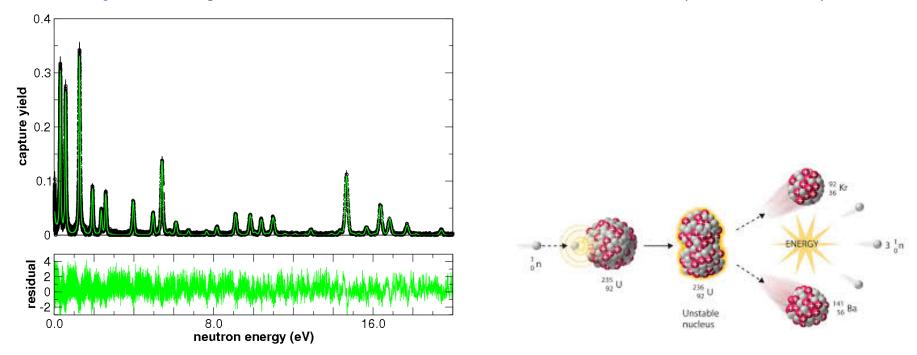
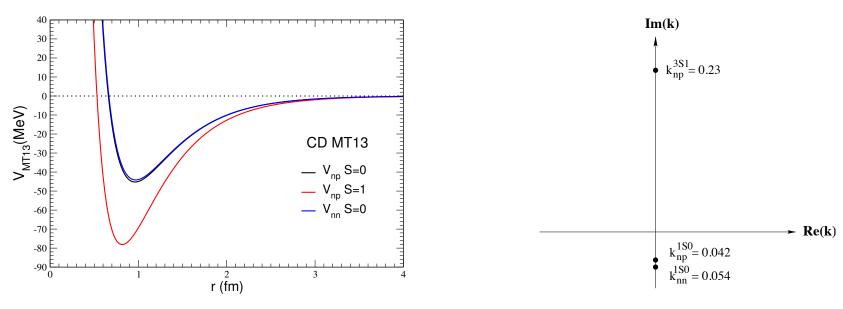
Low energy n scattering on light nuclei and 19B isotope as a ¹⁷B-n-n three-body system close to unitary limit


Jaume Carbonell

In collaboration with E. Hiyama, R. Lazauskas and M. Marqués

In Nuclear Physics, few things are more interesting than the very low energy (S-wave) scattering of n's

On heavy nuclei it gives rise to the fantastic forest of « resonances » (see the scale!)



and can be even very dangerous....

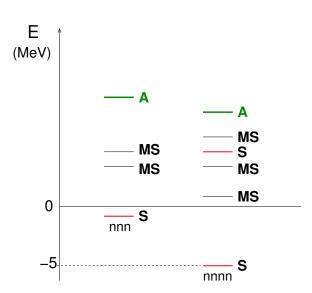
In any case, free from Coulomb, partial waves, centrifugal barrier, spins-orbit, tensor, ... it makes the delicious of theorists and it is very sensitive to the interaction (Cf R. Lazauskas talk on n+3H)

On light nuclei is certainly less spectacular, ALTHOUGH

The S-wave neutron-Nucleon (n,p) interaction is attractive in all spin and isospin channels

The S=1 **np** state is the more attractive one, enough to **bind** the deuteron by B=2.22 MeV The S=0 **np** and **nn** states are not bound... but almost: have a "virtual state" close to threshold This spin-dependence accounts for a 20% difference in the attractive strength of NN interaction

Despite all V_{nN} are attractive, a low energy **n** scattering on a light nucleus soon (${}^{2}H$) behaves as if the V_{nA} was repulsive...

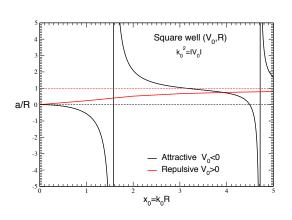

A **n** approaching a nucleus "feels" the others **n's** in the target and it doesn't like it! (Pauli)

A dramatic consequence happens in 3n and 4n systems:

 H_{3n} has a (ground) bound state at about 1 MeV (5 MeV for $H_{4n})\,$

... but in nature neither 3n nor 4n are bound

The lowest state of H_{3n} and H_{4n} is symmetric The first antisymmetric state is much higher in spectrum Everything happens <u>as if</u> there was a repulsion among n's: the "Pauli repulsion"

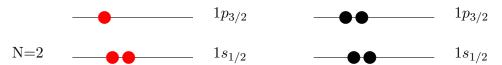


An interesting quantity to measure the repulsive/attractive character of V_{nA} is the scatt length

$$a_{nA} = -f_{nA}(E=0)$$

For purely repulsive V, a>0

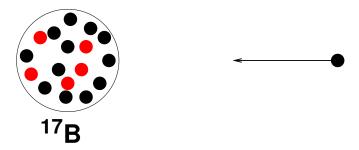
For purely attractive V, a<0...until a bound state appears


For a realistic interaction – mixing repulsive core with attractive parts – it will result as a balance of both tendencies

The evolution of a_{nA} when increasing **N** is summarized below

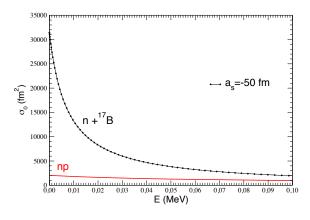
Z N A	Sym	J	a-	a+
1 0 1	р	1/2+	-23.71	+5.41 *
0 1 1	n	1/2+	-18.59	1
1 1 2	^{2}H	1-	+0.65*	+6.35
2 1 3	³ He	1/2+	+6.6-3.7i	+3.5
1 2 3	³ H	1/2+	+3.9	+3.6
2 2 4	⁴ He	0+	+2.61	1
3 3 6	⁶ Li	1+	+4.0	+0.57
3 4 7	⁷ Li	3/2-	+0.87	-3.63
2 6 8	⁸ He	0+	-3.17	
3 6 9	⁹ Li	3/2-	-14	

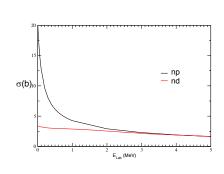
N=20		$egin{array}{c} 1d_{3/2} \ 2s_{1/2} \ 1d_{5/2} \end{array}$
N=8		$1p_{1/2} \\ 1p_{3/2}$
N=2		$1s_{1/2}$


For A=n,p all channels are attractive, as expected (despite its sign, like for +5.41*) with A=2, the quartet state (S=3/2) starts being repulsive: Pauli repulsion dominates over **nN** attraction In A=7 an attractive channel appears again: ⁷Li (J=3/2-)

P-wave **n's** decrease the Pauli repulsion: 2 $p_{3/2}$ n's enough to balance into an "attractive" V_{nA} Rm: previous repulsion were only in S-wave : P-wave were attractive, even resonant (n- 3 H,n- 4 He) The "attraction" persists in 12 Be, 15 B... **until something spectacular occurs.....**

ONE OF THE MOST FASCINATING SYSTEMS IN NUCLEAR PHYSICS


¹⁷B is a (strong) stable nucleus with J^π=3/2 consisting on a sea of 12n sourrounding 5p


The balance between attractive π -exchange between **n** and **17 Nucleon** and "Pauli repulsion" with the **12n**'s in ¹⁷B is **so fine-tuned** that the scattering length is $a_{n-17B} \sim -100$ fm

A <u>low energy</u> n scattering on ¹⁷B "feels" a monster of geometrical size D~400 fm Not yet a virus but we are getting close! ("visible"?)

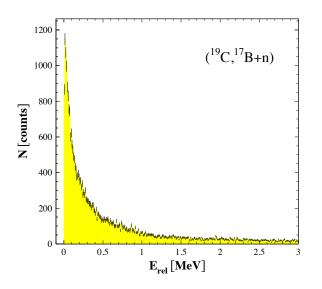
The « low energy region » where n feels the monster is « very low » ...

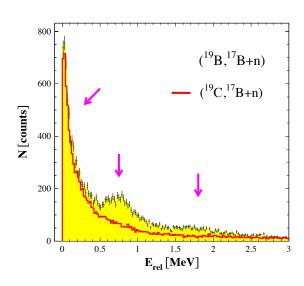
$$\sigma_L(k) = (2L+1)4\pi \frac{\sin^2 \delta_L(k)}{k^2}$$
$$\sigma(0) = 4\pi a^2$$

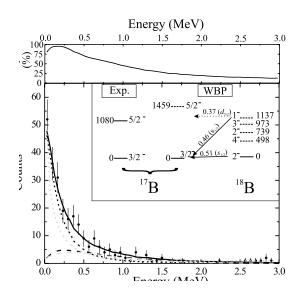
Nevertheless the effect is huge, even with respect to what was considered huge untill now!

EXPERIMENTAL

How do we know that this history is true?


I. A first MSU measurement


Spyrou et al. PLB683(2010)129


claimed the existence of a ^{18}B "virtual" (unbound) state and a $n-^{17}B$ $a_s <-50$ fm (max χ^2 at $a_s=-100$ fm)

this state was observed in other channels

S.Leblond PhD (2015) M. Marques, Fukuoka 2018

The <u>precise value of as it is not (yet) known</u>, most probably <-100 fm

THEORY

The large value of a_s indicates the existence of a " ¹⁸B virtual state" very close to threshold It corresponds to a pole in the $n-^{17}B$ scattering amplitude f(k) at Im(k)<0, as in nn case

One of the most interesting virtual states in Nucl Physics:

- the scattering length as is the **« nuclear chart record »**waiting for a final result!
- much larger than the highly celebrated a_{NN}=-24 fm, which, « controls the nuclear chart »
 S. König, H. Griesshammer, H.W. Hammer, U. van Kolck, Phys. Rev. Lett 118, 202501 (2017)
 We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy"
- It is even comparable to atomic physics cases! and a candidate to Efimov martyrology

But this not all....

- ¹⁹B is bound with a binding energy B in [0,0.53] MeV
- ¹⁹B has several resonant states
- A series of ²⁰B,²¹B resonances were recently discovered S.Leblond et al, PRL121,262502(2018)

All that gave a strong motivation to model ¹⁹B as a ¹⁷B-n-n 3-body cluster

- built wit 2 resonant scattering lengths (exemple of Borromean state)
- with possible extensions to ¹⁷B-n-n-n and ¹⁷B-n-n-n-n

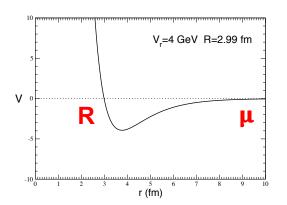
19_R

First results in E. Hiyama, R. Lazauskas, M. Marqués, J. Carbonell, PRC100, 011603R (2019)

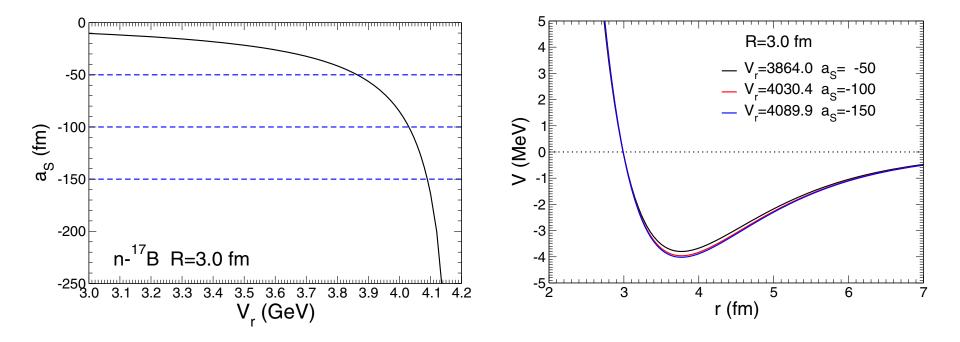
MODELING THE n-17B SYSTEM

Ingredients:

- Repulsive+Attractive part : V_r,V_a, μ
- Hard core radius : n cannot penetrate at r<R = size parameter
 R can be (matter radius, experimentally known R_m=299)
- Pion exchange (dominant at large r) μ=0.70 fm⁻¹

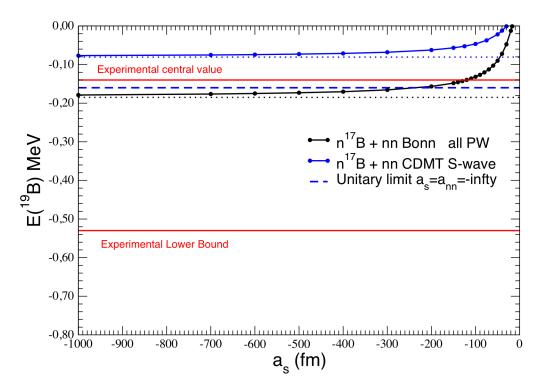

$$V(r) = V_r \frac{\exp(-2\mu r)}{r} - V_a \frac{\exp(-\mu r)}{r}$$

Equivalent to


$$V(r) = V_r \left(e^{-\mu r} - e^{-\mu R} \right) \frac{e^{-\mu r}}{r}$$

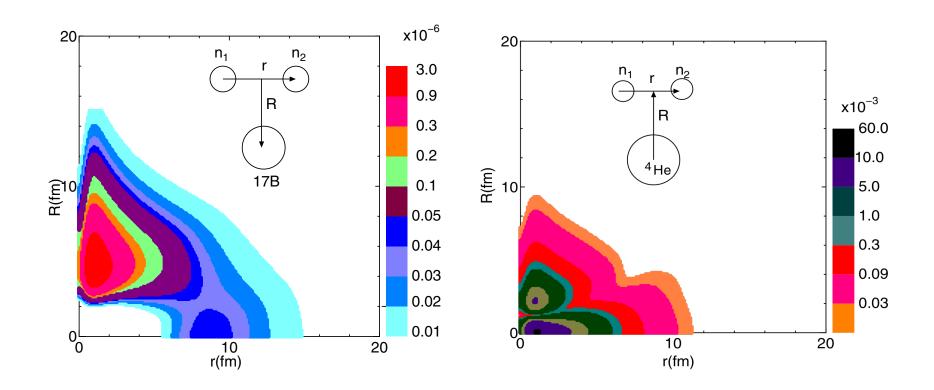
μ and R being fixed, there is one single parameter V_r

 V_r is adjusted to reproduce the experimental value of a_s Since we are still waiting for it, we parametrize all in terms of a_s


Determining $a_s = f(V_r)$

Dashed lines correspond to a_s =-50 (3864 MeV), -100 (4030), -150 (4090) fm with R=3.0 Singularity on right would corresponds to the (unphysical) bound ¹⁸B state Corresponding potentials saturates for $a_s \sim$ -100 fm

MODELING 19B as 17B-n-n CLUSTER


Solve the 3-body problem (Faddeev+Gaussian) with V_{n-17B} and some realistic V_{nn} ¹⁹B appears to be bound for a_s <-50 (the only parameter!) in a $J^{\pi}=3/2^-$ state (L=0,S=0)

We used 2 different **nn** interactions and let V_{n-17B} act in S-wave (s. blue) or in all PW (s. black) The energy is always compatible with the experimental value E=-0.14+/-0.39 MeV

In the S-wave case we consider the unitary limit: $a_s = a_{nn} \rightarrow -\infty$ (blue dashed) The result is still compatible with experimental value and constitutes a first illustration of this interesting limit in Nuclear Physics.

Spatial probability amplitude
$$|\Psi(r,R)|^2$$
 fixing a_s =-100 fm

Compared with a similar system ⁶He=⁴He+n+n

 $RMS_{nC}(^{19}B)=12.0 \text{ fm}$

 $RMS_{nC}(^{6}He)=4.5 \text{ fm}$

We also found two ^{19}B resonances: fixing a_s =-150 and using the S-wave model

L=1
$$E_1$$
=0.24-0.31i MeV
L=2 E_2 =1.02-1.22i MeV

Their existence is in agreement with experimental findings

J. Gibelin et al., Contribution to FB22, Caen july 2018, Springer Proc in Press

Very simple and successful model:

- local S-wave potential
- no 3-body force
- one single parameter

The key of the « succes » is the double resonant character

Some refinements: the spin-spin dependence

¹⁷B being $J^{\pi}=3/2^{-}$, there are two different scattering lengths a_s corresponding to S=1,2. Assuming that the virtual state we adjusted was a_2 there is no reason that $a_1=a_2$

Introduced a spin-spin dependence with different V_{n-17B} for each S, keeping the same form

$$V_{n^{17}B}^{(S)}(r) = V_{r}^{(S)} \ \left(e^{-\mu r} - e^{-\mu R}\right) \frac{e^{-\mu r}}{r} \qquad S = 1, 2$$

There exists a critical value a_1^c above which ^{17}B binding disappears but this requires unphysical SS beaking $V_r^{(1)}/V_r^{(2)}=2$: results are stable even when varying R

CONCLUSIONS

We present a local S-wave potential to describe the **n**-¹⁷B interaction and its virtual state

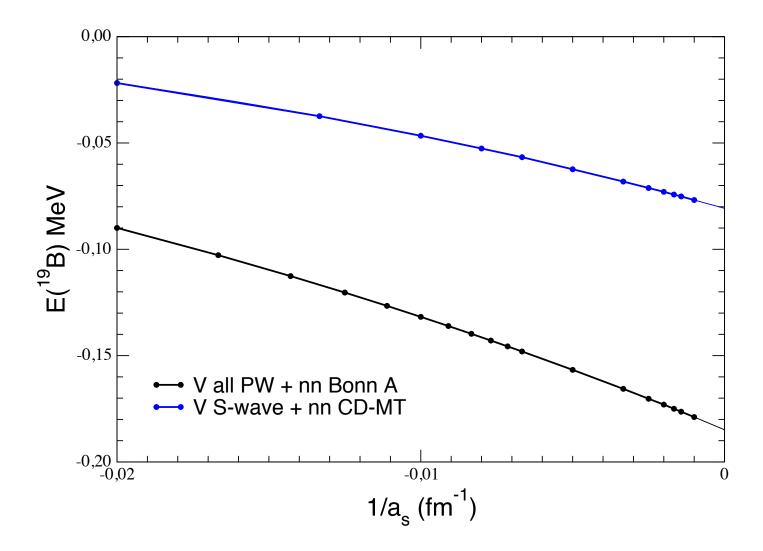
It depends on one parameter, adjusted to reproduce the huge $n-^{17}B$ scattering length (a_s <-50 fm)

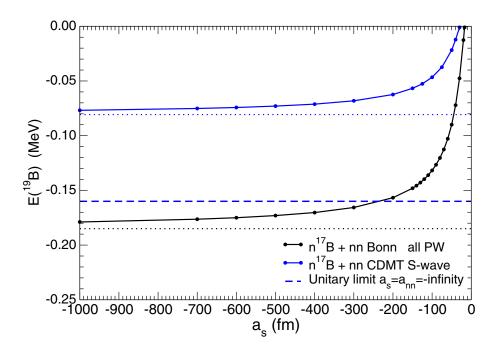
Supplemented with the nn interaction we describe well the ¹⁹B as a 3-body ¹⁷B-**n**-**n** cluster:

- Its ground state (E=-0.14 +/- 0.40) MeV
- Two (L=1, and L=2) resonances all in agreement with experimental findings.

The ¹⁹B ground state is a « double resonant » state compatible with the unitary limit in both **nn** and **n**-¹⁷B interactions

Despite the large values of the scattering length in both n-17B and nn channels, we found that the appearence of the first Efimow excitation is excluded (would require $a_s \sim$ few thousands fm)


The model can be extended to describe the recently found B isotopes as


```
<sup>20</sup>B=<sup>17</sup>B-n-n-n

<sup>21</sup>B=<sup>17</sup>B-n-n-n-n
```

with the methods used in computing ⁴H and ⁵H (L.H.C., PLB 791, 335 (2019)

To fix the model parameter it is mandatory to determine a_2 and a_1 and obtain a more accurate value of $E(^{19}B)$

