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e [he space of all possible equations of
state is uncountably infinite

Priors and The Space of All Possible Equations of State

TABLE 1. A comparison of our posterior distributions for the
radius of a 1.4 Mg NS in comparison to other results obtained in
the literature.

Reference R, 4 Credible Source
interval

(17] [10.5, 13.3] 90% GW

21] [9.9, 13.6] 90% GW

22] < 13.6 90% GW

23] 9.4, 12.8] 90% GW

27] 9.8, 13.2] © 90% GW

36] 10.36, 12.78] 90% GW

Model “a” [11.30, 13.95] 95% GW

Model “b” [10.65, 13.09] 95% GW

28] (8.9, 13.2] 90% GW, merger remnant

29] 11.4, 13.2] 90% GW, merger remnant

30] 104, 11.9] 90% GW, merger remnant

(31] 11.98, 12.76] 90% GW, QLMXB

32] 10.5, 11.8] 90% GW, QLMXB

(33] 10.94, 12.72] 90% GWs h, NICER

34,35] (10.85, 13.41] 90% GWs, NICER

36] (11.91, 13.25] 90% GW, NICER

(37] 11.3, 13.3] 90% GW, NICER

41] (12, 13] 90% GWs, NICER

41] [10.0, 11.5] 90% GWs, QLMXB, PRE

Model “c” [11.21, 12.55] 95% GW, QLMXB, PRE

Model “e” [11.28, 12.58] 95% GVW, QLMXB, PRE,

NICER

“Radius measurement for the primary NS of the merger event.
®GWs refer to the joint analysis of GW170817 and GW190425.

M. Al-Mamun et al. (2021)
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e [here is N0 unambiguous procedure for
listing, plotting, or analyzing the equations
of state, and no such thing as "model-
iIndependent”.

e Statements like "most EOSs do not have a
phase transition” have little meaning
except with respect to some prior

e You must have a prior distribution
e \We are (still) in a data-starved regime

e [here is no optimal prior, only better data
sets

Even the conditional probability, which is formally
separate from the prior, often contains assumptions
which are arguably prior assumptions; Steiner (2018)
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Goals of Our Combined Analysis

e See what information can be obtained with QLMXBs + PREs + GWSs +
NICER

e Anchor our EOS model in up-to-date nuclear physics
o Chiral effective theory + MBPT for neutron matter
o Posteriors from experimental data for nuclear matter
e Show how our results depend on our prior assumptions
O E.g. polytropes vs. line-segments at high densities

e Attempt to determine it EM observations contain systematic
uncertainties which are unaccounted for
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Mass-Radius Results
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e Combined results show relatively good
agreement on R 4, independent of the
EOS prior polytropes (line segments):

11.18(11.12) < Ry14 < 12.75(12.45)

(95% C..'s)
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Mass-Radius Results
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e Combined results show relatively good

agreement on R 4, independent of the
EOS prior polytropes (line segments):
11.18(11.12) < Ry14 < 12.75(12.45)

(95% C.1.'s)

e Results for lower masses are more prior

dependent
11.20(10.88) < Ry < 12.76(12.38)

Dear Universe: please merge two 1 Mg NSs

e Results for higher masses appear less

prior dependent...
11.53(11.37) < Ry 4 < 12.52(12.62)

...out maximum mass posterior
distribution varies significantly

This is why NICER results on JO740 are so important
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Assessing Systematics and JO030
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Assessing Systematics and JO030
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Equation of State Results and Maximum Mass
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e | imits on pressure at fixed energy density
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Equation of State Results and Maximum Mass
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Equation of State Results and Maximum Mass
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What about PREX |l and NICER J0740?

e Likely some tension between recent 120
nuclear theory results, QLMXB
observations and PREX |l, JO740 results 100

e [here could be systematics lurking in the
QLMXB or NICER observations

S
e Some theoretical systematic? § 60
S ..

e A PREX Il systematic, failure of correlation
between form factor and L 40

e Or they're all right, and we're just a little bit
unlucky

e | ots of current theory work, but the best 0
way to resolve this is more data

It would be nice to put more NICERs on the ISS...

Reed et al. (2021)



Thermal Emission from Isolated Neutron Stars

o After ~ 10 years, the neutron star is

isothermal = one temperature = T

dT
CVE —_ Ly ~+ Ly

e Assume only neutrons and protons

e Age taken from, e.g., association with a
supernova remnant

J0002-6246, I.e. the "cannonball pulsar®
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First Large-Scale Bayesian Inference for NSs

M13, H atm.

0.104 .
1. Include nuclear data (binding energies & .
charge radii of nuclei; Hartree approx.) S0 06 A \
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Now we have information on composition!
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e Proton fraction is larger than
11% In the core of massive stars
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Now we have information on composition!
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e Proton fraction is larger than

11% In the core of massive stars

e This would imply a direct Urca
process which would cool the
stars quickly

e Constrains many of the stars
to a small mass

e More likely way out: make a
superfluid
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e Proton fraction is larger than

11% In the core of massive stars

e This would imply a direct Urca
process which would cool the
stars quickly

e Constrains many of the stars
to a small mass

e More likely way out: make a
superfluid

e Neutron triplet superfluidity
pervades the star



Direct Relation to Neutron Star Mergers

e SFHo equation of state used Iin
neutron star merger simulations

e QOriginally motivated by NS
radius measurements

e R-process abundances are not
strongly modified by equation of
state changes

e However, amount of mass
ejected significantly increased:
SFHo: > 1.0 X 10™* Mg
DD2: < 2.1 X 107> Mg
T™1: < 1.2 X 10~ Mg

Ye s [kg]
0.1 0.2 0.3 0.4 0.5 10 20 50 100
il aE I :

—

=

-
-1000 -500 0 500 1000
X |km]

Sekiguchi et al. (2015)

e |mproves abllity of mergers to
produce r-process elements!



Summary

e EM observations and GW observations combined constrain the radius
ofaM = 1.4 Mg neutron star — prior dependence is weak

e But, prior still matters for low and high masses

e EM and GW observations seem to agree, but interesting future with
PREX [| and NICER's observation of JO740

e Combined analysis with NS cooling constrains composition

e [here are important connections between the EOS and NS mergers:
Mmaximum mass and amount of mass ejected

e EXxciting news just around the corner...



