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QCIF | Introduction

This Talk

This talk is about a powerful technique for describing the dynamics of an open system known
as the influence functional. Here we will discuss:

The applications of influence functionals

How influence functionals are defined and used

The exact stochastic equations that can be derived from them.

Their utility in establishing rigorous classical limits.
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QCIF | Introduction

What are Influence functionals?

Influence functionals are a
path integral technique,
where the environmental part
of an open system is
expressed as single
functional.

They have numerous
applications, both analytical
and numerical.
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Spin Boson Model

Mappings

Qubit in environment

Kondo model

Bio-molecular friction
transfer

Applications

Quantum computing

Josephson junctions

Exotic matter
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QCIF | Introduction

Equations Derived With Influence Functionals

One particularly useful application of influence functionals is their use in deriving exact
equations.
One example is the Stochastic Liouville Equation

Stochastic Liouville Equation

i~∂tρ̃ (t) =
[
ĤQ (t) , ρ̃ (t)

]
− η (t) [q̂ (t) , ρ̃ (t)]− ~

2
ν (t) {q̂ (t) , ρ̃ (t)}

Generalised Langevin Equation

mq̈ (t) = −V ′ (q, t)− 2

∫ t

0
dt′ q̇(t′)γ

(
t− t′

)
+ ηcl (t)

Classical Limit?

The SLE and GLE are clearly closely related to each other.

If we take the classical limit in a heuristic manner, we find that lim~→0 SLE leads to:

mq̈ (t) = −V ′ (q, t) + ηcl (t)
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QCIF | Quantum Influence Functionals

Evolving The Density Matrix

For a global system described
with canonical coordinates q, p
and x, k, the total Hamiltonian
may be characterised as

Htot = HQ +HX + VQX

To find ρ̂Q(t), we evolve ρ̂tot
0

before tracing over the
environment.

The Influence of the Environment

Understanding the effect of an environment on an open system is important, as under
ordinary circumstances a system’s internal dynamics cannot cancel the interaction with its
surroundings...

Brexit Means Brexit
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QCIF | Quantum Influence Functionals

The Goal of Influence Functionals

We would like to
describe the evolution
of the open system
without referring to its
environment.

To do so, we require
an effective propagator
UQ.

This is achieved with
the influence
functional.

Reduced Density matrix

ρQ(q, q′) =

∫
dx̄dx̄′dx dq̄dq̄′ U (q, x, t; q̄, x̄, 0)

×ρtot
0

(
q̄,x̄; q̄′, x̄′

)
U
(
q̄′, x̄′, 0; q′, x, t

)
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QCIF | Quantum Influence Functionals

Path Integrals

Influence functionals are a path integral
technique

Expressed as a path integral, the
propagator of a state is

U(q2, t2; q1, t1) =

∫ q2

q1

Dq(t) e
iS
~
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Influence Functionals

We have an expression for the reduced density matrix, but can we evaluate it?

Feynman & Vernon (1963) developed a powerful formalism for dealing with systems of
this type, using path integrals to describe the system of interest without reference to the
environment.

ρtf
(
q; q′

)
=

1

Z

∫
dq̄dq̄′Dq (t)Dq′ (t)

{
F
[
q (t) , q′ (t)

]
× ρ0

(
q̄; q̄′

)
exp

[
i

~
Sq [q (t)]− i

~
Sq
[
q′ (t)

]]}

System Action

Sq [q (t)] is the action of the isolated system evolving under the Hamiltonian Htot = HQ

Influence Functional

F [q (t) , q′ (t)] is the Influence Functional. It characterises the environment’s effect on the
system.

F
[
q (t) , q′

(
t′
)]

=

∫
DX̄(t)ρX(x0;x′0) exp (iSF/~)

DX̄(t) = dx0dx′0dxDx(t)Dx′(t)

SF = SX [x (t)]− SX
[
x′ (t)

]
+ SQX [q (t) , x (t)]− SQX

[
q′ (t) , x′ (t)

]
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Using the Influence Functional

Influence functionals
can be evaluated
numerically, but in
some circumstances it
is possible to derive
analytic expressions.

In this case they may
be used to derive
effective equations of
motion for the reduced
system.

if F [q (t) , q′ (t′)] can be decomposed into a product of the
form

F
[
q (t) , q′

(
t′
)]

= exp

(
i

~
Φ1 [q (t)]

)
exp

(
i

~
Φ2

[
q′
(
t′
)])

Then the effective propagator UQ into a product of the form

UQ

[
q (t) , q′

(
t′
)]

= ŨQ [q (t)] Ũ †Q
[
q′
(
t′
)]

from which an effective equation of motion may be found.

Gerard McCaul | Tulane University | October 4, 2019 14 / 38



QCIF | Quantum Influence Functionals

1 Introduction

2 Quantum Influence Functionals

3 Classical Influence Functionals

4 Using Influence Functionals

Gerard McCaul | Tulane University | October 4, 2019 15 / 38



QCIF | Classical Influence Functionals

1 Introduction

2 Quantum Influence Functionals

3 Classical Influence Functionals

4 Using Influence Functionals

Gerard McCaul | Tulane University | October 4, 2019 16 / 38



QCIF | Classical Influence Functionals

Influence functionals do not
have to be restricted to
quantum mechanics!

A connection can be made
to the classical limit of
quantum results using the
Classical Influence
Functional

Doing so requires a Hilbert
space formulation of
classical mechanics, in order
to construct a classical path
integral
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What is Koopman von-Neumann mechanics?

Koopman von-Neumann (KvN) mechanics was proposed in 1932 as a Hilbert space
formulation of classical mechanics, providing an operational framework to assess classical
problems.
In both KvN and quantum mechanics, the propagator is a unitary transformation of the
form:

Û(t) = e−iÂt

Classical

[q̂, p̂] = 0

φ̇ = {H,φ}
Â = K̂ = p̂

m λ̂− V̂
′ (x) θ̂

Quantum

[q̂, p̂] = i

φ̇ = −iĤφ
Â = Ĥ

Bopp Operators

λ̂ and θ̂ are Bopp operators, defined by their commutation relations:[
x̂, λ̂

]
=
[
p̂, θ̂
]

= i[
λ̂, θ̂
]

=
[
λ̂, p̂
]

=
[
θ̂, x̂
]

= 0
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Constructing a Classical Path Integral

In order to derive the Classical influence functional, we require a Classical Path Integral.

Given the KvN propagator

Ûcl = e−itK̂

We can find a representation for it in phase space

Ucl(qf , pf , tf ; qi, pi) =
〈
qf , pf

∣∣∣e−itf K̂∣∣∣ qi, pi〉 .
Just like in the quantum case, this propagator can be expressed as a path integral:

Ucl (qf , pf , tf ; qi, pi) =

∫ xf ,pf

xi,pi

DqDpDλDθ︸ ︷︷ ︸
DQ

eiR

Since the classical wavefunction and probability density are evolved by the same equation,
this propagator can be used to evolve both.

The Classical ”Quantum Action”

R =

∫ tf

0
dt

[
λ (t)

(
ẋ (t)− p (t)

m

)
+ θ (t)

(
ṗ (t) + V ′ (x, t)

)]
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Classical path integral for
total system is as expected
(a delta functional).

The path integral describing
a reduced system is much
more interesting.

The process of tracing out
the environment results in a
non-trivial sum of
trajectories.
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Classical Influence Functional

Evolving the composite system with the path integral propagator, and tracing out the
environment gives:

ρQ(qf , pf , tf ) =

∫
dxfdkf

(∫
DQDXdq0dp0dx0dk0 eiRρ0

)
Using the influence functional it is possible to describe an effective propagator for the
reduced system UQ [ρX(t0)].

UQ(qf , pf , tf ) =

∫
Dq(t)DθQ (t)F [q (t) , p (t) , θQ (t)] exp

(
i

∫ tf

0
dt

[
θQ (t)

(
mq̈ +

∂VQ
∂q

)])

The form of this propagator depends on the influence functional, which is in turn a
functional of the initial environment state.

F [q (t) , p (t) , θQ (t)] =

∫
dx0dk0dxfdkfDx(t)DθX (t) ρX(x0, k0, q0, p0)

× exp

(
i

∫ tf

0
dt

[
θX (t)

(
mkẍ+

∂VQX

∂x
+
∂VX
∂x

)
+ θQ (t)

∂VQX

∂q

])
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Under certain circumstances an effective equation of motion may be defined from the influence
functional. This is the case when it is possible to express F as

F [q (t) , p (t) , θQ (t)] = exp

(
i

∫ tf

0
dt θQ (t)χ [q(t), p(t)]

)
(1)

where χ [q(t), p(t)] is an arbitrary functional of the phase space coordinates only. In the case,
the effective equation of motion will be:

mq̈ = −
∂VQ
∂q
− χ [q, q̇] (2)
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The Effective Propagator

In both the classical and
quantum cases, the
effective propagator UQ is
now a functional of the
environment state at the
initial time. The “true”
effective propagator for a
system depends on the
point in time it is being
evolved from.

Uf = UQ [ρX(t0)]

Ub = U †Q [ρX(t1)]
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Effective Propagators
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Applying Influence functionals

Using influence functionals, it is possible to derive both the Stochastic Liouville equation
and Generalised Langevin Equation.

To do so, we must specify an environment and interaction Hamiltonian.

We will use the Caldeira-Leggett (CL) model

Htot = HQ +
1

2

∑
n

(
mnẋ

2
n +mnω

2
nx

2
n

)
− q

∑
n

cnxn +
q2

2

∑
n

c2
n

mnω2
n

.

Furthermore, we will specify that the environment is initially in thermal equilibrium.
In both cases, the influence functional can be expressed as

F = eΦ
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Quantum Influence Functional

Quantum

Φ
[
q(t), q′(t)

]
=

i

2~

∫ tf

0
dt

∫ tf

0
dt′KR

(
t− t′

)
ε (t) ε

(
t′
)

− 1

~

∫ tf

0
dt

∫ tf

0
dt′
[
θ
(
t− t′

)
KI
(
t− t′

)]
ε (t) y

(
t′
)

ε (t) = q (t)− q′ (t) y (t) =
1

2

(
q (t) + q′ (t)

)
KR

(
t− t′

)
=

∫ ∞
0

dω I (ω) coth

(
1

2
~βω

)
cos (ωt)

KI (t) = −
∫ ∞

0
dω I (ω) sin (ωt)
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Classical Influence Functional

Classical

Φ [q (t) , p (t) , θQ (t)] = 2i

∫ tf

0
dt θQ (t)

∫ t

0
dt′ q(t′)

dγ (t− t′)
dt′

−
∫ tf

dt

∫ tf

dt′ θQ (t) kBTγ
(
t− t′

)
θQ
(
t′
)

γ
(
t− t′

)
=

∫ ∞
0

dω

ωπ
I (ω) cos

(
t− t′

)

Gerard McCaul | Tulane University | October 4, 2019 29 / 38



QCIF | Using Influence Functionals

In order to use the influence functional as part of an effective equation of motion, it must
conform to the following functional form:

Classical

F [q (t) , p (t) , θQ (t)] = exp

(
i

∫ tf

0

dt θQ (t)χ [q(t), p(t)]

)
Quantum

F [q (t) , q′ (t′)] = exp

(
i

~
Φ1 [q (t)]

)
exp

(
i

~
Φ2 [q′ (t′)]

)

Problem

There is a problem here. Neither the quantum or classical influence
functional is of a form from which an equation of motion can be

derived. Is there a solution?

Gerard McCaul | Tulane University | October 4, 2019 30 / 38



QCIF | Using Influence Functionals

In order to use the influence functional as part of an effective equation of motion, it must
conform to the following functional form:

Classical

F [q (t) , p (t) , θQ (t)] = exp

(
i

∫ tf

0

dt θQ (t)χ [q(t), p(t)]

)
Quantum

F [q (t) , q′ (t′)] = exp

(
i

~
Φ1 [q (t)]

)
exp

(
i

~
Φ2 [q′ (t′)]

)
Problem

There is a problem here. Neither the quantum or classical influence
functional is of a form from which an equation of motion can be

derived. Is there a solution?

Gerard McCaul | Tulane University | October 4, 2019 30 / 38



QCIF | Using Influence Functionals

The Hubbard-Stratonovich Transformation

Use the Hubbard-Stratonovich Transformation!

The HS transformation can be considered as converting a system of two body potentials
into a set of independent particles in a fluctuating field.

Fourier-Transforming a Gaussian
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Trajectories vs Distribution
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Transformed Influence Functionals

Classical Propagator

Ũcl =

∫ qf ,q̇f

q0,q̇0

Dq(t)δ
[
mq̈ (t) + V ′ (q, t) + 2

∫ t

0
dt′ q̇(t′)γ

(
t− t′

)
− ηcl (t)

]

Quantum Propagator

Û± (tf ) = T̂ exp

(
− i
~

∫ tf

0
L̂Q (t)−

[
η (t)± ~

2
ν (t)

]
q̂ (t) dt

)

Making Some Noise〈
η (t) η

(
t′
)〉

r
= ~

∫ ∞
0

dω

π
I (ω) coth

(
1

2
ω~β

)
cos
(
ω
(
t− t′

))
〈
η(t)ν

(
t′
)〉

r
= −2iΘ

(
t− t′

) ∫ ∞
0

dω

π
I (ω) sin

(
ω
(
t− t′

))
〈
ηcl (t) ηcl

(
t′
)〉

= lim
~→0

〈
η (t) η

(
t′
)〉

= γ(t− t′)
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Transformed Influence Functionals

Classical Propagator

Ũcl =

∫ qf ,q̇f

q0,q̇0

Dq(t)δ
[
mq̈ (t) + V ′ (q, t) + 2

∫ t

0
dt′ q̇(t′)γ

(
t− t′

)
− ηcl (t)

]

Quantum Propagator

Û± (tf ) = T̂ exp

(
− i
~

∫ tf

0
L̂Q (t)−

[
η (t)± ~

2
ν (t)

]
q̂ (t) dt

)

Making Some Noise〈
η (t) η

(
t′
)〉

r
= ~

∫ ∞
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dω

π
I (ω) coth
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1

2
ω~β
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cos
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ω
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Equations of Motions

Stochastic Liouville Equation

i~∂tρ̃ (t) =
[
ĤQ (t) , ρ̃ (t)

]
− η (t) [q̂ (t) , ρ̃ (t)]− ~

2
ν (t) {q̂ (t) , ρ̃ (t)}

Generalised Langevin Equation

mq̈ (t) = −V ′ (q, t)− 2

∫ t

0
dt′ q̇(t′)γ

(
t− t′

)
+ ηcl (t)
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Classical Limit

To show the SLE is equivalent in the classical limit to the GLE, we take the effective
propagator of the reduced quantum system

ρ̃tf (q; q′) =

∫
dq̄dq̄′ Ũeff

(
q, q′, tf ; q̄, q̄′, 0

)
ρ̃0

(
q̄; q̄′

)
Here Ũeff (q, q′, tf ; q̄, q̄′, 0) is Û+ (tf ) Û− (tf ) in path integral form.

It is then possible to show:

lim
~→0

Ũeff

(
q, q′, tf ; q̄, q̄′, 0

)
= Ũcl

Propagator classical limit

lim
~→0

Ũeff =

∫ qf ,q̇f

q0,q̇0

Dq(t) δ
[
mq̈ (t) + V ′ (q, t)− ηcl (t)

]
exp

(
i

∫ tf

0
dt q (t) νcl (t)

)
〈
ηcl (t) νcl

(
t′
)〉

r
= −2iΘ

(
t− t′

) dγ (t− t′)
dt
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Summing up

Influence functionals are a
useful technique in the
analysis of physical systems.

One application is in the
derivation of exact classical
and quantum stochastic
equations.

The formalism also helps to
link classical results as the
limit of their quantum
equivalents.
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