

Description of few-nucleon systems by solving Faddeev-Yakubovsky equations

Contents

- Faddeev-Yakubovsky equations
- Some applications
 - 4N systems
 - N-⁴He elastic scattering
 - pv in low-energy n-⁴ He scattering
 - Resonances in ⁵H

Introduction

Non-relatívístic Collisions

- In configuration space wave functions extend to infinity!
- Increasingly complex asymptotic behaviour for A>2 systems!!

How to take care of the boundary condition?

- Conceptual difficulties to uncouple different particle channel, to constrain assymptotes of the solutions in all directions and thus get unique (physical) solution to the Schrödinger eq.
 - It is ok, as long as there is single particle channel (elastic plus target/projectile excitations)
 - Mathematically Ill-conditioned problem when several particle channels are open
- ✓ Faddeev-Yakubovsky equations efficiently separates asymptotes of the binary channels
- L. D. Faddeev, Zh. Eksp. Teor. Fiz. **39**, 1459 (1960). [Sov. Phys. JETP **12**, 1014(1961)]. O. A. Yakubovsky, Sov. J. Nucl. Phys. **5**, 937 (1967).

Properties of the rigorous scattering eq.

• Should separate all possible scattering channels to incorporate proper asymptotes! Number of binary channels increases $\sim 2^N$

• Should be systematically reducible to smaller subsystems, in order to built proper asymptotic solutions and to be consistent to its subsystems: chain of partitions (tree-like structures to break system in clusters & subclusters)

$$\Psi_{(N-i)(i)} = \left(\Psi_{N-i} \bigcup \Psi_i\right)$$

• FY equations are derived following this pattern, reconnecting different partition chains

very fast growth of components with N!!

Faddeev-Yakubovsky eq

Meríts:

- ✓ Handling of symmetries
- ✓ Boundary conditions for binary channels
- ✓ Easy reduction to subsystems
- ✓ 3BF implemented at reasonable price
- Built for short-ranged interactions.
 Treatment of Coulomb true adventure,
 still reasonable for repulsive case.

Price

✓ Overcomplexity with N

	Problem	Number eq. (identical particles)	Number eq. (different particles)
	A=2	1	1
	A=3	1	3
	A=4	2	18
	A=5	5	180
-	A=6	15	2700
	A=N	$\operatorname{nint}(\frac{2(N-1)!}{(\pi/2)^N})$	$\frac{N!(N-1)!}{2^{N-1}}$

5-body Faddeev-Yakubovski eq

$$\mathcal{K}_{12,3}^4\left(\overrightarrow{x},\overrightarrow{y},\overrightarrow{z},\overrightarrow{w},S,L,T\right) = \sum_{\alpha_K = (l_{\dots},s_{\dots},t_{\dots})} \frac{f_{\alpha_K}(x,y,z,w)}{xyzw} \left[\left\{ (l_x l_y)_{l_{xy}} \left(l_z l_w \right)_{l_{zw}} \right\}_L \{\dots\}_S \right]_{JM} \{\dots\}_T$$

NUMERICAL SOLUTION

*R.L., PhD Thesis, Université Joseph Fourier, Grenoble (2003).

- PW decomposition of the components K, H, T, S, F
- Radíal parts expanded using Lagrange-mesh method
- D. Baye, Physics Reports 565 (2015) 1
- Resulting linear algebra problem solved using iterative methods
- Observables extracted using integral relations

Numerical costs

- PW decomposition of the components K, H, T, S, F
- Radíal parts expanded using Lagrange-mesh method
- D. Baye, Physics Reports 565 (2015) 1
- Resulting linear algebra problem solved using iterative methods
- Observables extracted using integral relations

Short overview of nuclear problems by FY eq's

4N systems

4N systems

4N problem: n-³H elastic scattering

4N problem: n-³H elastic scattering

4N problem: p-³He elastic scattering

4N problem: p-³He elastic scattering

5N system

NCSMC: P. Navratíl et al., Physica Scrípta **91** (2016) 053002

NCSMC: P. Navratíl et al., Physica Scrípta **91** (2016) 053002

Case of little interest: S-wave

nothing should be as easy to measure...

Experimental n-4He scattering length ...

E (eV)

TUNL: D.R. Tílley et al., Nucl. Phys. A708 (2002) 3 NIST: <u>https://www.ncnr.níst.gov</u>

Experimental data:

D.C.Rorer et al., Nucl. Phys. **A 133** (1969) 410 S.F.Mughabghab, Atlas of Neutron Resonances (2006) R.Genín et al., Journal de Physique **24** (1963) 21

NIST (Neutron News 3, 1992)

	Coh a (fm)	Inc b (fm)
¹ H	-3.7406(11) -3.79406(11)	25.274(9)
² H	6.671(4)	4.04(3)
³ Н	4.792(27)	-1.04(17)
³ He	5.74(7)-1.483(2) <i>i</i>	-2.5(6)+2.568(3) <i>i</i>
⁴ He	3.26(3)	

Case of little interest: S-wave

TUNL: D.R. Tílley et al., Nucl. Phys. A708 (2002) 3 NIST: https://www.ncnr.níst.gov

S. Alí PSA: S. Alí et al., Rev. Mod. Phys. **57** (1985) 923 Bang-Gígnoux pot: J. Bang, C. Gígnoux, Nucl. Phys. A 313 (1979) NCSMC: P. Navratíl et al., Physica Scrípta **91** (2016) 053002 GFMC: K.M. Nollett, PRL**99**, 022502 (2007)

PV violation for \vec{n} -4He

Slow \vec{n} spin rotation studyt at NIST $\frac{d\phi}{dz} = 2.1 \pm 8.3(stat.)^{+2.9}_{-0.2}(sys) \times 10^{-7} rad/m$ E. Swanson et al. PRC 100 (2019) 015204

✓ Weak process $V^{weak} \ll V^{strong}$ 1st order perturbation:

 $R_{f \leftarrow i}^{weak} \propto \left\langle \Psi_{f}^{strong} \left| V^{weak} \left| \Psi_{i}^{strong} \right. \right\rangle$

The last expression one may calculate within FY framework, without passing directly to total system's wave function
 R. Lazauskas, Y.H. Song, PRC 99 (2019) 054002

Input: V^{strong} V^{weak} I-N3LO+3BF DDH meson exchange pot. $(\pi, \rho, \omega, \rho')$. B. Desplanques et al, Ann. Phys. **124** (1980) 449.

<u>ultracold \vec{n} -⁴He spin rotation angle in 10^{-7} rad/m:</u>

 $\frac{d\phi}{dz} = -0.144(1)h_{\pi}^{1} + 0.058(8)h_{\omega}^{0} - 0.402(1)h_{\rho}^{0} + 0.0298h_{\omega}^{1} + 0.0296h_{\rho}^{1} + 0.0061h_{\rho}^{1},$ $\frac{d\phi}{dz} = \begin{cases} 3.7 & \text{DDH-best} \\ 3.0 & \text{DZ} \\ FCDH \\ 12. & \text{FCDH} \\ 12. & \text{large } N_{c} \end{cases}$ S. Gardner et al., Ann. Rev. Nucl. Part. Sci. 67 (2017) 69

⁵H resonances: experiment

Reference	Reaction	Detected	E_R (MeV)	Γ (MeV)	E _{beam} (A MeV)
[17]	${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	р	≈ 1.8	≈ 1.5	7.42
[18]	${}^{6}\text{He}(p,2p){}^{5}\text{H}$	2 <i>p</i>	1.7 ± 0.3	1.9 ± 0.4	36
[19]	${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	1.8 ± 0.1	< 0.5	19.2
[21]	${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	pprox 2	-	19.2
[22]	${}^{3}\mathrm{H}(t,p){}^{5}\mathrm{H}$	t, p, n	pprox 2	≈ 1.3	19.2
[24]	${}^{6}\text{He}({}^{12}\text{C}, X + 2n){}^{5}\text{H}$	t,2n	≈ 3	≈ 6	240
[25]	${}^{6}\text{He}(d, {}^{3}\text{He}){}^{5}\text{H}$	³ He, t	1.8 ± 0.1	< 0.6	22
[26]	6 He(d , 3 He) 5 H	³ He, t	1.8 ± 0.2	1.3 ± 0.5	22
[27]	$^{6}\text{He}(d, ^{3}\text{He})^{5}\text{H}$	3 He,t	1.7 ± 0.3	≈ 2.5	22
[28]	${}^{9}\mathrm{Be}(\pi^{-},pt)^{5}\mathrm{H}$	p,t	5.2 ± 0.3	5.5 ± 0.5	$E_{\pi} < 30 \text{ MeV}$
[28]	$^{9}\mathrm{Be}(\pi^{-},dd)^{5}\mathrm{H}$	p,t	6.1 ± 0.4	4.5 ± 1.2	$E_{\pi} < 30 \text{ MeV}$

TABLE I. Summary of experimental results for ⁵H. Resonance energies are given relative to ${}^{3}H + 2n$.

[24] M. Maistan I \mathbf{V} Chullov, H. Simon, T. Aumann, M. J. G.

[17] P. G. Young, Richard H. Stokes, and Gera Rev. 173, 949 (1968).

- [18] A. A. Korsheninnikov, M. S. Golovkov, Rodin, A. S. Fomichev, S. I. Sidorchuk, S. Chelnokov, V. A. Gorshkov, D. D. Bogdan Ter-Akopian et al., Phys. Rev. Lett. 87, 09.
- [19] M. S. Golovkov, Yu. Ts. Oganessian, D. Fomichev, A. M. Rodin, S. I. Sidorchuk, Stepantsov, G. M. Ter-Akopian, R. Wolski 566, 70 (2003).
- [21] M. S. Golovkov, L. V. Grigorenko, A. Krupko, Yu. Ts. Oganessian, A. M. Rod R. S. Slepnev, S. V. Stepantsov, G. M. Ter-Rev. Lett. 93, 262501 (2004).

r, D. V. Aleshkin, B. A. Chernyshev, Morokhov, V. A. Pechkurov, N. O. isky, and M. V. Telkushev, Eur. Phys.

R. Lazauskas

Emling, H. Geissel, M. Hellstrom, B. Lett. 91, 162504 (2003).

Bogdanov, A. S. Fomichev, M. S. essian, A. M. Rodin, R. S. Slepnev, Ter-Akopian, R. Wolski et al., Nucl.).

Golovkov, A. S. Fomichev, A. M. S. Slepnev, G. M. Ter-Akopian, M. L. tov, Yu. Ts. Oganessian et al., Nucl.

S. Fomichev, M. S. Golovkov, L. V. o, Yu. Ts. Oganessian, A. M. Rodin, nev, S. V. Stepantsov et al., Eur. Phys.

⁵H resonances?

Reference	Method		E_R (MeV)	Γ (MeV)
[7]	Cluster, model with source		2–3	4–6
[23]	Three-body cluster		2.5-3	3–4
[31,35]	Cluster, J-matrix, resonating group mo	del	1.39	1.60
[36]	Cluster, complex scaling adiabatic expan	nsion	1.57	1.53
[32]	Cluster, generator coordinate method	1	≈3	\approx 1–4
[33]	Cluster, complex scaling		1.59	2.48
[34]	Cluster, analytic coupling in continuum co	onstant	1.9 ± 0.2	0.6 ± 0.2
Phys. J. A 19, 1	87 (2004).	[35] J. Broeckhov V. Nesterov,	e, F. Arickx, P. Hellinckx, V. S. Va J. Phys. G 34, 1955 (2007).	asilevsky, and A.
 [7] L. V. Origorenk Phys. J. A 19, 1 [31] A. V. Nesterov, 	F. Arickx, J. Broeckhove, and V. S. Vasilevsky,	 [35] J. Broeckhov V. Nesterov, [36] R. de Diego, Phys. A 786, 	e, F. Arickx, P. Hellinckx, V. S. Va J. Phys. G 34, 1955 (2007). E. Garrido, D. V. Fedorov, and A. 71 (2007).	asilevsky, and A. S. Jensen, <mark>Nucl</mark> .
 [7] L. V. Origorenk Phys. J. A 19, 1 [31] A. V. Nesterov, Phys. Part. Nucl [32] P. Descouvemon (2001) 	 K. Timoreyuk, and M. V. Zhukov, Eur. 87 (2004). F. Arickx, J. Broeckhove, and V. S. Vasilevsky, 41, 716 (2010). nt and A. Kharbach, Phys. Rev. C 63, 027001 	[35] J. Broeckhov V. Nesterov,[36] R. de Diego, Phys. A 786,	e, F. Arickx, P. Hellinckx, V. S. Va J. Phys. G 34 , 1955 (2007). E. Garrido, D. V. Fedorov, and A. 71 (2007).	asilevsky, and A. S. Jensen, Nucl.
 [7] L. V. Origorens Phys. J. A 19, 1 [31] A. V. Nesterov, Phys. Part. Nucl [32] P. Descouvemon (2001). [33] K. Arai, Phys. R 	 K. Timoreyuk, and M. V. Znukov, Eur. 87 (2004). F. Arickx, J. Broeckhove, and V. S. Vasilevsky, 41, 716 (2010). nt and A. Kharbach, Phys. Rev. C 63, 027001 Rev. C 68, 034303 (2003). 	 [35] J. Broeckhov V. Nesterov, [36] R. de Diego, Phys. A 786, 	e, F. Arickx, P. Hellinckx, V. S. Va J. Phys. G 34, 1955 (2007). E. Garrido, D. V. Fedorov, and A. 71 (2007).	asilevsky, and A. S. Jensen, Nucl. edíctívíty?

TABLE II. Summary of some theoretical results for ⁵H. Resonance energies are given relative to ${}^{3}H + 2n$.

³H+n+n models: without n-antisymetrization between the core gvalence

³H+n+n models: including n-antisymmetrization, however by freezing ³H core

R. Lazauskas

ar

⁵H resonances?

How to handle resonances?

R. Lazauskas

- ACCC : Annalytic continuation in the coupling constant method (V.I. Kukulín et
 - al., « Theory of resonances », Kluwer AP 1989)
 - Artificialy bind ⁵H with some additional potential $V = \lambda V_0$ (we use 5-body pot not to affect ³H threshold!!)
 - Study $B_{{}^5H}(\lambda)$ and determine λ_0 such that $B_{{}^5H}(\lambda_0)=B_{{}^3H}$
 - Smartly extrapomate $B_{{}^{5}H}(\lambda) = f(\lambda \lambda_{0})$ to determine $E_{{}^{5}H} = B_{{}^{5}H}(0)$

« Dirty » smooth exterior complex scaling method (DEXCSM)

B. *Simon*. Phys. Letters A, 71 (1979) 211

- Choose sharp transformation function, which almost does not affect r in $r < r_o$
- Fix ro beyond the physical interaction region
- Ignore inconsisitencies in transformation between different Jacobi bases

${}^{5}H(J=1/2^{+})$

- nn interaction described by the MT I-III potential
- auxilliary potential for ACCC

$$V_{5b}(\rho) = \lambda \rho^p exp(-\rho^2/\rho_0^2)$$

$$\rho^{2} = x^{2} + y^{2} + z^{2} + w^{2} = 2\sum_{i=1}^{5} r_{i}^{2}$$

Fig. 3 Resonance trajectories for a $J^{\pi} = 1/2^+$ state of ⁵H with respect to ³H threshold. Each trajectory is split by points in 20 intervals of equal step in λ , starting at the position where ⁵H nucleus is still weakly bound. The endpoint of the trajectory indicates extrapolated value for the bare NN interaction, corresponding $\lambda = 0$ case. In the left panel convergence of the results with respect to order of Padé expansion is presented; calculation is based on auxiliary potential defined in eq. (13) with $\rho_0^2 = 78.4$ fm² and p = 0. In the right panel converged results for three different external potentials are presented.

$$E(^{5}H)-E(^{3}H)=1.4(1)-i1.2(1)$$

 $E(^{5}H)-E(^{3}H)=1.7(2)-i1.2(1)$

${}^{5}H(J=1/2^{+})$

• nn interaction described by the MT I-III potential

ACCC:

J=1/2+ (L=0+, S=1/2) DEXCSM:

 $E(^{5}H)-E(^{3}H)=1.4(1)-i1.2(1)$

 $E(^{5}H)-E(^{3}H)=1.6(2)-i1.2(1)$

DEXCSM:

 $E(^{5}H)-E(^{3}H)=2.50(15)-i1.90(15)$

Negative parity states & ones with S=3/2 are much more broader

To compare with ⁴H resonances:

 $E(^{4}H)-E(^{3}H) = \begin{array}{c} 1.08(1)-i2.04(2) & (S=1, L=1^{-}) \\ 0.88(3)-i2.20(4) & (S=0, L=1^{-}) \end{array}$

R. Lazauskas, Few-Body Syst. 59 (2018) 13.

${}^{5}H(J=1/2^{+})$

INOY Potentíal

N₃LO Potentíal

 $E(^{5}H)-E(^{3}H)=1.65(5)-i1.26(6)$

DEXCSM: 1.8(1)-11.2(1)

DEXCSM: 1.85(10)- (1.20(5)

 $E(^{5}H)-E(^{3}H)=1.8(1)-i1.15(15)$

To compare with 4 H resonances $J=2^{-}$:

 $E(^{4}H)-E(^{3}H)=1.31(^{3})-2.08(^{2})$

 $E(^{4}H)-E(^{3}H)=1.17(3)-1.99(3)$

R. Lazauskas, E. Hiyama, J. Carbonell, Phys. Lett. B 791 (2019) 335

Conclusion

- FY eq. formalism remains reference in few-body scattering calculations. The first solutions of 5-body FY equations are presented.
- Reliable results have been obtained for n-⁴He scattering at low energies using realistic interactions. Satisfactory description is obtained when using Idaho N3LO NN +N2LO NNN interactions.
- The first fully realistic calculation of weak process in 5-nucleon sector is performed.
- Description of the ⁵H resonant states have been performed for the first time using fully realistic description and two different methods to calculate resonance positions. Presence of broad resonant states is confirmed!

<u>Acknowledgements:</u> The numerical calculations have been performed at IDRIS (CNRS, France). We thank the staff members of the IDRIS computer center for their constant help.

Experimental n-4He scattering length ...

nothing should be as easy to measure...

TUNL: D.R. Tílley et al., Nucl. Phys. A708 (2002) 3 NIST: <u>https://www.ncnr.níst.gov</u>

Experimental data:

D.C.Rorer et al., Nucl. Phys**. A 133** (1969) 410 S.F.Mughabghab, Atlas of Neutron Resonances (2006) R.Genín et al., Journal de Physíque **24** (1963) 21

NIST (Neutron News 3, 1992)

	Coh a (fm)	Inc b (fm)
¹ H	-3.7406(11) -3.79406(11)	25.274(9)
² H	6.671(4)	4.04(3)
ЗН	4.792(27)	-1.04(17)
³ He	5.74(7)-1.483(2) <i>i</i>	-2.5(6)+2.568(3) <i>i</i>
⁴He	3.26(3)	

