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[Abbo%+2018]

Powerful sources of: 
• Gravitational waves 

• Short gamma-ray bursts 

• Radioactively powered kilonovae 

Ideal probes to extract information on NS EOS 

GW170817 | GRB170817A | AT2017gfo 
• Smoking gun evidence connecting BNS with SGRBs  

• Refined constraints on NS EOS via GWs and EM 
counterparts (see earlier talk by Prof. Bernuzzi)

Binary Neutron Star Mergers 

A complete description requires finite temperature composition-dependent EOS 
and neutrino radiation, but also magnetic fields
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[Ascenzi+2020]

SGRB Central Engines and Kilonova

Open Questions: 
•  Can a MNS/magnetar power an SGRB jet? 

•  What is the structure of an SGRB jet? 

•  Can the magnetically driven post-merger ejecta from MNS remnant act as a source of blue kilonova?
3
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We cover unexplored timescales

Merger produces a 
differentially rotating, 
metastable SMNS 

[Ciolfi+2019]

[Ciolfi 2020]

Novel insights on how the magnetic field evolves and its effects on the system

BNS Simulations with Long Post-Merger Evolution
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Magneto-Rotational Instability (MRI)                                         Magnetic Energy Evolution 

[Ciolfi+2019]

Flattening

[Ciolfi 2020]

MRI

KHI

Absolute upper limit for magnetisation of a long-lived NS

Magnetic Field Amplification

[Ciolfi+2019]
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Baryon pollution problem             Magnetically driven ejecta can act as an obstacle for jet formation 
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radial distribution of unbound matter

magnetically driven

• Around 20ms post-merger: nearly spherical core 
attached to a torus shaped outer envelope  

• At later times: for magnetised case, more isotropic 
distribution

• Magnetically enhanced and 
isotropic mass outflow

Mass Outflows & Remnant Structure
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Toroidal field: Strong amplification, mostly 
equitorial

10
0 

km• Large-scale field lines extending up to more than 
100 km 

Hints of emerging global magnetic field                      

Poloidal field: Transient helical structures 
along spin-axis

[Ciolfi+2019]

radius  
10 km

Magnetic Field Geometry
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what it has
Γ ≲ 1.05, v ≲ 0.3c

what it needs
Γ ≳ 10, v ≳ 0.995c

[Ciolfi 2020]

BNS Beyond 100 ms

• Jet-like helical structure emerges 
• Isotropic matter distribution (no accretion disk)  

Collimated outflow 
• Breaking out around 170 ms 
• Radial velocities reach 0.2-0.3c 

Compatibility with GRB 170817A 

• Not enough jet core energy 
• Outflow too heavy
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• Jet-like helical structure emerges 
• Isotropic matter distribution (no accretion disk)  

Collimated outflow 
• Breaking out around 170 ms 
• Radial velocities reach 0.2-0.3c 

Compatibility with GRB 170817A 

• Not enough jet core energy 
• Outflow too heavy

BNS Beyond 100 ms

Magnetar scenario disfavoured  
for producing a SGRB jet
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[Pavan+2021]

Physical setup: 
• RHD jet simulations in PLUTO 

• Importing ID from BNS merger simulation 

• ‘Top hat’ jet injection  

• Taub EOS for evolution 

• Newtonian gravity included 

SGRBs in BNS Merger Environments

First SGRB jet simulations in a BNS merger environment
9

Key results: 
• Gravitational pull: important effect 

• Realistic BNS merger environment impacts the final jet 
properties (compared to simpler hand-made environment) 

• Dependence on jet launching time



Blue peak

Red peak

Time-evolution of AT2017gfo spectra

[Pian+2017]• GW170817 accompanied by electromagnetic transient AT2017gfo  

• Smoking gun evidence: BNS mergers produce radioactively powered 
kilonovae

AT2017gfo shows at least two distinct components

-peaks about 1 day after merger 

-lanthanide poor (lower opacities) 

-ejecta velocities: about 0.2-0.3c 

-ejecta mass: about 0.015-0.025 Msun 

-source: magnetically driven MNS winds?

-peaks several days after merger 

-lanthanide rich (higher opacities) 

-ejecta velocities: about 0.1c 

-ejecta mass: about 0.05 Msun   

-source: post-merger disk winds
[Perego+2014, Siegel & Metzger 2017a,b,….]

Magnetically Driven Baryon Winds and Blue Kilonova

Blue component Red component
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ejecta velocities reach about 0.2-0.22c  

total unbound ejecta mass reaches about 0.01-0.028 Msun  

Ejecta velocities and mass consistent with the blue component of the kilonova 

Radial velocity evolution

Mass outflow rate evolution Mass outflow evolution
Radial distribution of mass outflow

[Ciolfi, Kalinani 2020]

11



Version 1.0: 
•  Vector potential staggered evolution 

•  Designed to work within Einstein Toolkit framework 

•  Support for ideal gas and polytropic EOSs via EOS_Omni  

•  Undergone extensive 1D, 2D and 3D testing  

Version 2.0: 
•  Support for composition-dependent finite temperature EOS 

•  ZelmaniLeak neutrino leakage scheme  

•  Evolution equation of electron fraction 

•  1D Palenzuela C2P scheme 

•  Higher order schemes:  WENOZ with HLLE4 and HLLE6 

•  Publicly available on Zenodo: 10.5281/zenodo.4350072

The Spritz code:  GRMHD with 
Neutrino Leakage

[Cipolle%a+2020, Cipolle%a+2021]

Balsara 1 shocktube test: staggered vs non-staggered 
vector potential evolution

[O%+2012]
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https://zenodo.org/record/4350072


List of TOV simulations with different configurations Temperature

Electron fracMon

Results of simulation 06. Image courtesy: E. Giangrandi

3D TOV tests
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Rest-mass density Temperature 

Magnetic field strength

Luminosity curves

[Cipolle%a+2021]
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Temperature

Electron fracMon

Preliminary BNS tests with SLy4 EOS

Equal mass: 
1.55-1.55 Msun

Unequal mass: 
1.32-1.69 Msun

Image courtesy: L. Ennoggi 15



RePrimAnd C2P scheme in Spritz

• Uses root-bracketing scheme  

• Alway converges to a unique solution (mathematical proof) 

• Strong error policy: guarantees to find invalid evolved variables and applies harmless 
corrections, if necessary 

• EOS-agnostic  

• Publicly available code along with an EOS-framework on Zenodo: wokast/RePrimAnd

Scheme features:

[Kalinani+ in prep]

[Kastaun+2021]

Implementation in Spritz:
• Integrated RePrimAnd library into Einstein Toolkit 

• Added option in Spritz to use C2P from RePrimAnd 

• Defines and enforces validity range for EOS 

• Option to use different error policy within BHs 

• Support for fully tabulated EOS underway

List of 3D tests:
• TOV star with internal magnetic field  

• NS with external dipolar magnetic field 

• Rotating magnetised NS 

• Rotating magnetised NS collapse to BH 

• Fishbone-Moncrief BH-accretion disk
16
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RePrimAnd

Noble

NS with extended dipolar field Fishbone-Moncrief BH-accretion disk

• RePrimAnd outperforms Noble scheme 
when handling highly magnetised, low density 
regimes 

• RePrimAnd able to handle highly magnetised 
BH environmentsMagnetic field strength
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• GRMHD simulations of BNS mergers represent a necessary tool to study the physical properties 
and mechanisms of NSs, SGRBs and kilonovae 

• Magnetar scenario disfavoured as SGRB jet central engine 

• Magnetically driven outflows: potential driver behind the blue component of the kilonova 

• The Spritz code: a necessary step forward to perform GRMHD simulations with neutrinos 

• RePrimAnd C2P: a promising robust, accurate and efficient C2P scheme

Take-home message:

Future exploration:

• Temperature and composition dependent EOSs 

• Neutrino radiation 

• Initial B-fields extending to the exterior (force-free implementation) 

• NS spins

Summary

18



Thank you for your attention!  


