Toward an in-medium effective field theory for the nuclear shell model

Kévin Fossez October 3, 2019

ECT* - Trento

Work supported by:

DOE: DE-SC0013617 (Office of Nuclear Physics, FRIB Theory Alliance)

ANL & FRIB, MSU - Kévin Fossez

Atomic nuclei exhibit many emergent phenomena:

ANL & FRIB, MSU - Kévin Fossez A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations,

D. J. Marín-Lámbarri et al., Phys. Rev. Lett. 113, 012502 (2014).

Near the drip-lines: continuum-related emergent phenomena

Low-energy virtual states, many-body resonances...

ANL & FRIB. MSU - Kévin Fossez

J. Erler et al., Nature 486, 509 (2012), K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007). Figures stolen from A. Gade and M. Płoszaiczak.

18721

-15957

7654 7366

2+ 4439

Exotic emergent phenomena:

 \rightarrow provide a unique way to probe properties of nuclear matter,

 \rightarrow motivation for the exploration of the drip lines.

In the language of **effective field theory** (EFT):

- An effective separation of scale lies behind each emergent phenomenon.
- There are "natural" degrees of freedom that efficiently describe properties of the system.

In the language of **renormalization group** (RG):

• There are low- and high-resolution descriptions of the system related by RG transformations preserving observables.

Reformulation of fundamental questions in a more precise way:

- Origin of emergent phenomena (conditions)
- \rightarrow Identifying and quantifying effective scale separations.
- Understand emergent phenomena "microscopically"
- \rightarrow How to connect low- and high-resolution descriptions of the system

One of the goals of nuclear theory:

 \rightarrow Describe consistently all nuclear properties from nucleons as degrees of freedom.

Two main strategies:

- *Ab initio* approaches. Promise to describe all many-nucleon phenomena as exactly as possible with nuclear forces as the only input.
- **Density functional theory.** Could be exact if the "true" energy density functional is found.
- \rightarrow Great tools to study nuclear forces, minimal input, no ambiguity about the proper degrees of freedom.
- \rightarrow Do not provide the insight that identifying emergent scales explicitly gives, only checks a posteriori that the information about emergent phenomena has been properly encoded into nuclear forces.

Known issue: nuclei are strongly correlated Fermi systems made of a few up to over 250 nucleons, and small changes in nuclear forces can and do produce large changes on binding energies, especially for medium-mass and heavy nuclei.

To make my point clear:

What precision can we get on nuclear properties given input forces and their uncertainties? What is the importance of emergent phenomena in the answer?

The nucleon-nucleon (NN) precision wall:

ANL & FRIB, MSU - Kévin Fossez

S. Binder et al., PRC **93**, 044002 (2016), PRC **98**, 014002 (2018); M. Piarulli et al., PRL **120**, 052503 (2018), E. Epelbaum et al., PRC **99**, 024313 (2019); R. Navarro Pérez et al., PRC **97**, 054304 (2018)

Origin of the NN precision wall:

LOCD Degrees of Freedom 0 0 0 0 Physics of Hadrons constituent ouerke ab initio CI Physics of Nuclei DFT nucleonic densit collective and currents

Origin of the NN precision wall: a way out?

LOCD Degrees of Freedom 0 0 0 0 Physics of Hadrons constituent ouerke ab initio CI Physics of Nuclei DF1 collective and currents collective coordinal

Connecting the two pictures using EFTs

Making the nuclear shell model more fundamental is not a new idea:

- \rightarrow Essentially three strategies were employed in the past.
- 1) Nuclear shell model approach as an effective theory. Never extended beyond ³He.
- W. C. Haxton et al., Phys. Rev. Lett. 84, 5484 (2000)
- 2) Shell-model interactions from NN forces. The trade-off between precision and predictive power is not used, mostly an extension of *ab initio* theory.
- S. Bogner et al., Phys. Rev. C 65, 051301(R) (2002),
- J. D. Holt et al., Nucl. Phys. A 733, 153 (2004),
- L. Coraggio et al., Phys. Rev. C 2007, 024311 (2007),
- S. K Bogner et al., Phys. Rev. Lett. 113, 142501 (2014),
- G. R. Jansen et al., Phys. Rev. Lett. 113, 142502 (2014),
- S. R. Stroberg et al., Phys. Rev. Lett. 118, 032502 (2017)

3) Core and valence degrees of freedom, and EFT for the core-valence and valence-valence interactions.

- Halo systems (3-body):
- J. Rotureau et al., Few-Body Syst. 54, 725 (2013),
- C. Ji and et al., Phys. Rev. C 90, 044004 (2014)
- Nuclear shell model (*):
- L. Huth et al., Phys. Rev. C 98, 044301 (2018)

Toward an in-medium EFT for the nuclear shell model

 \rightarrow When does it make sense to assume an effective core?

Scale separation measure in 3-body halo EFT:

 $\alpha_{\text{halo-EFT}} = \frac{S_{A-A_c}}{\min[E_x(A_c), S_{n, p}(A_c)]} \approx \frac{\overline{E}_{\text{remove all valence nucleons}}}{\overline{E}_{\text{remove/excite a nucleon from the core}} << 1$

• Too restrictive to account for the shell model past achievements.

Tentative shell model scale separation measure:

 $\alpha_1 = \frac{S_A}{S_1(A_c)} \approx \frac{\overline{E}_{\text{remove a valence nucleon}}}{\overline{E}_{\text{remove a nucleon from the core}}} < 1$

• $S_A = S_{A-A_c}/(A-A_c)$ and $S_1(A_c) = [S_n(A_c) + S_p(A_c)]/2$.

• The effective core is not really "inert", small excitations are allowed.

Traditional prescription:

• Large
$$S_{n/p}(A_c)$$
.

• Spherical and coupled to 0^+ .

Inert core.

→ Closed-shell nuclei.

ANL & FRIB, MSU - Kévin Fossez

C. A. Bertulani et al., Nucl. Phys. A **712**, 37 (2002), R. Higa, Few-Body Syst. **50**, 251 (2011),
 E. Ryberg et al., Phys. Rev. C **89**, 014325 (2014), C. Ji et al., Phys. Rev. C **90**, 044004 (2014),
 J. Rotureau et al., Few-Body Syst. **54**, 725 (2013)

The effective core scale separation

 \rightarrow Some "surprises".

- Light and proton-rich nuclei have good scale separations.
- The scale separation improves along isotopic chains.
- Very good for "exotic" cores.
- → Suggests a special regime (link with halo EFT)

ANL & FRIB, MSU - Kévin Fossez

Data from the ENSDF database.

In-medium valence-space shell model interaction from EFT

 \rightarrow What can we say about the valence-space interaction?

$$\alpha_1 = \frac{S_A}{S_1(A_c)} \quad \rightarrow \quad \frac{p_A}{p_1} = \frac{\overline{p}_{\text{remove a valence nucleon}}}{\overline{p}_{\text{remove a nucleon from the core}}} \approx \frac{60 - 120 \text{MeV}}{115 - 193 \text{MeV}}$$

- **Remark 1:** $p_1 \sim m_\pi \approx 135 \text{ MeV} \rightarrow \text{pionless EFT}!$
- **Remark 2:** $p_1 \sim m_{\pi} \gg p_c$ where p_c is the minimal momentum required to resolve details of the core. One has $p_c \approx h/(2r_c) \sim 23 50$ MeV, with $r_c = 1.25A_c^{\frac{1}{3}}$ and $A_c = 4 40$.

Consequence:

- → Regime of halo structures reached for 0 .
- → Regime of low-lying collective excitations reached for $p_c ($ *i.e.* $<math>r_c > r >> 1.4$ fm).
- → Regime of shell-model structures (only) reached for $p_A .$

Convention: The low end of the momentum range given by p_c defines the halo EFT limit.

ANL & FRIB, MSU - Kévin Fossez S. Weinberg, Nucl. Phys. B 363, 3 (1991), C. Ordóñez et al., Phys. Rev. Lett. 72, 1982 (1994), C. Ordóñez et al., Phys. Rev. C 53, 2086 (1996), E. Epelbaum et al., Rev. Mod. Phys. 81, 1773 (2009)

Some reasons to be optimistic

 \rightarrow Pionless EFT including core-valence terms and a long-range contribution in the *sd* space.

- Precision on binding energy of about 500 keV at NLO_{vs} .
- Long-range contribution probably useless (see previous arguments).
- Small model space and monople correction used.
- Pionless EFT used as an in-medium interaction implicitely.

In-medium valence-space shell model interaction from EFT

 \rightarrow How to make the interaction explicitely in-medium?

For $p < p_1 \sim m_{\pi}$ the effective valence-space interaction \approx pionless EFT, but it is not explicitely an in-medium interaction.

Landau's Fermi liquid theory:

- Effective theory at the surface of an infinite Fermi system (around p_F).
- Assumes that individual momenta of fermions satisfy $p_i = p_F + \delta p_i$ with $\delta p_i \ll p_F$.
- \rightarrow Problems: $p_F \sim 250$ MeV and interaction formulated using relative momenta $p = p_i p_j$.

Solution: Expand relative momenta around a finite momentum p_0 .

• We have
$$\boldsymbol{p} \rightarrow \boldsymbol{p} - \boldsymbol{p}_0$$
 (idem \boldsymbol{p}') and so $\boldsymbol{q} = \boldsymbol{p}' - \boldsymbol{p} \rightarrow \boldsymbol{q}$ and $\boldsymbol{k} = (\boldsymbol{p}' + \boldsymbol{p})/2 \rightarrow \boldsymbol{k} - \boldsymbol{p}_0$.
• Example: \boldsymbol{k}^2 :

$$(k - p_0)^2 = k^2 - 2kp_0 + p_0^2 \sim Q^2 \left(1 + \frac{p_0}{Q} + \left(\frac{p_0}{Q}\right)^2\right)$$

Introduce a new power counting where $p_0 \sim c_{\dim} \sqrt{p_1} \sim p_c!$

ANL & FRIB, MSU - Kévin Fossez

L. D. Landau, Sov. Phys. JETP **3**, 920 (1957), L. D. Landau, Sov. Phys. JETP **5**, 101 (1957), L. D. Landau, Sov. Phys. JETP **8**, 70 (1959), R. Shankar, Rev. Mod. Phys. **66**, 129 (1994)

Pionless EFT around a finite momentum

 \rightarrow Average contributions around \boldsymbol{p}_0 .

$\hat{V}^{(\mu=0)} = \hat{V}^{(\nu=0)} = C_{S} + C_{T} \sigma_{1} \cdot \sigma_{2}$		LO	NLO	N2LO	N3LO
		$\nu = 0$	$\nu = 2$	$\nu = 4$	$\nu = 6$
$\hat{V}^{(\mu=1)} = (C_2 + C_4 \sigma_1 \sigma_2) \sigma_2^2 + C_7 (\sigma_1 \sigma_2) (\sigma_2 \sigma_2)$	$\mu = 0$	×			
$= (c_2 + c_4 c_1 \cdot c_2) p_0 + c_1 (c_1 \cdot p_0) (c_2 \cdot p_0)$	μ = 1/2				
C	μ = 1		×		
$\hat{V}^{(\mu=3/2)} = -2(C_2 + C_4\sigma_1,\sigma_2)\mathbf{k}\cdot\mathbf{p}_2 - i\frac{C_5}{2}(\sigma_1 + \sigma_2)(\sigma_1 \times \sigma_2)$	$\mu = 3/2$		×		
$2^{(01+02)((q+p_0))}$	μ = 2		×	×	
$-C_{7}[(\boldsymbol{\sigma}_{1},\boldsymbol{p}_{0})(\boldsymbol{\sigma}_{2},\boldsymbol{k})+(\boldsymbol{\sigma}_{1},\boldsymbol{k})(\boldsymbol{\sigma}_{2},\boldsymbol{p}_{0})]$	μ = 5/2			×	
$c_{1}[(c_{1},p_{0})(c_{2},n)+(c_{1},n)(c_{2},p_{0})]$	μ = 3			×	×
$\hat{v}(\mu=2)$ c^{2} c^{2} c^{2} c^{2} c^{2}	$\mu = 7/2$			×	×
$V^{(\mu^{-2})} = C_1 q^{\mu} + C_2 k^{-} + (C_3 q^{\mu} + C_4 k^{-}) \sigma_1 \cdot \sigma_2$	μ = 4			×	×
C_{5}	μ = 9/2				×
$+i\frac{\sigma}{2}(\sigma_1+\sigma_2).(\boldsymbol{q}\times\boldsymbol{k})$	μ = 5				×
$\sum_{i=1}^{n} (i - i) (i - i) (i - i) (i - i)$	$\mu = 11/2$				×
+ $C_6(\sigma_1.\boldsymbol{q})(\sigma_2.\boldsymbol{q})$ + $C_7(\sigma_1.\boldsymbol{k})(\sigma_2.\boldsymbol{k})$	μ = 6				×
+ $D_2 p_0^4$ + $D_{14} p_0^2 (\sigma_1. \rho_0) (\sigma_2. \rho_0)$					

ANL & FRIB, MSU - Kévin Fossez

In-medium valence-space shell model interaction from EFT

Take home message:

Thank you for your attention!

Michigan State University:

- J. Rotureau.
- H. Hergert.
- S. Bogner.

Coordinate space representation

• Simplest choice: $\boldsymbol{p}_0 = p_0 \boldsymbol{u}_r$ along the relative postion of two nucleons.

$$\hat{V}^{(\mu=0)}(r) = (C_{S} + C_{T}\sigma_{1}.\sigma_{2})\delta^{(3)}(r)$$

$$\hat{V}^{(\mu=1)}(r) = (C_{2} + C_{4}\sigma_{1}.\sigma_{2})p_{0}^{2}\delta^{(3)}(r) + C_{7}p_{0}^{2}(\sigma_{1}.u_{r})(\sigma_{2}.u_{r})\delta^{(3)}(r)$$

$$\hat{V}^{(\mu=3/2)}(r) = -i(C_{2} + C_{4}\sigma_{1}.\sigma_{2})p_{0}\nabla_{r}\delta^{(3)}(r)$$

$$\hat{V}^{(\mu=2)}(r) = \hat{V}^{(\nu=2)}(r) + D_{2}p_{0}^{4}\delta^{(3)}(r) + D_{14}p_{0}^{4}(\sigma_{1}.u_{r})(\sigma_{2}.u_{r})\delta^{(3)}(r)$$

• In the interaction channel
$$c = (T = 1, S = 0, L = 0)$$
:
 $\hat{V}^{(\mu=0,c)}(r) = (C_S - 3C_T)\delta^{(3)}(r)$
 $\hat{V}^{(\mu=1,c)}(r) = (C_2 - 3C_4 - \frac{1}{3}C_7)p_0^2\delta^{(3)}(r)$
 $\hat{V}^{(\mu=3/2,c)}(r) = (C_2 - 3C_4)p_0\nabla_r\delta^{(3)}(r)$
 $\hat{V}^{(\mu=2,c)}(r) = \hat{V}^{(\nu=2,c)}(r) + (D_2 - D_{14})p_0^4\delta^{(3)}(r)$

Two extra terms below NLO ($\nu = 2$). We largely recovered the phenomenological interaction at $\mu = 3/2$.

ANL & FRIB, MSU - Kévin Fossez

Very preliminary (incomplete) results

• LO ($\mu = 0$), c = (T = 1, S = 0, L = 0), ⁶He, E in MeV and Γ in keV, LECs not renormalized.

r_c (fm)	$C_S - 3C_T$	$E(0^{+})$	$E(2^{+})$	$\Gamma(2^+)$
0.6	-600	-0.987	1.329	708
0.8	-795	-0.977	1.250	549
1.0	-1010	-0.984	1.172	422
1.2	-1250	-0.967	1.098	327
1.4	-1525	-0.965	1.029	253
1.6	-1835	-0.969	0.969	198
1.8	-2180	-0.975	0.912	159
		-0.972	0.824	113

But for $r_c = 1.2$ fm:					
	$E_{ m th}$	E_{exp}	Γ_{th}	Γ_{exp}	
⁷ He	$E(3/2^{-}) = -0.186$	-0.527	$\Gamma(3/2^{-}) = 144$	150	
⁷ He	$E(1/2^{-}) = 0.785$	~ 0.84	$\Gamma(3/2^{-}) = 2777$	~ 2150	
⁸ He	$E(0^+) = -2.592$	-3.10	$\Gamma(0^{+}) < 0$		
⁸ He	$E(2^+) = 0.723$	0.0	$\Gamma(2^{+}) = 1002$	600	

• N2LO ($\mu = 3/2$): $r_c = 1.2$ fm, $C_S - 3C_T = -1137$, $C_2 - 3C_4 = 742$, $C_7 = 365$, $p_0 = 0.9886$. ⁸He only at 2p2h.

	E_{th}	$E_{e \times p}$	Γ_{th}	Γ_{exp}
⁶ He	$E(0^+) = -1.05$	-0.972		
⁷ He	$E(3/2^{-}) = -0.427$	-0.527	$\Gamma(3/2^{-}) = 188$	150
⁸ He	$E(0^+) = -3.03$	-3.10	$\Gamma(0^{+}) < 0$	
⁸ He	$E(2^+) = 0.210$	0.0	$\Gamma(2^{+}) = 584$	600

The interaction is still being implemented and tested in the sp space (continuum). Only ⁶He g.s. optimized.

A new shell-model scale at the drip lines?

 α_1

0.08

0.19

0.14

0.18

0.15

0.16

0.14

0.12

Isotope

250

²⁶O

 α_1

-0.05

-0.02

By design $\alpha_1 \propto E/A$ for large A.

ANL & FRIB. MSU - Kévin Fossez

Data from the ENSDF database.