Saturation phenomena at the EIC

- Experimental Signatures

Kong Tu BNL 06. 29. 2021

Structure of nucleon

Proton from low to high energy – change of dynamics?

Structure of nucleon – probed by DIS

Structure of nucleon – probed by DIS

- Where is the limit?
- What are the signatures of saturation?

Early signatures at HERA

- Saturation models successfully describe F₂ data at HERA naturally describes high to low Q2 transitions.
- Diffractive cross section is more sensitive to saturation.¹

Overall normalization of the diffractive data is a direct result of saturation model without any fits.

1. K. Golec-Biernat and M. Wusthoff (1999) 5

[figure from Phys. Rev. D 99, 054007 (2019)]

Signatures at RHIC

Signatures at RHIC

Signatures at the LHC

Forward D⁰ production at LHCb – suppression in forward

Signatures at the LHC

Forward D⁰ production at LHCb – suppression in forward

RpPt

-- LHCb

Large x

Intensive investigations on the origin of collectivity and "ridge" in pp, pA, and AA collisions.

Saturation plays an important role!

Small *x*

 $s_{NN} = 5 \text{ TeV}$

 $p_{\rm GeV/c}$

 R_{pPb}

 $p_{\rm T}[{\rm GeV}/c]$

+ LHCb

How to nail it down experimentally?

- HERA, RHIC, and the LHC data showed promising hints of saturation phenomena, but not conclusive.
- A next-generation QCD machine EIC

What to look for at the EIC?

Structure functions	$F_2 \& F_L$	Comparison with model	
Inclusive diffraction with diff. gap	$rac{\sigma_{ m diff}}{\sigma_{ m tot}}$	Enhancement of diffraction in DIS	
Di-hadron correlation (e.g., di-pi0)	Back-to- back $\Delta \phi$	Broadening and suppression A/p	
Diffractive VM in eA	d <i></i> σ/dt	Saturation dynamics and gluon imaging	

Nuclear Boost "Oomph" factor 10 Parton Gas Saturation Scale Ost X. Q² (GeV²) 0.1-Color Glass Condensate $\Lambda^2_{\rm QCD}$ **Confinement Regime** 200 120 40 10⁻² 10-5 10⁻³ 10⁻⁴ А x

Nucleus at (the same) high energy is the cheapest way to go to saturation regime

(EIC white paper)

What to look for at the EIC?

Structure functions	$F_2 \& F_L$	Comparison with model Enhancement of diffraction in DIS	
Inclusive diffraction with diff. gap	$rac{\sigma_{ m diff}}{\sigma_{ m tot}}$		
Di-hadron correlation (e.g., di-pi0)	Back-to- back $\Delta \phi$	Broadening and suppression A/p	
Diffractive VM in eA	d <i></i> o/dt	Saturation dynamics and gluon imaging	

Nucleus at (the same) high energy is the cheapest way to go to saturation regime

(EIC white paper)

Extraordinary discovery requires extraordinary evidences

- All experimental signatures need to point to the same direction!

What to look for at the EIC?

(EIC white paper)

Extraordinary discovery requires extraordinary evidences

- All experimental signatures need to point to the same direction!

(College physics)

(EIC physics)

$$F(b) \sim \frac{1}{2\pi} \int_{0}^{\infty} d\Delta \Delta J_0(\Delta b) \sqrt{\frac{d\sigma}{dt}}$$

- t distribution is a Fourier transformation of the source distribution ~ gluons b_{T}

Phys.Rev.C 87 (2013) 2, 024913 **e+Au → e' + J/ψ + Au'**

$e+Au \rightarrow e' + J/\psi + Au'$ coherent - no saturation J/ψ 10⁴ incoherent - no saturation coherent - saturation (bSat) Where is Saturation? incoherent - saturation (bSat) e' Au' ^{J/ψ)}/dt (nb/GeV²) 10³ ∫Ldt = 10 fb⁻¹ $1 < Q^2 < 10 \text{ GeV}^2$, x < 0.01 10^{2} 10 - nq α(e Au 10⁻. $|\eta(e_{decav})| < 4$ $p(e_{decay}) > 1 \text{ GeV/c}$ $\delta t/t = 5\%$ 10⁻² 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 |t| (GeV²) (momentum transfer –*t* distribution)

Phys.Rev.C 87 (2013) 2, 024913

Dipole size r_T is larger for phi meson – more saturation "seen" by the probe

Challenges to coherent VM production

Phys.Rev.C 87 (2013) 2, 024913 **e+Au** → **e'** + J/ψ + Au'

- Distinguish coherent and incoherent production as a function of *t*.
- Reduction power needs up to ~ 1000 times
- This challenge was not "realized" until quantitative study was performed.

(combine model and detector/IR simulations)

Incoherent vetoing in ePb @ EIC

Main detector

General veto procedures:

- Veto events with particles/activities in main detector to ensure exclusivity. (except for e' and J/psi);
- No particles, e.g., protons, neutrons, photons detected in far-forward detectors.

Veto by steps

Goal is to reach the 3 min. position:

1st, 2nd, and 3rd min. are minimums of ← the diffractive pattern from coherent distribution. Model is based on *Satre*.

Veto by steps

Goal is to reach the 3 min. position:

1st, 2nd, and 3rd min. are minimums of ← the diffractive pattern from coherent distribution. Model is based on *Satre*.

- Veto 1. No activity in main detector
- Veto 2. + No neutron in ZDC
- Veto 3. + No proton in Roman Pots
- Veto 4. + No proton in OMD
- Veto 5. + No proton in B0
- Veto 6. + No photon in B0
- Veto 7. + No photon in ZDC

(Manuscript in preparation –BNL BeAGLE Team)

Residues

Beam remnant scattering angle vs momentum

Dominated by A, A-1, A-2... systems, very close to beam rigidity

Impact of beam pipes

Stay tuned for the paper!

Survived Event Ra tio						
Material	Without beam pipe	Beryllium	Aluminum	Stainless Steel		
Total events	$100 \ \%$	$100 \ \%$	100%	100%		
veto.1	86.9%	86.9%	86.9%	86.9~%		
veto.2	5.81%	9.73%	9.89%	17.15%		
veto.3	5.81%	9.73~%	9.89%	17.15%		
veto.4	5.06%	8.73%	8.87%	15.61%		
veto.5	4.38%	6.20%	5.94%	10.04%		
veto.6	2.22%	3.28%	3.17%	5.58%		
veto.7	1.02%	2.04%	2.46%	5.48%		
55 F		50 C	129			

- Without a beam pipe is NOT possible.
- The question is how close can we get to the ideal case?
- New ideas about a secondary focus or other nucleus... are being actively investigated in the EIC community now.

A new look at Saturation – entanglement

$$\rho_{tot} = \left| \Psi \right\rangle \left\langle \Psi \right|$$

At high energy, all partons are *quantum entangled*.

A new look at Saturation – entanglement

 $\rho_{tot} = \left|\Psi\right\rangle \left\langle\Psi\right|$

(Kharzeev & Levin 2017)

$$S_A = \ln \left[x G(x, Q^2) \right]$$

gluon entropy for low x

EE in 1+1d CFT?

 $S_{\scriptscriptstyle\rm EE}=\frac{c}{3}\ln{(\frac{L}{\epsilon})}$

At high energy, all partons are *quantum entangled*.

c is central charge, **L** is the length of region **A**, ϵ is resolution scale of the measurement (see Int.J.Quant.Inf. 4 (2006) 429)

A new look at Saturation – entanglement

The idea is that the Entanglement Entropy (EE) in DIS is found to be in a similar form of EE of 1+1D CFT, where c has an upper bound of 1.

$$xG(x) \le \text{const } \frac{1}{x^{1/3}}.$$

A natural description of *saturation* at high energy. The proton is at the *maximally entangled states*.

(Kharzeev & Levin 2017)
$$S_A = \ln \left[x G(x,Q^2) \right]$$
gluon entropy for low x

EE in 1+1d CFT?

$$S_{\rm EE} = \frac{c}{3} \ln\left(\frac{L}{\epsilon}\right)$$

c is central charge, **L** is the length of region **A**, ϵ is resolution scale of the measurement (see Int.J.Quant.Inf. 4 (2006) 429)

Hints of entanglement in pp and ep DIS

Phys. Rev. Lett. 124, 062001 (2020)

(ZT, Kharzeev, Ullrich)

S

ep DIS at H1

Hints of entanglement in pp and ep DIS

Phys. Rev. Lett. 124, 062001 (2020)

(ZT, Kharzeev, Ullrich)

S

Q_s² (GeV²) 1.07 (Q²_s (GeV²) 1.03 Q_s² (GeV²) 0.90 0.93 1.27 0.89 1.33 1.10 0.78 3.5 3.5 ■ H1:5 < Q² < 10 GeV² H1: 10 < Q² < 20 GeV² Sparton S_{hadron} Shadron Shadron 3.0 3.0 ♦ MSTW ■ CMS lηl < 1.0 CMS lnl < 0.5</p> ■ CMS lnl < 2.0 2.5 2.5 ONNPDF ອະ 2.0 ທີ່1 ອະ 2.0 ທີ່1 ☆ HERAPDF 1.5 1.5 HERAPDF, $\Sigma_{sea}=2x(\tilde{u}+\tilde{d}+s)$ HERAPDF, $\Sigma_{sea} = 2x(\tilde{u} + \tilde{d} + s)$ 1.0 1.0 ----- HERAPDF, $\Sigma_{sea} = 2x(\tilde{u} + \tilde{d})$ ----- HERAPDF, Σsea=2x(ũ+đ) 0.5 0.5 ······ HERAPDF, Saluon ☆ HERAPDF, Saluon 0 0.0 0.0 $1. \times 10^{-3}$ 5×10^{-4} $2. \times 10^{-3}$ 2×10^{-4} 5×10^{-4} 1×10^{-3} 10⁻³ 10⁻⁴ 10^{-4} 10⁻³ 10⁻⁴ 10⁻³ $\langle X_{Bi} \rangle$ $< X_{Bi} >$ х х х H!: 20 < Q² < 40 GeV² H1: 40 < Q² < 100 GeV² pp collisions at the LHC Ssea S Ssea HERAPDF, $\Sigma_{sea} = 2x(\tilde{u} + \tilde{d} + s)$ HERAPDF, $\Sigma_{sea}=2x(\tilde{u}+\tilde{d}+s)$ HERAPDF, $\Sigma_{seq}=2x(\tilde{u}+\tilde{d})$ ----- HERAPDF, Σsea=2x(ũ+đ) HERAPDF, Sgluon) ······ HERAPDF, Sgluon $2 \times 10^{-3} \times 10^{-3}$ 6×10^{-3} 0.11 × 10⁻¹ $1. \times 10^{-3}$ 2×10^{-3} $5. \times 10^{-3}$ More definitive measurements at $\langle x_{\rm Bi} \rangle$ $< x_{Bi} >$ Eur. Phys. J. C (2021) 81: 212 the EIC using eA collisions

ep DIS at H1

Summary

- Saturation at the EIC one of the pillars of the EIC program
- It is indispensable in our foundation of understanding the nucleon and nuclear structure.

• Extraordinary discovery requires extraordinary evidences

- Inclusive $F_{2,} F_{L}$
- Di-hadron correlations
- Diffractions.

•

- Collectivity in small systems
- Entanglement?

