

Coherent and chaotic dynamics of open quantum systems

Alexander Volya Florida State University

Supported by U.S. Department of Energy DE-SC0009883

Topics for discussion

- Physics of coupling to continuum
 - Effective Non-Hermitian Hamiltonian formalism
 - Time dependent approach
- Features of open systems
 - Virtual excitations into continuum
 - Resonances and direct decay
 - Superradiance, alignment of structure
- Decay collectivity and intrinsic collectivities.
- Related questions

Physics of coupling to continuum

The role of continuum-coupling

$$H'(\epsilon) = \int_0^\infty d\epsilon' A^*(\epsilon') rac{1}{\epsilon - \epsilon' + i0} A(\epsilon') \qquad A(\epsilon') \equiv \langle I_2, \epsilon' | H_{PQ} | I_1
angle$$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, North-Holland Publishing, Amsterdam 1969

Physics of coupling to continuum

$$H'(\epsilon) = \int_0^\infty d\epsilon' rac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

Integration region involves no poles

$$H'(\epsilon) = \Delta(\epsilon) \qquad \Delta(\epsilon) = \int d\epsilon' \frac{|A(\epsilon')|^2}{\epsilon - \epsilon' + i0}$$

width

$$\frac{1}{x\pm i0} = \text{p.v.} \frac{1}{x} \mp i\pi\delta(x)$$

$$H'(\epsilon) = \Delta(\epsilon) - rac{i}{2}\Gamma(\epsilon) \quad \Gamma(\epsilon) = 2\pi |A(\epsilon)|^2$$

Form of the wave function and probability

 $|\exp(-iEt)|^2 = 1 \rightarrow |\exp(-iEt - \Gamma t/2)|^2 = \exp(-\Gamma t)$

Self energy, interaction with continuum

Time-dependent picture

$$\mathcal{G} = \frac{1}{E - E_o + i/2\,\Gamma(E)}$$

$$\Gamma(E) \propto \sqrt{E}$$

Power-law remote decay rate!

Time dependence of decay, Winter's model

Winter, Phys. Rev., 123,1503 1961.

M. Peskin, AV, V. Zelevinsky, EPL, 107(4), 40001 (2014).

10

Internal dynamics in decaying system Winter's model

Effective Hamiltonian Formulation

The Hamiltonian in P is:

$$\mathcal{H}(E) = H + \Delta(E) - \frac{i}{2}W(E)$$

Channel-vector:

$$|A^{c}(E)\rangle = H_{QP}|c;E\rangle$$

Self-energy: $\Delta(E) = \frac{1}{2\pi} \int dE' \sum_{c} \frac{|A^{c}(E')\rangle \langle A^{c}(E')|}{E - E'}$

Irreversible decay to the excluded space:

 $W(E) = \sum_{c(\text{open})} |A^c(E)\rangle \langle A^c(E)|$

[1] C. Mahaux and H. Weidenmüller, *Shell-model approach to nuclear reactions*, Amsterdam 1969
[2] A. Volya and V. Zelevinsky, Phys. Rev. Lett. **94**, 052501 (2005).
[3] A. Volya, Phys. Rev. C **79**, 044308 (2009).

Scattering matrix and reactions

$$\mathbf{T}_{cc'}(E) = \langle A^{c}(E) | \left(\frac{1}{E - \mathcal{H}(E)}\right) | A^{c'}(E) \rangle$$

$$\mathbf{S}_{cc'}(E) = \exp(i\xi_c) \left\{ \delta_{cc'} - i \,\mathbf{T}_{cc'}(E) \right\} \exp(i\xi_{c'})$$

Cross section:
$$\sigma = \frac{\pi}{k'^2} \sum_{cc'} \frac{(2J+1)}{(2s'+1)(2I'+1)} |\mathbf{T}_{cc'}|^2$$

Additional topics:

Angular (Blatt-Biedenharn) decomposition
Coulomb cross sections, Coulomb phase shifts, and interference
Phase shifts from remote resonances.

Interference between resonances

¹¹LI model

Dynamics of two states coupled to a common decay channel

• Model
$$\mathcal{H}$$

$$\mathcal{H}(E) = \begin{pmatrix} \epsilon_1 - \frac{i}{2}\gamma_1 & v - \frac{i}{2}A_1A_2 \\ v - \frac{i}{2}A_1A_2 & \epsilon_2 - \frac{i}{2}\gamma_2 \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p_{12} \\ p_{12} \end{pmatrix} \begin{pmatrix} s_{12} \\ p_{12} \\ p$$

¹¹LI model

Dynamics of two states coupled to a common decay channel

¹¹LI model

Dynamics of two states coupled to a common decay channel

Example of interacting resonances

Two-level system

Virtual excitations

$$H'(\epsilon) = \underbrace{\Delta(\epsilon)}_{-} - \frac{i}{2} \Gamma(\epsilon)$$

$$\Delta(E) = \frac{1}{2\pi} \int dE' \sum_{c} \frac{|A^{c}(E')\rangle \langle A^{c}(E')|}{E - E'}$$

Evolution of single particle energies

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

Effect of weak binding

C. R. Hoffman, B. P. Kay, and J. P. Schiffer Phys. Rev. C 89, 061305(R) B. P. Kay, C. R. Hoffman, and A. O. Macchiavelli Phys. Rev. Lett. 119, 182502

Role of virtual excitations

Spectrum of ²⁰O

A. Volya, JPS Conf. Proc. 6, 030059 (2015)

Superradiance

$$\mathcal{H}(E) = H + \Delta(E) \left(\frac{i}{2}W(E)\right)$$

$$W_{12}(E) = 2\pi \sum_{c(\text{open})} A_1^c(E) A_2^{c*}(E)$$

Factorized operator

Factorized form leads to unitarity of scattering matrix

$$\mathbf{T}_{cc'}(E) = \langle A^c(E) | \left(\frac{1}{E - \mathcal{H}(E)}\right) | A^{c'}(E) \rangle$$

Single-particle decay in many-body system

Evolution of complex energies E=E-i $\Gamma/2$ as a function of γ

Total states 8!/(3! 5!)=56; states that decay fast 7!/(2! 5!)=21

Single-particle decay in many-body system

Evolution of occupancies as a function of γ

A. Volya and V. Zelevinsky, J. Opt. B (2003) S450

Superradiance

- Factorized form of non-herminitan component consistent with unitarity
- Low operator rank, number of channels versus number of many-body states
- When imaginary part dominates states separate into
 - Supperradiant (strongly coupled to continuum)
 - Decoupled from decay
- Internal wave functions are "reoriented" either along or away from decay
- Coupling to decay is a collective phenomenon
- There is a phase transition in many-body dynamics associated with superradiance

Superradiance in ¹³C

Searching for clustering states

Interplay of collectivities

Definitions n - labels particle-hole state ε_n – excitation energy of state n d_n - dipole operator A_n – decay amplitude of n Model Hamiltonian

$$\mathcal{H}_{nn'} = \epsilon_n \delta_{nn'} + \lambda d_n d_{n'} - \frac{i}{2} A_n A_{n'}$$

angle between multi dimensional vectors
A and d

Pigmy resonance

Orthogonal: GDR not seen

Parallel: Most effective excitation of GDR from continuum At angle: excitation of GDR and pigmy

A model of 20 equally distant levels is used

B(E1) strength in ²²O

Super-radiance phenomenon, strong decay makes leads to width distribution

Cumulative strength shows that super-radiance increases lowlying dipole strength

Distribution of decay widths in a chaotic system

Wooden toy model illustrating Bohr's compound nucleus, from Nature **137**, 351 (1936)

35

Many-body complexity and reduced widths

 $|c\rangle$ Channel-vector (normalized)

Reduced width $\gamma_{I}^{c}=\left|\left< I | c \right> \right|^{2}$

|I
angle Eigenstate

What is the distribution of the reduced width?

 $\overline{\gamma}$

Average width

$$= \frac{1}{\Omega} \sum_{I} \gamma_{I}^{c} = \frac{\langle c | c \rangle}{\Omega}$$

Amplitude

$$x_I = \sqrt{\gamma_I / \overline{\gamma}}$$

If any direction in the Ω -dimensional Hilbert space is equivalent

$$P(x_{I_1}, \dots x_{I_\Omega}) \sim \delta\left(\Omega - \sum_I x_I^2\right)$$

Why Porter-Thomas Distribution?

Projection of a randomly oriented vector in $\Omega\text{-}dimensional space}$

$$P(x) = \frac{V_{\Omega-1}}{\sqrt{\Omega}V_{\Omega}} \left(1 - x^2/\Omega\right)^{(\Omega-3)/2}$$
$$V_{\Omega} = \frac{\Omega \pi^{\Omega/2}}{\Gamma(\Omega/2 + 1)}$$

For large $\boldsymbol{\Omega}$ this leads to Gaussian

$$P_G(x) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{x^2}{2}\right)$$

$$P_{\nu}(\gamma) = \frac{1}{\gamma} \left(\frac{\nu\gamma}{2\overline{\gamma}}\right)^{\nu/2} \frac{1}{\Gamma(\nu/2)} \exp\left(-\frac{\nu\gamma}{2\overline{\gamma}}\right)$$

Nuclear theory nudged? Violation of Porter-Thomas Distribution

Random matrix theory is rejected with 99.997% probability [Koehler, et. al. Phys. Rev. Lett. 105, 072502 (2010)] In platinum $\nu = 0.5$

Implications:

Capture rates, astrophysical reactions, nuclear reactors, critical mass, shielding...

Superradiance: decay collectivity

Ω=10000

SR leads to a small number of broad states.

Virtual excitations as possible explanation

$$\mathcal{H}_{\rm eff} = H_{\rm GOE} + \Delta_{\rm n} + \frac{\imath}{2}W_{\rm n} + \frac{\imath}{2}W_{\gamma}$$

Open Question: Dipole-moment and violation of P and T-symmetries

$$\mathbf{d} = \frac{\langle \mathbf{d} \cdot \mathbf{J} \rangle}{J(J+1)} \mathbf{J}$$

Observation of the dipole moment is an indication of parity and timereversal violation

Limit on EDM in electron

Experiment 10⁻²⁷ e cm Standard model » 10⁻³⁸ e cm Physics beyond SM » 10⁻²⁸ e cm

Why is this interesting?

- Sensitive test of CP violation in the standard model
- Baryon asymmetry in the universe.
- Physics beyond standard model.

system	EDM limit	SM
e (electron)	10-27	10-40
n (neutron)	3.0x10 ⁻²⁶	10 ⁻³²
²²⁵ Ra	1.4x10 ⁻²³	10 ⁻³³
¹⁹⁹ Hg	7.4x10 ⁻³⁰	10 ⁻³³

T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, *Electric dipole moments of atoms, molecules, nuclei, and particles*, Rev. Mod. Phys. **91**, 015001 (2019).

Dipole moment in decaying system

Symmetric Winter's model

Winter's model, with slightly broken parity by coupling to continuum strength

Publications:

- A. Volya and V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005).
- A. Volya, Phys. Rev. C 79, 044308 (2009).
- A. Volya, V. Zelevinsky arXiv:1905.11918 [quant-ph]
- A. Volya and V. Zelevinsky AIP Conf. Proc.777 (2005) 229
- K Kravvaris and A. Volya, AIP Conf. Proc. 863 (2017) 012016
- J. P. Mitchell, et al., Phys. Rev. C 82, 011601 (2010); 87, 054617 (2013).
- A. Volya, H. Weidenmüller and V. Zelevinsky, Phys.Rev.Lett. 115 (2015) 052501.
- M. L. Avila, et al. Phys. Rev. C 90, 024327 (2014).
- D. Abrahamsen, A. Volya, and I. Wiedenhoever, APS Volume 57, Number 16, section KA 26 (2012).
- M. Peskin, AV, V. Zelevinsky, EPL, 107(4), 40001 (2014).
- A. Volya, JPS Conf. Proc. 6, 030059 (2015)
- A. Volya and V. Zelevinsky, J. Opt. B (2003) S450
- A. Volya and V. Zelevinsky Phys. At. Nucl., 2014, Vol. 77, No. 8, pp. 969

Resources: https://www.volya.net/

Funding: U.S. DOE contract DE-SC0009883.

