

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

GRMHD Simulations of **Binary Neutron Star Mergers**

Jay V. Kalinani Università degli Studi di Padova, Italy INFN, Padova, Italy

in collaboration with R.Ciolfi, W. Kastaun, B. Giacomazzo, F. Cipolletta, L. Ennoggi, A. Pavan, B. Guidici, L. Sala, E. Giangrandi, A. Ghedin

> ECT* Workshop: Neutron Stars as Multi-Messenger Laboratories for Dense Matter June 14-17, 2021

Binary Neutron Star Mergers

Powerful sources of:

- Gravitational waves
- Short gamma-ray bursts
- Radioactively powered kilonovae

Ideal probes to extract information on NS EOS

GWI70817 GRBI70817A AT2017gfo

- Smoking gun evidence connecting BNS with SGRBs
- Refined constraints on NS EOS via GWs and EM counterparts (see earlier talk by Prof. Bernuzzi)

A complete description requires finite temperature composition-dependent EOS and neutrino radiation, but also <u>magnetic fields</u>

SGRB Central Engines and Kilonova

Open Questions:

- Can a MNS/magnetar power an SGRB jet?
- What is the structure of an SGRB jet?

• Can the magnetically driven post-merger ejecta from MNS remnant act as a source of blue kilonova?

BNS Simulations with Long Post-Merger Evolution

We cover unexplored timescales

Novel insights on how the magnetic field evolves and its effects on the system

Magnetic Field Amplification

Magneto-Rotational Instability (MRI)

Magnetic Energy Evolution

Absolute upper limit for magnetisation of a long-lived NS

Mass Outflows & Remnant Structure

radial distribution of unbound matter

Magnetically enhanced and isotropic mass outflow

Baryon pollution problem

Magnetically driven ejecta can act as an obstacle for jet formation

Magnetic Field Geometry

- Jet-like helical structure emerges
- Isotropic matter distribution (no accretion disk)

Collimated outflow

- Breaking out around 170 ms
- Radial velocities reach 0.2-0.3c

Compatibility with GRB | 708 | 7A

- Not enough jet core energy
- Outflow too heavy

what it has

 $\Gamma \leq 1.05, v \leq 0.3c$

what it needs

 $\Gamma \gtrsim 10, v \gtrsim 0.995c$

Magnetar scenario disfavoured for producing a SGRB jet

SGRBs in BNS Merger Environments

Physical setup:

- RHD jet simulations in PLUTO
- Importing ID from BNS merger simulation
- 'Top hat' jet injection
- Taub EOS for evolution
- Newtonian gravity included

Key results:

- Gravitational pull: important effect
- Realistic BNS merger environment impacts the final jet properties (compared to simpler hand-made environment)
- Dependence on jet launching time

First SGRB jet simulations in a BNS merger environment

[Pavan+2021]

Magnetically Driven Baryon Winds and Blue Kilonova

- GW170817 accompanied by electromagnetic transient AT2017gfo
- Smoking gun evidence: BNS mergers produce radioactively powered kilonovae

AT2017gfo shows at least two distinct components

Blue component

-peaks about I day after merger -lanthanide poor (lower opacities) -ejecta velocities: about **0.2-0.3c** -ejecta mass: about **0.015-0.025 M**_{sun} -source: magnetically driven MNS winds?

[Perego+2014, Siegel & Metzger 2017a,b,....]

Time-evolution of AT2017gfo spectra

Radial velocity evolution

11

total unbound ejecta mass reaches about 0.01-0.028 M_{sun}

Ejecta velocities and mass consistent with the blue component of the kilonova

The Spritz code: GRMHD with Neutrino Leakage

Version 1.0:

- Vector potential staggered evolution
- Designed to work within Einstein Toolkit framework
- Support for ideal gas and polytropic EOSs via EOS_Omni
- Undergone extensive ID, 2D and 3D testing

Version 2.0:

- Support for composition-dependent finite temperature EOS
- ZelmaniLeak neutrino leakage scheme [Ott+2012]
- Evolution equation of electron fraction
- ID Palenzuela C2P scheme
- Higher order schemes: WENOZ with HLLE4 and HLLE6
- Publicly available on Zenodo: <u>10.5281/zenodo.4350072</u>

[Cipolletta+2020, Cipolletta+2021]

ID	Test Name	β -eq. Initial Data	ν Leakage	T evolu
01	Spr_S_NL_NB_3D	S-slice $1k_b/\text{bar}$	Disabled	Yes
02	GRH_S_NL_NB	S-slice $1k_b/\text{bar}$	Disabled	Yes
03	Spr_S_NL_NB	S-slice $1k_b/\text{bar}$	Disabled	Yes
04	Spr_S_YL_NB_3D	S-slice $1k_b/\text{bar}$	Enabled	Yes
05	GRH_S_YL_NB	S-slice $1k_b/\text{bar}$	Enabled	Yes
06	$Spr_S_YL_NB$	S-slice $1k_b/\text{bar}$	Enabled	Yes
07	GRH_T_NL_NB	T-slice 0.01 MeV	Disabled	Yes
08	Spr_T_NL_NB	T-slice $0.01 \ {\rm MeV}$	Disabled	Yes
09	Spr_T1_NL_NB	T-slice $0.01 \ {\rm MeV}$	Disabled	Yes $(t =$
10	GRH_T_YL_NB	T-slice $0.01 \ {\rm MeV}$	Enabled	Yes
11	$Spr_T_YL_NB$	T-slice $0.01 \ {\rm MeV}$	Enabled	Yes
12	$Spr_T1_YL_NB$	T-slice $0.01 \ {\rm MeV}$	Enabled $(t = 3 \text{ms})$	Yes $(t =$
13	$Spr_S_NL_YB$	S-slice $1k_b/\text{bar}$	Disabled	Ye
14	$\mathtt{Spr}_{\mathtt{S}}\mathtt{YL}_{\mathtt{YB}}$	S-slice $1k_b/\text{bar}$	Enabled	Ye
15	$Spr_T1_NL_YB$	T-slice $0.01~{\rm MeV}$	Disabled	Yes (after
16	$Spr_T1_YL_YB$	T-slice $0.01 \ \mathrm{MeV}$	Enabled $(t = 3ms)$	Yes (after

List of TOV simulations with different configurations

3D TOV tests

Preliminary BNS tests with SLy4 EOS

t = 0.00e+00 ms

Min: 1.00e-10

t = 0.00e+00 ms

Image courtesy: L. Ennoggi

t = 4.77e+00 ms

x[km]

t = 5.61e+00 ms

t = 4.93e+00 ms

t = 5.83e+00 ms

RePrimAnd C2P scheme in Spritz

Scheme features: [Kastaun+2021]

- Uses root-bracketing scheme
- Alway converges to a unique solution (mathematical proof)
- Strong error policy: guarantees to find invalid evolved variables and applies harmless corrections, if necessary
- EOS-agnostic
- Publicly available code along with an EOS-framework on Zenodo: wokast/RePrimAnd

Implementation in Spritz: [Kalinani+ in prep]

- Integrated RePrimAnd library into Einstein Toolkit
- Added option in Spritz to use C2P from RePrimAnd
- Defines and enforces validity range for EOS
- Option to use different error policy within BHs
- Support for fully tabulated EOS underway

List of 3D tests:

- TOV star with internal magnetic field
- NS with external dipolar magnetic field
- Rotating magnetised NS
- Rotating magnetised NS collapse to BH
- Fishbone-Moncrief BH-accretion disk

NS with extended dipolar field

Fishbone-Moncrief BH-accretion disk

Take-home message:

- GRMHD simulations of BNS mergers represent a necessary tool to study the physical properties and mechanisms of NSs, SGRBs and kilonovae
- Magnetar scenario disfavoured as SGRB jet central engine
- Magnetically driven outflows: potential driver behind the blue component of the kilonova
- The Spritz code: a necessary step forward to perform GRMHD simulations with neutrinos
- RePrimAnd C2P: a promising robust, accurate and efficient C2P scheme

Future exploration:

- Temperature and composition dependent EOSs
- Neutrino radiation
- Initial B-fields extending to the exterior (force-free implementation)
- NS spins

Thank you for your attention!