Multimessenger constraints for ultra-dense matter

Tyler Gorda IKP - TU Darmstadt,

NSs as multi-messenger laboratories for dense matter (online), 2021-06-16

Work in Collaboration with:

E. Annala, E. Katerini, A. Kurkela, J. Nättilä, V. Paschalidis, A. Vuorinen

arXiv: 2105.05132

• Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.

Compressed Baryonic Matter (CBM) experiment

• Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.
- Use *parametrized-EOS ensemble approach* to determine all allowed behaviors of the EOS between low and high density constraints. Want to be as conservative as possible!

- Extend NS EOS beyond controlled nuclear regime; use knowledge that QCD EOS goes to pQCD at high densities.
- Use *parametrized-EOS ensemble approach* to determine all allowed behaviors of the EOS between low and high density constraints. Want to be as conservative as possible!
- Has provided evidence for *quark matter cores* in massive NSs, identifying transition with softening of the EOS. Generic for EOSs with $max(c_s^2) \le 0.5$. Annala et al. Nature Phys. 2020

- So far, have only used *most robust* constraints:
 - $M_{\rm TOV} \ge 2.0 M_{\odot}$
 - $\tilde{\Lambda} < 720 \text{ for GW1701817}$ $(q ∈ [0.73, 1], <math>\mathcal{M}_{chirp} = 1.186 M_{\odot})$

- So far, have only used *most robust* constraints:
 - $M_{\rm TOV} \ge 2.0 M_{\odot}$
 - $\begin{array}{ll} \bar{\Lambda} < 720 \mbox{ for GW1701817} \\ (q \in [0.73, 1], \mathcal{M}_{chirp} = 1.186 M_{\odot}) \end{array}$
- Other robust constraints that we can use?

- So far, have only used *most robust* constraints:
 - $M_{TOV} \ge 2.0 M_{\odot}$
 - $\tilde{\Lambda} < 720$ for GW1701817 $(q \in [0.73, 1], \mathcal{M}_{chirp} = 1.186 M_{\odot})$
- Other robust constraints that we can use?
- In 2105.05132, add the following two results:
 - BH formed in GW170817 (BH-hyp)
 [possibly with HMNS first (HMNS-hyp)]
 - $R(2.0M_{\odot}) \ge 11$ km, from measurement of PSR J0740+6620 by NICER+XMM

Also look at:

- GW190814
- future measurements

- So far, have only used *most robust* constraints:
 - $M_{\rm TOV} \ge 2.0 M_{\odot}$
 - $\tilde{\Lambda} < 720$ for GW1701817 $(q \in [0.73, 1], \mathcal{M}_{chirp} = 1.186 M_{\odot})$
- Other robust constraints that we can use?
- In 2105.05132, add the following two results:
 - BH formed in GW170817 (BH-hyp)
 [possibly with HMNS first (HMNS-hyp)]
 - $R(2.0M_{\odot}) \ge 11$ km, from measurement of PSR J0740+6620 by NICER+XMM

- So far, have only used *most robust* constraints:
 - $M_{\rm TOV} \ge 2.0 M_{\odot}$
 - $\tilde{\Lambda} < 720$ for GW1701817 $(q \in [0.73, 1], \mathcal{M}_{chirp} = 1.186 M_{\odot})$
- Other robust constraints that we can use?
- In 2105.05132, add the following two results:
 - BH formed in GW170817 (BH-hyp)
 [possibly with HMNS first (HMNS-hyp)]
 - $R(2.0M_{\odot}) \ge 11$ km, from measurement of PSR J0740+6620 by NICER+XMM

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*
 - Additional input with unknown uncertainties for general EOS
 - Are known to be violated for EOSs with, e.g.
 1st-Order PTs Lau + Phys. Rev. D 95, (2017); Bandyopadhyay
 + Eur. Phys. J. A 54, (2018); Han and Steiner Phys. Rev. D 99, (2019); Bozzola + Eur. Phys. J. A 55, (2019)

Sample quasi-universal relation, Lau + Phys. Rev. D 95, (2017)

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*
- Possible evolutions of GW170817:

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*
- Possible evolutions of GW170817:

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*
- Possible evolutions of GW170817:

- How to enforce BH-hyp or HMNS-hyp, *without using quasi-universal relations?*
- Possible evolutions of GW170817:

• Technical point: M not conserved, $M_{\rm B} = \bar{m} \cdot N_{\rm B}$ is!

 $M_{\rm B,remn} = M_{\rm B,1} + M_{\rm B,2} - M_{\rm B,ejecta}$

• Technical point: M not conserved, $M_{\rm B} = \bar{m} \cdot N_{\rm B}$ is!

$$M_{\rm B,remn} = M_{\rm B,1} + M_{\rm B,2} - M_{\rm B,ejecta}$$

*Ignore; most conservative

• Technical point: M not conserved, $M_{\rm B} = \bar{m} \cdot N_{\rm B}$ is!

$$M_{\rm B,remn} = M_{\rm B,1} + M_{\rm B,2} - M_{\rm B,ejecta}$$

*Ignore; most conservative

Demand, for M_{chirp} fixed, there exists a q ∈ [0.73, 1], such that both:
1) M_{B,remn}(q) ≥ M_{B,crit}, M_{B,crit} ∈ {M_{B,TOV}, M_{B,supra}}
2) Λ̃(q) < 720 (low-spin priors)

• Technical point: M not conserved, $M_{\rm B} = \bar{m} \cdot N_{\rm B}$ is!

$$M_{\rm B,remn} = M_{\rm B,1} + M_{\rm B,2} - M_{\rm B,ejecta}$$

*Ignore; most conservative

Demand, for M_{chirp} fixed, there exists a q ∈ [0.73, 1], such that *both*:
1) M_{B,remn}(q) ≥ M_{B,crit}, M_{B,crit} ∈ {M_{B,TOV}, M_{B,supra}}
2) Λ̃(q) < 720 (low-spin priors) *also look at high-spin priors

*additionally, implement $R(2M_{\odot})$ lower bounds

Results

Results: BH-hyp + PSR J0740+6620 – most conservative

Results: BH-hyp + PSR J0740+6620 - most conservative

Results: BH-hyp + PSR J0740+6620 – most conservative

Main result

T. Gorda (TU Darmstadt) | NSs as Multimessenger Laboratories for Dense Matter (Online) | 2021-06-16

Results: HMNS-hyp + PSR J0740+6620 – more consistent with kilonova, GRB

Results: HMNS-hyp + PSR J0740+6620 - more consistent with kilonova, GRB

Results: HMNS-hyp + PSR J0740+6620 - more consistent with kilonova, GRB

T. Gorda (TU Darmstadt) | NSs as Multimessenger Laboratories for Dense Matter (Online) | 2021-06-16

Results: HMNS-hyp + PSR J0740+6620 - more consistent with kilonova, GRB

Results: different implementations of GW170817

Results: different implementations of GW170817

Conclusions

• New constraints on *M*_{TOV} within our ensemble framework :

 $BH-hyp \implies M_{TOV} \le 2.53 M_{\odot}$ $HMNS-hyp \implies M_{TOV} \le 2.19 M_{\odot}$

- BH-hyp, HMNS-hyp, and $R(2.0M\odot) \ge 11.0, 11.4, 12.2$ km all compatible with QM cores in massive NSs
- Discussion of GW190814, other future measurements in 2105.05132.
- Most robust regions $[R(2.0M_{\odot}) \ge 11 \text{ km and BH-/HMNS-hyp}]$:

Conclusions

• New constraints on *M*_{TOV} within our ensemble framework :

 $BH-hyp \implies M_{TOV} \le 2.53 M_{\odot}$ $HMNS-hyp \implies M_{TOV} \le 2.19 M_{\odot}$

- BH-hyp, HMNS-hyp, and $R(2.0M\odot) \ge 11.0, 11.4, 12.2$ km all compatible with QM cores in massive NSs
- Discussion of GW190814, other future measurements in 2105.05132.
- Most robust regions $[R(2.0M_{\odot}) \ge 11 \text{ km and BH-/HMNS-hyp}]$:

Thank you for your attention! 11/16

Details, additional results....

Quick detail of EOS interpolation

- $\{\mu_i, (c_s^2)_i\}_{i=1}^N$ random
- Connected piecewise linearly
- Enforce subluminalty, thermodynamic consistency:
 ∀i : 0 < (c_s²)_i < 1
- No explicit phase trans., but don't restrict softness of EOS (tantamount to 1st order PT)

Quick detail of EOS interpolation

GW190814 compatible with BH-hyp, but not HMNS-hyp...

- Would imply $max(c_s^2) \ge 0.51...$
- ...but hard to reconcile with multimessenger picture of GW170817
- Compatible with $R(2.0M_{\odot}) \ge 11$ km

Future measurements

Radii at different masses: Weih+ Astrophys. J. 881, 73 (2019)

Future measurements

Future measurements

Numerical MR limits with various hypotheses

Assumptions		Resulting ensemble limits				
BH hypothesis	$R_{2.0,\min}$ (km)	$R_{1.4} ({\rm km})$	$R_{1.6} (\mathrm{km})$	$R_{1.8} ({\rm km})$	$R_{2.0} ({\rm km})$	$M_{\rm TOV}~(M_{\odot})$
_	_	9.6 - 13.4	9.8 - 13.3	9.7 - 13.5	9.3 - 13.7	2.98
TOV	—	9.6 - 13.4	9.8 - 13.2	9.7 - 13.4	9.3 - 13.6	2.53
Supra	—	9.7 - 13.4	9.8 - 13.2	9.7 - 13.3	9.3 - 13.3	2.19
TOV	10.9	10.6 - 13.2	10.7 - 13.2	10.9 - 13.4	10.9 - 13.6	2.53
TOV	11.1	10.7 - 13.2	10.9 - 13.2	11.0 - 13.4	11.1 - 13.6	2.53
TOV	11.4	10.9 - 13.2	11.1 - 13.2	11.2 - 13.4	11.4 - 13.6	2.53
TOV	12.2	11.5 - 13.1	11.7 - 13.2	12.0 - 13.4	12.2 - 13.6	2.53
Supra	10.9	10.8 - 13.2	10.9 - 13.2	10.9 - 13.3	10.9 - 13.3	2.19
Supra	11.1	10.8 - 13.2	11.0 - 13.2	11.1 - 13.3	11.1 - 13.3	2.19
Supra	11.4	11.2 - 13.2	11.3 - 13.2	11.4 - 13.3	11.4 - 13.3	2.19
Supra	12.2	11.9 - 13.1	12.0 - 13.2	12.1 - 13.3	12.2 - 13.3	2.19