, $V_{2\Delta}$ positive and $V_{3\Delta}$ consistent with zero

▶ Single-particle v₂ coefficient, v₂ = $\sqrt{V_{n\Delta}}$; consistent with non-flow effects

γp-enhanced dataset Comparison with simulation and

Measurements with

Minimum-bias to appear in final paper

Predictions from
 Pythia8 + Delphes
 fast simulation

Other systems

Pomeron-Pb system within pPb 8.16 TeV collisions

Large rapidity gaps

- Generator predictions: Non (ND), Central (CD), Single (SD) and Double Diffractive (DD)

CMS-PAS-HIN-18-019

Pomeron-photon system within pPb 8.16 TeV collisions

- Hard diffraction with photons
 - Large rapidity gaps

[1] Ilkka Helenius, Christine O. Rasmussen, "Hard diffraction in photoproduction with Pythia 8", Eur.Phys.J.C 79 (2019) 5, 413

Summary

- Study of two-particle correlations (V_{1Δ}, V_{2Δ},V_{3Δ}) and azimuthal anisotropies (v₂) in small systems has been expanded to e⁺e⁻, ep, γ-proton
 - Limited $N_{\rm trk}$ range; confirmed by signal Monte Carlo
 - $V_{1\Delta}$ negative, $V_{2\Delta}$ positive and $V_{3\Delta}$ consistent with zero
 - No evidence of ridge-like correlations observed
- More systems such as pomeron-Lead or Pomeron-photon can be studied

Results providing insights to the origin of ridge-like structures

Backup

Acceleration complex at CERN

- ▶ The LHC extends to both sides of the border between France and Switzerland
- Proton bunches are produced, split and accelerated sequentially through different accelerators before injection into the LHC
- ▶ Done with Run 2 at 13 TeV (2015-2018) → several analyses ongoing
- ▶ Preparation for Run 3 (2021 to 2023/24) and HL-LHC (at least 160 fb⁻¹ for ATLAS and CMS at $\sqrt{s} = 13$ -14 TeV)

Backup

LHC / HL-LHC Plan with extended LS2

Hydrodynamic flow in A-A collisions

- Azimuthal anisotropy Fourier coefficients v_n well understood in A-A collisions in the context of hydrodynamical model
 - Mass ordering dependence at low $\ensuremath{p_{\rm T}}$
 - Quark content grouping at high $p_{\rm T}$

