A Single Atom and the Radiation Field in Free Space

- an experimental study

Gerd Leuchs

Institute of Applied Physics, RAS, Nizhny Novgorod

Department of Physics, University of Ottawa

emeritus atMax Planck Institute for the Science of Light, Erlangenemeritus atDepartment of Physics, University Erlangen-Nürnberg

atom in free space

focussing to an atom* ...

... without a lens or mirror ?

* dipole transition

focussing to an atom* ...

... without a lens or mirror

dipole transition

METHODOLOGICAL NOTES

Light absorption by a dipole

Zentralinstitut für Optik und Spektroskopie, Berlin, DDR-1199 Usp. Fiz. Nauk 141, 375-381 (October 1983)

energy flux density <S>

→ field enhancement

FIG. 1. Energy flux lines in the x, y-plane. The dipole located at x=y=0, oscillates in the z direction. Incident (from the left) is a linearly polarized monochromatic plane wave.

0.1

0.2

ky

with versus without atom:

difference in phase

max 180°

project plan: M. Sondermann et al., Appl. Phys. B 89, 489 (2007)

single atom weak light interaction in free space

reference & experi-	year	extinction	reflection	phase shift	absorption
mental system		max 100 %	max 100 %	max 180°	max 100 %
Wineland group # trapped ion	1987	≤ 0.1%			
Imamoglu group§ <i>quantum dot</i>	2007	12 %			
Sandoghdar group† <i>molecule in matrix</i>	since 2007	30 %		3°	
Kurtsiefer group‡ <i>trapped atom</i>	since 2008	18 %	0.61%	1°	2.8 %
Blatt group ⁺⁺ single ion EIT	since 2010	1.4 %	< 1%	0.3°	
Eschner group‡‡ <i>trapped ion</i>	2011				0.03 %
MPL Erlangen trapped ion				2.5° ± 0.3°	

a single ion shifts the phase of a laser beam ...

Open Quantum Systems, Trento - gle

... by 2.5 degrees

M Fischer et al., Appl. Phys. B 123, 48 (2017)

- residual motion of the ion
 - trap depth
 - limited cooling (short life time)
- residual aberrations of the mirror
- j=1/2 level structure of Yb⁺

deduced heating rate 0.38 +/- 0.07 quanta/ms

B Srivathsan, M Fischer, L Alber et al, arXiv:1905.09011

• sooner:

atom phase shifts a laser beam by 20°

• applications:

broad band quantum gates; quantum repeater

dream: demonstration of time reversal of spontaneous emission \rightarrow linear dipole two level transition \rightarrow ¹⁷⁴Yb²⁺ - time reversal of spontaneous emission of an atom in free space

dream –

temporal pulse shape ?

→ atom emits single photon wave packet with exponential shape

time reversal - universal phase conjugating mirror?

 \rightarrow not a unitary operation

\rightarrow possible only with noise penalty

AL Gaeta, RW Boyd; Phys. Rev. Lett. 60, 2618 (1988)

efficiency (theory)

effect of shape --- same center frequency, same bandwidth

see:

M. Stobinska, G. Alber, G.L., Euro Physics Letters <u>86</u>, 14007 (2009)

Marianne Bader, Simon Heugel, Alexander Chekhov, Markus Sondermann, G.L., New J Phys 15, 1123008 (2013)

• sooner:

atom phase shifts a laser beam by 20°

- applications:
 - broad band quantum gates; quantum repeater
 - thermometry of trapped ion
- dream:

demonstration of time reversal of spontaneous emission