

## Tidal deformabilities and radii of neutron stars from gravitational-wave observations

Soumi De Los Alamos National Laboratory, USA

ECT\* workshop

June 14, 2021

Los Alamos report number: LA-UR-21-25488





GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern







## GW170817



• Only one with electromagnetic counterpart observations

• Loudest gravitational-wave event with a neutron star component

Abbott,..., SD et al. ApJL 848, 2 (2017)

## **Tidal deformations in binary neutron star inspirals**



The tidal deformation of each star can be parameterized as  $\Lambda = f(m, R, EOS)$ 













on companion











 $Q_{i,j} = -\lambda \epsilon_{i,j}$ gravitational field of each component star tidal deformability induced quadrupole moment on companion

dimensionless tidal deformability:

$$\Lambda = \lambda/m^5 \qquad \Lambda_{1,2} = \frac{2}{3}k_2 \left(\frac{R_{1,2}c^2}{Gm_{1,2}}\right)^5$$

 $\Lambda$  is a measurement of how deformable the neutron star is



## How does the tidal deformation connect to the nuclear equation of state?



$$\Lambda = f(m, R, EOS)$$

Each proposed equation of state generates a specific mass radius curve

We are trying to find what the nuclear equation of state is using GW170817



## Effect of tidal deformability on gravitational waves

Information about the tidal deformability is encoded in the phase of the gravitational-wave signal

$$\begin{split} \Phi(t) \sim \phi_0(\mathcal{M}; t) \Big[ 1 + \phi_1(\eta; t) \Big( \frac{v}{c} \Big)^2 + & \dots + \phi_5(\tilde{\Lambda}; t) \Big( \frac{v}{c} \Big)^{10} \Big] \\ \text{chirp mass} \\ \mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} \\ \text{symmetric mass ratio} \\ \eta = \frac{(m_1 m_2)}{(m_1 + m_2)^2} \\ \tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5} \end{split}$$



## Effect of tidal deformability on gravitational waves

Information about the tidal deformability is encoded in the phase of the gravitational-wave signal

$$\Phi(t) \sim \phi_0(\mathcal{M}; t) \left[ 1 + \phi_1(\eta; t) \left( \frac{v}{c} \right)^2 + \dots + \phi_5(\tilde{\Lambda}; t) \left( \frac{v}{c} \right)^{10} \right]$$





## What else is encoded in the gravitational wave data

#### Parameter space $\vec{\theta}$

- Component masses :
- Component spins :
- Distance to the source :
- Source location and orientation :
- Coalescence time and phase :
- Component tidal deformabilities :

 $egin{aligned} m_1,m_2\ ec{s_1},ec{s_2}\ d_L\ lpha,\delta,\psi,\iota\ t_c,\phi_c\ \Lambda_1,\Lambda_2 \end{aligned}$ 

Bayesian inference analysis of GW data to extract these parameters



### **Common equation of state for GW170817**



**SD** et al., Phys. Rev. Lett. 121, 091102 (2018)



## Measurement of neutron star tidal deformabilities and radii from GW170817





## **GW170817 constraints on equations of state**



For GW170817, gravitational waves alone cannot distinguish between a binary black hole and a binary neutron star merger



See also: Abbott et al 2020, CQG 37 045006

## Information from electromagnetic counterparts of GW170817





### **Multimessenger constraints on allowed equations of state**



Capano, Tews, Brown, Margalit, SD et al, Nature Astronomy 4 (2019)



## Implications of the radius measurement:

#### **Prospects of observing a neutron star - black hole merger**





Capano, Tews, Brown, Margalit, **SD** et al, Nature Astronomy 4 (2019)

# Comparison of radius measurements for a 1.4M⊙ neutron star



Breschi et al. (2021) MNRAS 505, 1661



## **Prospects of improving constraints with future observations**



- Using simulated signals at SNR ~100 we find ~2.9x improvement in measurement uncertainty
- Gravitational waves alone will be able to constrain upper and lower bounds of tidal deformability and radii for high SNR signals
- Low SNR signals would need combination of information from GW + EM + nuclear theory

Simulated signal, analyzed with TaylorF2
Simulated signal, analyzed with PhenomDNRT
GW170817

Capano, Tews, Brown, Margalit, **SD** et al, Nature Astronomy 4 (2019)



Soumi De



soumide@lanl.gov

