

Changing decay mode with excitation energy for two-proton decay

Kyle W. Brown ECT*, Sept 30, 2019

Particle physics has come a long way since the 1700s. Smbc-comics.com

Outline

Overview

- Classifying types of 2p emitters
- How can we distinguish them experimentally
- Experimental details
 - Invariant-Mass method
 - Getting beyond the drip lines
- Examples for interplay between the modes
 - ¹⁶Ne
 - ¹²O
 - ¹⁹Mg

U.S. Department of Energy Office of Science National Science Foundation Michigan State University ⁶Be: I.A. Egorova *et al.* PRL **109**, 202502 (2012) ⁴⁸Ni: M. Pomorski *et al.* PRC **83**, 061303 (R) (2011) ²⁶O: Y. Kondo *et al.* PRL **116**, 102503 (2016)

Distinct types of 2p emitters

- Three classes of twoproton decay
 - A. Sequential (b)
 - B. Direct or "true" (a,c)
 - C. Democratic (d,e)
- Classification is governed by energetics and nuclear structure
- Decay class revealed by the 3-body momentum correlations

(a)

Pfützner *et al*. Rev. Mod. Phys. **84**, 567 (2012)

Distinguishing between direct and sequential

- 3-body decay-> 9 DoF 3(COM motion) -3(Euler rotation of decay plane) - 1 (fixed decay energy) = 2 DoF to describe system
- Jacobi T system -> E_{pp} vs θ_k: describes proton-proton relative motion
- Jacobi Y system -> E_{Core-p} vs θ_k: describes core-proton relative motion → easiest way to tell direct vs sequential

Distinguishing between direct and sequential

Distinguishing between direct and sequential

Measuring 2p Correlations

⁶Be

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

⁶Be: I. A. Egorova, *et al.* PRL **109**, 202502 (2012) ¹⁶Ne: KWB, *et al.* PRL **113**, 232501 (2014) ⁴⁵Fe: K. Miernik, *et al.* PRL **99**, 192501 (2007)

K Brown, Slide 8

Experimental Technique: Invariant Mass

Invariant Mass in Action

K Brown, Slide 10

Pros and Cons

- 1. Insensitive to incoming beam spot size and trajectory great for secondary beams produced in-flight by fragmentation (NSCL/FRIB, GSI, RIKEN, etc)
- Begins to break down for long-lived states (τ ~ 1ns), need the decay to occur in or close to the target
- 3. Resolution is dominated by the differential energy loss in the target, heavy recoil loses more energy than the protons
- 4. Can trade statistics for resolution by selecting transverse decays
- 5. Charged-particle detectors should be paired with a gamma

detector to avoid ambiguity in the exit channel

Overview for light systems: $Z \le 10$

Moving Heavier

Moving Heavier

Comparing ground-states

Adding in excitation energy: ¹⁶Ne

Interplay between prompt and sequential

Sequential decay with memory!

Wider range of excitation energy: ¹²O

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thesis work of Tyler Webb

Evolving correlations

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thesis work of Tyler Webb

Focusing on the 2⁺₂ state

- R-matrix simulations of sequential decay, filtered by the detector response.
- An incoherent sum of the simulations through the 1/2⁻ and 3/2⁻ do a decent job at reproducing the shape
- All simulations fail to reproduce the enhancement in the diproton region

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thesis work of Tyler Webb

New Results in the sd-shell: ¹⁹Mg

Rough consistency, but new level energies!

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thesis work of Jin Yu

¹⁹Mg Correlations

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thesis work of Jin Yu

Conclusions

- 2 proton (or neutron) decays provide a unique window into the internal structure of the nucleus
- With the invariant-mass method and HiRA or the S4+S800, we can make high resolution and high statistics measurements of 2p decays across a wide range of excitation energy
 →With FRIB we can start pushing to heavier nuclei, ie ³⁴Ca
- We have observed very similar decays from the ground states of ⁶Be, ¹²O,¹⁶Ne, and ¹⁹Mg, with small differences coming from the differing shells
- As one moves higher in excitation energy, the decay mode shifts to sequential as those exit channels open, but it is not a sharp transition.
- The excited states of ¹²O, ¹⁶Ne, and ¹⁹Mg all show similar behavior

