Coherent and chaotic dynamics of open quantum systems

Alexander Volya

Florida State University

Atomic nuclei are open quantum systems

Topics for discussion

- Physics of coupling to continuum
- Effective Non-Hermitian Hamiltonian formalism
- Time dependent approach
- Features of open systems
- Virtual excitations into continuum
- Resonances and direct decay
- Superradiance, alignment of structure
- Decay collectivity and intrinsic collectivities.
- Related questions

Physics of coupling to continuum

The role of continuum-coupling

$$
H^{\prime}(\epsilon)=\int_{0}^{\infty} d \epsilon^{\prime} A^{*}\left(\epsilon^{\prime}\right) \frac{1}{\epsilon-\epsilon^{\prime}+i 0} A\left(\epsilon^{\prime}\right) \quad A\left(\epsilon^{\prime}\right) \equiv\left\langle I_{2}, \epsilon^{\prime}\right| H_{P Q}\left|I_{1}\right\rangle
$$

Physics of coupling to continuum

$$
H^{\prime}(\epsilon)=\int_{0}^{\infty} d \epsilon^{\prime} \frac{\left|A\left(\epsilon^{\prime}\right)\right|^{2}}{\epsilon-\epsilon^{\prime}+i 0}
$$

Integration region involves no poles

$$
H^{\prime}(\epsilon)=\Delta(\epsilon) \quad \Delta(\epsilon)=f d \epsilon^{\prime} \frac{\left|A\left(\epsilon^{\prime}\right)\right|^{2}}{\epsilon-\epsilon^{\prime}+i 0}
$$

State embedded in the continuum

$$
\begin{gathered}
\frac{1}{x \pm i 0}=\text { p.v. } \frac{1}{x} \mp i \pi \delta(x) \\
H^{\prime}(\epsilon)=\Delta(\epsilon)-\frac{i}{2} \Gamma(\epsilon) \quad \Gamma(\epsilon)=2 \pi|A(\epsilon)|^{2}
\end{gathered}
$$

Form of the wave function and probability

$$
|\exp (-i E t)|^{2}=1 \rightarrow|\exp (-i E t-\Gamma t / 2)|^{2}=\exp (-\Gamma t)
$$

Self energy, interaction with continuum

Width as a function of energy

Time-dependent picłure

$$
\begin{gathered}
\mathcal{G}=\frac{1}{E-E_{o}+i / 2 \Gamma(E)} \\
\Gamma(E) \propto \sqrt{E}
\end{gathered}
$$

Power-law remote decay rate!

Time dependence of decay, Winter's model

Winter, Phys. Rev., 123,1503 1961.

Winter's model:
 Dynamics at remote times

Winter's model:
 Dynamics at remote times

M. Peskin, AV, V. Zelevinsky, EPL, 107(4), 40001 (2014).

Internal dynamics in decaying system Winter's model

Effective Hamiltonian Formulation

The Hamiltonian in P is: $\quad \mathcal{H}(E)=H+\Delta(E)-\frac{i}{2} W(E)$
Channel-vector: $\quad\left|A^{c}(E)\right\rangle=H_{Q P}|c ; E\rangle$
Self-energy: $\quad \Delta(E)=\frac{1}{2 \pi} f d E^{\prime} \sum_{c} \frac{\left|A^{c}\left(E^{\prime}\right)\right\rangle\left\langle A^{c}\left(E^{\prime}\right)\right|}{E-E^{\prime}}$
Irreversible decay to the excluded space: $\quad W(E)=\sum_{\text {c(open) })}\left|A^{c}(E)\right\rangle\left\langle A^{c}(E)\right|$
[3] A. Volya, Phys. Rev. C 79, 044308 (2009).

Scattering matrix and reactions

$$
\mathbf{T}_{c c^{\prime}}(E)=\left\langle A^{c}(E)\right|\left(\frac{1}{E-\mathcal{H}(E)}\right)\left|A^{c^{\prime}}(E)\right\rangle
$$

$$
\mathbf{S}_{c c^{\prime}}(E)=\exp \left(i \xi_{c}\right)\left\{\delta_{c c^{\prime}}-i \mathbf{T}_{c c^{\prime}}(E)\right\} \exp \left(i \xi_{c^{\prime}}\right)
$$

Cross section:

$$
\sigma=\frac{\pi}{k^{\prime 2}} \sum_{c c^{\prime}} \frac{(2 J+1)}{\left(2 s^{\prime}+1\right)\left(2 T^{\prime}+1\right)}\left|\mathbf{T}_{c c^{\prime}}\right|^{2}
$$

Additional topics:
-Angular (Blatt-Biedenharn) decomposition
-Coulomb cross sections, Coulomb phase shifts, and interference -Phase shifts from remote resonances.

Interference between resonances

IIL model

Dynamies of two states coupled to a common decay channel

- Model \mathfrak{H}

$$
\mathcal{H}(E)=\left(\begin{array}{cc}
\epsilon_{1}-\frac{i}{2} \gamma_{1} & v-\frac{i}{2} A_{1} A_{2} \\
v-\frac{i}{2} A_{1} A_{2} & \epsilon_{2}-\frac{i}{2} \gamma_{2}
\end{array}\right)
$$

IIL model

Dynamies of two states coupled to a common decay channel

- Model \mathfrak{H}

$$
\mathcal{H}(E)=\left(\begin{array}{cc}
\epsilon_{1}-\frac{i}{2} \gamma_{1} & v-\frac{i}{2} A_{1} A_{2} \\
v-\frac{i}{2} A_{1} A_{2} & \epsilon_{2}-\frac{i}{2} \gamma_{2}
\end{array}\right)
$$

ILI model

Dynamics of two states coupled to a common decay channel

- Model \mathfrak{H}

$$
\mathcal{H}(E)=\left(\begin{array}{cc}
\epsilon_{1}-\frac{i}{2} \gamma_{1} & v-\frac{i}{2} A_{1} A_{2} \\
v-\frac{i}{2} A_{1} A_{2} & \epsilon_{2}-\frac{i}{2} \gamma_{2}
\end{array}\right)
$$

Example of interacting resonances

$$
\mathcal{H}=\mathrm{H}^{\mathrm{D}}+\mathrm{V} \cdot i \mathrm{~W} / 2
$$

Two-level system

$\mathcal{H}=\left(\begin{array}{cc}\epsilon_{1}-(i / 2) \Gamma_{1} & v-(i / 2) A_{1} A_{2} \\ v-(i / 2) A_{1} A_{2} & \epsilon_{2}-(i / 2) \Gamma_{2}\end{array}\right)$

$$
\Gamma_{1}=A_{1}^{2}, \quad \Gamma_{2}=A_{2}^{2},
$$

$$
S(t)=|\langle\Psi(0) \mid \Psi(t)\rangle|^{2}
$$

$\mathcal{H}=H^{0}+V-i W / 2$

Virtual excitations

$$
H^{\prime}(\epsilon)=\Delta(\epsilon)-\frac{i}{2} \Gamma(\epsilon)
$$

$$
\Delta(E)=\frac{1}{2 \pi} f d E^{\prime} \sum_{c} \frac{\left|A^{c}\left(E^{\prime}\right)\right\rangle\left\langle A^{c}\left(E^{\prime}\right)\right|}{E-E^{\prime}}
$$

Evolution of single particle energies

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

Role of virłual excitations

Spectrum of ${ }^{20} \mathrm{O}$
A. Volya, JPS Conf. Proc. 6, 030059 (2015)

Superradiance

$$
\begin{aligned}
& \mathcal{H}(E)=H+\Delta(E)-\frac{i}{2} W(E) \\
& W_{12}(E)=2 \pi \sum_{c(\text { open })} A_{1}^{c}(E) A_{2}^{c *}(E) \quad \text { Factorized operator }
\end{aligned}
$$

Factorized form leads to unitarity of scattering matrix

$$
\mathbf{T}_{c c^{\prime}}(E)=\left\langle A^{c}(E)\right|\left(\frac{1}{E-\mathcal{H}(E)}\right)\left|A^{c^{\prime}}(E)\right\rangle
$$

Single-particle decay in many-body system

Evolution of complex energies E=E-i Г/2 as a function of γ

bound orbitals
-Assume energy independent W -Assume one channel $\gamma=$ A 2
-System 8 s.p. levels, 3 particles
 -One s.p. level in continuum $\mathrm{e}=\varepsilon-\mathrm{i} \gamma / 2$

Total states $8!/(3!5!)=56$; states that decay fast $7!/(2!5!)=21$

Single-particle decay in many-body system

Evolution of occupancies as a function of γ

A. Volya and V. Zelevinsky, J. Opt. B (2003) S450

Superradiance

- Factorized form of non-herminitan component consistent with unitarity
- Low operator rank, number of channels versus number of many-body states
- When imaginary part dominates states separate into
- Supperradiant (strongly coupled to continuum)
- Decoupled from decay
- Internal wave functions are "reoriented" either along or away from decay
- Coupling to decay is a collective phenomenon
- There is a phase transition in many-body dynamics associated with superradiance

Superradiance in ${ }^{13} \mathrm{C}$

Searching for dustering states

Interplay of collectivities

Definitions

n - labels particle-hole state ε_{n} - excitation energy of state n d_{n} - dipole operator
A_{n} - decay amplitude of n
Model Hamiltonian

$$
\mathcal{H}_{n n^{\prime}}=\epsilon_{n} \delta_{n n^{\prime}}+\lambda d_{n} d_{n^{\prime}}-\frac{i}{2} A_{n} A_{n^{\prime}}
$$

Everything depends on angle between multi dimensional vectors A and d

Model Example

Pigmy resonance

Orthogonal: GDR not seen

Parallel:
Most effective excitation of GDR from continuum

At angle: excitation of GDR and pigmy

$\mathrm{B}(\mathrm{E} 1)$ strength in ${ }^{22 \mathrm{O}}$

Super-radiance phenomenon, strong decay makes leads to width distribution

Cumulative strength shows that super-radiance increases lowlying dipole strength

Distribution of decay widths in a chaotic system

Wooden toy model illustrating Bohr's
compound nucleus, from Nature 137, 351 (1936)

Many-body complexity and reduced widths

|c) Channel-vector (normalized)
Reduced width

$$
\gamma_{I}^{c}=|\langle I \mid c\rangle|^{2}
$$

What is the distribution of the reduced width?
Average width $\quad \bar{\gamma}=\frac{1}{\Omega} \sum_{I} \gamma_{I}^{c}=\frac{\langle c \mid c\rangle}{\Omega} \quad$ Amplitude $\quad x_{I}=\sqrt{\gamma_{I} / \bar{\gamma}}$

If any direction in the Ω-dimensional Hilbert space is equivalent

$$
P\left(x_{I_{1}}, \ldots x_{I_{\Omega}}\right) \sim \delta\left(\Omega-\sum_{I} x_{I}^{2}\right)
$$

Why Porter-Thomas Distribution?

Projection of a randomly oriented vector in Ω-dimensional space

$$
\begin{aligned}
P(x) & =\frac{V_{\Omega-1}}{\sqrt{\Omega} V_{\Omega}}\left(1-x^{2} / \Omega\right)^{(\Omega-3) / 2} \\
V_{\Omega} & =\frac{\Omega \pi^{\Omega / 2}}{\Gamma(\Omega / 2+1)}
\end{aligned}
$$

For large Ω this leads to Gaussian

$$
P_{G}(x)=\sqrt{\frac{2}{\pi}} \exp \left(-x^{2} / 2\right)
$$

For large v channels

$$
P_{\nu}(\gamma)=\frac{1}{\gamma}\left(\frac{\nu \gamma}{2 \bar{\gamma}}\right)^{\nu / 2} \frac{1}{\Gamma(\nu / 2)} \exp \left(-\frac{\nu \gamma}{2 \bar{\gamma}}\right)
$$

Nuclear theory nudged? Violation of Porter-Thomas Distribution

Random matrix theory is rejected with 99.997% probability [Koehler, et. al. Phys. Rev. Lett. 105, 072502 (2010)] In platinum $\nu=0.5$

Implications:

Capture rates, astrophysical reactions, nuclear reactors, critical mass, shielding...

Superradiance: decay collectivity

$\Omega=10000$
SR leads to a small number of broad states.

Virtual excitations as possible explanation

$$
\mathcal{H}_{\mathrm{eff}}=H_{\mathrm{GOE}}+\Delta_{\mathrm{n}}+\frac{i}{2} W_{\mathrm{n}}+\frac{i}{2} W_{\gamma}
$$

Open Question: Dipole-moment and violation of
 P and T-symmetries

$$
\mathbf{d}=\frac{\langle\mathbf{d} \cdot \mathbf{J}\rangle}{J(. J+1)} \mathbf{J}
$$

Observation of the dipole moment is an indication of parity and timereversal violation

Limit on EDM in electron
Experiment $10-27$ e cm
Standard model " $10^{-38} \mathrm{e} \mathrm{cm}$
Physics beyond SM » $10^{-28} \mathrm{e} \mathrm{cm}$

Why is this interesting?

- Sensitive test of CP violation in the standard model
- Baryon asymmetry in the universe.
- Physics beyond standard model.

system	EDM limit	SM
e (electron)	10^{-27}	10^{-40}
n (neutron)	3.0×10^{-26}	10^{-32}
225 Ra	1.4×10^{-23}	10^{-33}
199 Hg	7.4×10^{-30}	10^{-33}

T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Electric dipole moments of atoms, molecules, nuclei, and particles, Rev. Mod. Phys. 91, 015001 (2019).

Dipole moment in decaying system

Symmetric Winter's model

Winter's model, with slightly broken parity by coupling to continuum strength

Publications:

A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005).
A. Volya, Phys. Rev. C 79, 044308 (2009).
A. Volya, V. Zelevinsky arXiv:1905.11918 [quant-ph]
A. Volya and V. Zelevinsky AIP Conf. Proc. 777 (2005) 229

K Kravvaris and A. Volya, AIP Conf. Proc. 863 (2017) 012016
J. P. Mitchell,et al., Phys. Rev. C 82, 011601 (2010); 87, 054617 (2013).
A. Volya, H. Weidenmüller and V. Zelevinsky, Phys.Rev.Lett. 115 (2015) 052501.
M. L. Avila, et al. Phys. Rev. C 90, 024327 (2014).
D. Abrahamsen, A. Volya, and I. Wiedenhoever, APS Volume 57, Number 16, section KA 26 (2012).
M. Peskin, AV, V. Zelevinsky, EPL, 107(4), 40001 (2014).
A. Volya, JPS Conf. Proc. 6, 030059 (2015)
A. Volya and V. Zelevinsky, J. Opt. B (2003) S450
A. Volya and V. Zelevinsky Phys. At. Nucl., 2014, Vol. 77, No. 8, pp. 969

Resources: https://www.volya.net/
Funding: U.S. DOE contract DE-SC0009883.

