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Personal remarks
Definition of correlations in the present context
Appearance of universal behavior
Definition of the universal window: Efimov physics
Correlation between bound and scattering states in the
low-energy regime
Dynamics governed by a few parameters (control parameters)
Continuous (or discrete) scale invariance

Interplay of two aspects
Efimov physics put in evidence universal aspects of weakly bound
systems
Potential models are very detailed covering some times universal
behavior
Weakly bound systems are strongly correlated
Are correlated systems and universal properties compatible?
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Correlated systems: the He-He system as example

N = 2: ψ(r)→ 0 if r < rc

N > 2: ψ(. . . rij . . .)→ 0 if rij < rc

The many body system is strognly correlated since ψ → 0 when two
particles are close independently of the position of the other particles
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Ground state properties of helium drops

He-He potentials has been used to calculate the ground state
energies of drops with 3 ≤ N ≤ ∞
In V.R. Pandharipande et al., PRL 50, 1676 (1983) one of the first
applications of the GFMC method appeared
The motivations for that study were twofold:
i) To compare theoretical results using potential models with
experimental data
ii) To analyze extrapolation formulas from calculations with fix
number of atoms to the infinite system
The E/N experimental value of liquid Helium (−7.14K) was well
described. The calculations predicted −7.11K or −7.02K from an
extrapolation using results in the range 20 ≤ N ≤ 112
In nuclear physics we have a different situation: experimental
values exists for the clusters (nuclei) but not for the infinite system
(nuclear matter)
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Ground state properties of helium drops
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What about universal behavior?

The He dimer is a weakly bound system:
Its binding energy is small B(He − He) ≈ 1 mK
Its energy length aB = 1/kB =

√
~2/mB ≈ 190a.u. >> r0

The energy length aB, the scattering length a and the effective
range re are correlated (ERE): 1/aB = 1/a + re/2a2

B
The particles are most of the time outside the interaction range r0
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Universality in the two-body system

The scaling (or zero-range) limit
in the scaling limit the range of the interaction is zero

φd = Cde−kd r

φ0 = C0(r − a)

φk = Ck (sin kr − tan δ cos kr)

which is the relation between kd , a and tan δ ?

orthogonality of the states∫ ∞
0

φdφ0 = 0⇒ k−1
d = aB = a⇒ B = ~2/ma2

∫ ∞
0

φdφk = 0⇒ k cot δ = −1/aB ⇒ k cot δ = −1/a

In the scaling limit a− aB = rB = 0 (where rB is the correlation length)
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Increasing the correlation length

In real systems rB could be small but not zero
we make the following model:

φd = 0 (r < rB) and φd = Cde−kd r (r ≥ rB)
φ0 = 0 (r < rB) and φ0 = C0(r − a) (r ≥ rB)
φk = 0 (r < rB) and φk = Ck (sin kr − tan δ cos kr ) (r ≥ rB)

orthogonality of the states outside the cutoff rB∫ ∞
rB

φdφ0 = 0→ a− aB = rB∫ ∞
rB

φdφk = 0→ k cot δ = −1/a + (rBaB/a)k2

Therefore a− aB = rB and re = 2rBaB/a
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Universal behavior in few-body systems

Examples
The helium dimer (as given by the TTY potential):
Ed = 1.309 mk
a = 188.78 a.u., aB = 181.355 a.u.
re = 13.845 a.u., rB = 6.94 a.u.
E(a, reff ) = 1.311 mk
The deuteron:
Ed = 2.225 MeV
a1 = 5.419± 0.007 fm, a1

B = 4.317 fm
r1
e = 1.753± 0.008 fm, r1

B = 1.1 fm
E(a, reff ) = 2.223 fm

From zero- to finite-range: a gaussian potential model

V (r) = V0e−(r/r0)2

with V0 fixed to describe a or Ed and the role of r0 to be discussed.
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Universal behavior in few-body systems

When a shallow state exists, a Gaussian potential gives a
reasonable description of the low energy regime, bound and
scattering states.
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Travelling across the gaussian trajectory

Varying the strength of the potential we can move allong the
gaussian trajectory
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Continuous Scale Invariance
For λ ≈ 1.145 the helium dimer and the deuteron overlap:

λVHe B(mK) a(a0) re(a0) rB(a0)
1.000 1.303 189.42 13.845 7.166
1.025 5.027 99.935 13.290 7.146
1.050 11.137 69.448 12.792 7.108
1.100 30.358 44.792 11.937 7.034
1.145 55.408 34.919 11.299 6.970

Studying the CSI with the asymptotic normalization constant

ψ(r →∞) −→ C0e−r/aB

If CSI is verified the ANC should be the same (in units of
√

a−1)

system C0
√

a
1.145VHe 2.03
deuteron 2.04
gaussian 2.04
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The three-boson system

Zero-Range Equations: Efimov spectrum

En
3 /(~2/ma2) = tan2 ξ

κ∗a = eπ(n−n∗)/s0e−∆(ξ)/2s0/ cos ξ

The ratio En
3 /E2 defines the angle ξ

The three-body parameter κ∗ defines the energy of the system at
the unitary limit Eu = ~2κ2

∗/m
The product κ∗a is a function of ξ governed by the universal
function ∆(ξ)

The universal function ∆(ξ) is obtained by solving the STM
equations (Faddeev equation in the zero-range limit) and is the
same for all levels n

A. Kievsky (INFN-Pisa) From correlations to universality ETC*, October 2019 14 / 38



Three boson spectrum in the zero-range limit
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The three-boson system

Finite-Range Equations: Gaussian spectrum

En
3 /E2 = tan2 ξn

κn
∗aB = eπ(n−n∗)/s0e−

e∆n(ξn)/2s0/ cos ξ

The ratio En
3 /E2 defines the angle ξn

The three-body parameter κn
∗ defines the energy of the system at

the unitary limit Eu = ~2(κn
∗)

2/m
The product κn

∗aB is a function of ξn governed by the level
function: ∆̃(ξn) = s0 ln

(
En

3 +E2
En

u

)
The level function ∆̃(ξ) is obtained by solving the Schrödinger
equation.
For n > 1 ∆̃(ξ)→ ∆(ξ)
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Three boson spectrum with a Gaussian potential
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Three boson spectrum with a Gaussian potential
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Scale invariance

The three-body parameter κ∗ for the helium trimer

The quantity κ∗aB = f (ξ) is a function of ξ, where E3/E2 = tan2 ξ

To determine ξ we use experimental results E3 = 126mK and
E2 = 1.3mK. Accordingly tan2 ξ = 97.0

r0/aB = 0.061⇒ r0 = 11.13a0 ⇒ κ∗ = 0.488/11.13 a.u. = 0.044 a.u.

[E∗]He = ~2κ2
∗/m ≈ 83mK

Different results given in the literature agree with this prediction!
The helium trimer is on the gaussian trajectory
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Different He-He potentials
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Different He-He potentials
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Moving on the Gaussian trajectory

Effective low-energy soft potential
All He-He potentials are on the Gaussian curve
In all cases r0 = 11.132 a.u.
Accordingly the potential energy for three bosons can be
represented as ∑

ij

VHe−He(rij) = V0
∑

ij

e−r2
ij /r2

0

Varying V0 the helium trimer moves on trajectory first going on κ∗
and then climbing to the a− value
We predict a− = −4.37r0 = −48.6a.u. or a− = −9.8rvdW

In the literature the value a− = −48.2a.u. is reported
Along the trajectory the correlation length rB is almost constant
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Moving on the Gaussian trajectory
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Collapsing on the Gaussian trajectory

Calculate the gaussian trajectory using any gaussian
From one experimental three-body point calculate the angle:
E3/E2 = tan2 ξ

Crossing the gaussian trajectory it determines the value x = r0/aB

The gaussian range is r0 = x aB

κ∗ = 0.488r0

a− = −4.37r0

The potential energy for three bosons can be represented as

V0
∑

ij

e−r2
ij /r2

0

Let us analyse N > 3

A. Kievsky (INFN-Pisa) From correlations to universality ETC*, October 2019 24 / 38



Collapsing on the Gaussian trajectory

Calculate the gaussian trajectory using any gaussian
From one experimental three-body point calculate the angle:
E3/E2 = tan2 ξ

Crossing the gaussian trajectory it determines the value x = r0/aB

The gaussian range is r0 = x aB

κ∗ = 0.488r0

a− = −4.37r0

The potential energy for three bosons can be represented as

V0
∑

ij

e−r2
ij /r2

0

Let us analyse N > 3

A. Kievsky (INFN-Pisa) From correlations to universality ETC*, October 2019 24 / 38



N = 4 : different He-He potentials
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N = 4 : different He-He potentials
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Moving on the Gaussian trajectory

Effective low-energy soft potential
As in the N = 3, all He-He potentials are on the Gaussian curve
In all cases r0 = 11.847 a.u.
Accordingly the potential energy for four bosons can be
represented as ∑

ij

VHe−He(rij) = V0
∑

ij

e−r2
ij /r2

0

Varying V0 the helium tetramer moves on trajectory first going on
κ∗ and then climbing to the a− value
We predict a− = −1.965r0 ≈ −23a.u.
In the literature the value a− = −22.7a.u. is reported
At the unitary limit κ∗ = 1.1847/r0 = 0.1⇒ E∗ = 432 mK
in the literature the value E∗ = 439 mK is quoted
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Gaussian trajectories for nuclear systems: A ≤ 4
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Gaussian trajectories for nuclear systems: A ≤ 6
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Comments on the A ≤ 6 Efimov plot

For A = 3 only one state survive at the physical point
The excited state disappears at r0/a1 ≈ 0.09
The nuclear physics point is r0/a1 ≈ 0.3
Resembling the bosonic case, there is a shallow four-body excited
state
At the physical point E4/E3 ≈ 3.9, very close to the experimental
ratio E(4He)/E(3He) ≈ 3.7
At unitary no five-body and six-body bound state appear.
The 6Li state appears quite close to the unitary limit
The 6He state appears a little bit further
The energy values at unitary can be estimated:
r0/aB = 0.4573⇒ r0 = 1.974fm⇒ κ∗ = 0.4883/r0 ⇒
E3 = 2.54MeV
With similar procedure E3 = 13.5MeV
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Increasing N
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Propagation of universal behavior with N

Saturation properties of helium drops
We define a soft potential model to describe E3

It consists in a two- plus a three-body term V = V (i , j) + W (i , j , k)

V (i , j) = V0e−r2
ij /r2

0

W (i , j , k) = W0e−ρ
2
ijk/ρ

2
0

W0 is determined from E3

ρ0 is taken as a parameter
E/N is calculated for increasing values of N as a function the ρ0

the saturation properties are determined from a liquid drop
formula:
EN/N = Ev + Esx + Ecx2 with x = N−1/3

In general drops with N around 100 is sufficient to determine Ev
and Es
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drops with N ≤ 112
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drops with N = 4
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Propagation of universal behavior with N

Saturation properties of helium drops
Using the appropriate value of ρ0

we obtain (in K):
EN/N = 6.79− 18.0x + 9.98x2

To be compared to the results of the HFDHE2 potential:
EN/N = 7.02− 18.8x + 11.2x2

The experimental result is 7.14 K
for the surface tension t = Es/4πr2

0 (∞)
the experimental value is 0.29 KA2

with the gaussian soft potential the result is 0.27 KA2

Since the potential model is determined only from the two, three
and four body sector, we can conjeture that the saturation energy
can be extracted from E2,E3 and E4

What happens in nuclear physics?
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Propagation of universal behavior with N

Saturation properties of nuclear matter
We define a soft potential model to describe E2,E3,E4

It consists in a two- plus a three-body term V = V (i , j) + W (i , j , k)

V (i , j) = V0e−r2
ij /r2

0P0 + V1e−r2
ij /r2

1P1 + Vβ(OPEP)

VS, rS are determined by the anp
S , rnp

S in spin channel S

W (i , j , k) = W0e−ρ
2
ij/r2

3e−ρ
2
ik/r2

3

W0 is determined from E3

r3 is taken as a parameter looking at E4

Vβ(OPEP)→ 0 as β →∞

Vβ(OPEP) = τ1 · τ2 [σ1 · σ2Yβ(r) + S12Tβ(r)]

E/N and the saturation density ρ0 are calculated by the BHF
method
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Saturation properties of Nucleat Matter
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Conclusions
Weakly bound systems can be made collapse on gaussian
trajectories
At each value of N a gaussian representation of the potential
energy can be constructed
The range of the gaussian is used to assign values to the notable
points of the trajectory, κ∗ and a−.
Concepts of EFT has been used to study propagation of the
universal behaviour as N increases.
A soft potential with an attractive two-body term and a repulsive
three-body term has benn constructed
The range of the three-body interaction has been taken as a
parameter
Essentially the soft potential has been determined by low-energy
parameters as E2, E3 and E4

Many properties can be predicted using gaussian trajectories
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