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Equations of state

Several equations of state (EoSs) have been proposed to account for the
current uncertainties in the composition of neutron stars (NSs) and in
the interactions between their constituants.
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Gravitational waves from neutron stars

Neutron stars are excellent emitters of gravitational waves.

Core-collapse supernovaeNeutron-star mergers

Pulsar glitches Permanent asymmetries
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Tidal deformabilities

During the last orbits preceding the merger, the two neutron stars are
strongly deformed by tidal effects.
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Analysis of the GW170817 signal by
the LIGO/Virgo collaboration:

(i) M1, M2, Λ1 & Λ2 are treated
independently,

(ii) Λ1, Λ2 & M2/M1 are related by
a universal relation,

(iii) a large set of parametrised EoSs
is used, assuming a common EoS for
the two NSs.
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Tidal deformabilities

Tidal effects are encoded by the coefficient Λ̃ = Λ̃(M1,M2,Λ1,Λ2). Each
individual tidal deformability Λi depends on Mi and the EoS.

0 250 500 750 1000
0

500

1000

1500

2000

Λ
2

1250
Λ1

LVC, PRL 121, 161101 (2018)

Analysis of the GW170817 signal by
the LIGO/Virgo collaboration:

(i) M1, M2, Λ1 & Λ2 are treated
independently,

(ii) Λ1, Λ2 & M2/M1 are related by
a universal relation,

(iii) a large set of parametrised EoSs
is used, assuming a common EoS for
the two NSs.

8 ECT* meeting Trento - October 16, 2019



Neutron stars & gravitational waves GW170817 & tidal effects NS Oscillations Conclusions

Unified EoSs

The BSk EoSs provide a unified and thermodynamically consistent
treatment of all regions of the NS and are calculated using functionals
that are precision fitted to experimental and theoretical nuclear data.
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• BSk22, BSk24 & BSk25 mainly
differ in their predictions for the
symmetry energy [J = 32, 30 & 29
MeV] but are fitted to the same
NeuM EoS [LS2].

• BSk26 is fitted to the same
symmetry-energy coefficient at
saturation as BSk24 but to a softer
NeuM EoS [APR].
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Constraints on the tidal deformabilities

0 250 500 750 1000
0

500

1000

1500

2000

Λ
2

BSk22
BSk24
BSk25

1250
Λ1

Perot et al., PRC 100 (2019)

F BSk22, with a symmetry
energy coefficient J = 32 MeV
and a slope L = 68.5 MeV,
appears to be disfavored.

F Predictions from the older
BSk19 EoS, fitted to a very soft
NeuM EoS, are consistent with
the GW170817 constraints, even
though this EoS does not support
2M� NSs!

The GW data alone tend to favor a rather soft EoS
at densities relevant for medium-mass NSs.
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Constraints on the structure of nonrotating NSs
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♠ No prompt collapse to a
black hole [EM]  R,

♠ Formation of a short-lived
hyper- or supramassive NS
[EM]  Mmax,

but lack of consensus about
the interpretation of the EM
data...

♠ Constraints on tidal
deformabilities [GW]  R.
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Why modelling neutron-star oscillations?

Several oscillation modes are likely to be
excited during violent events such as
core-collapse supernovae or neutron-star
mergers.

 asteroseismology

This project aims at computing accurate
gravitational-wave spectra associated with the
pulsations of an isolated rotating neutron star,
for a whole set of realistic EoSs.
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Different strategies

I Mode-frequencies are usually computed using
perturbation theory .

Andersson & Kokkotas,
MNRAS 299 (1998)

Contrary to previous studies, we plan to use spectral methods to solve
both the hydrodynamic & metric equations in order to reduce computing
times considerably.
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I An alternative approach is to solve the time-
evolution of the non-linear equations governing
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Numerical procedure

So far, the code is based on Newtonian gravity in spherical symmetry and
makes use of polytropic EoSs (γ = 2).

• Continuity eq.:

∂ρ

∂t = − 1
r2

∂

∂r
(
r2vρ

)
• Euler eq.:
∂v
∂t = −v ∂v

∂r −
1
ρ

∂p
∂r −

∂Φ
∂r

• Poisson eq.:
∆Φ = 4πGρ

• EoS:
p = κργ
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F pseudo-spectral methods with Chebyshev
polynomials (Lorene),

F time-integration with a 3rd-order Adams-
Bashforth method,

F moving grid adapted to the stellar surface.
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Exciting oscillation modes

1. Start from an equilibrium
configuration,

2. Induce a perturbation in the
fluid properties so as to excite
some particular oscillation
modes,

3. Follow the time evolution of a
fluid variable (the central density
or the radius, here).
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♠ Stellar configuration: ρ0c = 1.9891×1018 kg m−3, κ = 4.25×10−3 m5 kg−1 s−2

♠ Initial perturbation: v(r , 0) = v0 sin(πr/R0) with v0 = 300 km s−1

♠ Numerical parameters: nr = 25, δt = 5× 10−5 × th (where th ∼ 0.08 ms)
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Eigenmodes

Eigenmodes can be identified by Fourier transforming the time profile of
some variables, e.g., R(t), ρc(t),

´
ρ(r , t)dr , ...
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♠ Stellar configuration:
ρ0c = 1.9891× 1018 kg m−3

κ = 4.5× 10−3 m5 kg−1 s−2

♠ Initial perturbation:
v(r , 0) = v0 × r/R0

v0 = 3 km s−1

♠ Numerical parameters:
nr = 25, δt = 10−3 × th

& tmax = 104 × th

Our values for the F , H1 and H2 eigenfrequencies agree with those
obtained by Hennig, J. of Comp. Phys. 235 (2013) within a few 10−3 %.
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Non-linear harmonics

Non-linear effects occur when the initial perturbation gets stronger.
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Eigenfunction recycling

Eigenfunction recycling technique can be used to excite only one desired
specific eigenmode [see Dimmelmeier et al., MNRAS 368 (2006)].
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1 Neutron stars and gravitational waves

2 The first direct detection of gravitational waves from a binary
neutron-star merger & tidal deformabilities
in collaboration with N. Chamel and L. Perot (ULB)

3 Modelling neutron-star oscillations with spectral methods
in collaboration with J. Novak, M. Oertel and E. Declerck (LUTH)

4 Conclusions
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Neutron stars & gravitational waves GW170817 & tidal effects NS Oscillations Conclusions

Conclusions

• Neutron stars are unique laboratories for exploring novel phases of
matter under extreme conditions.

• Studying the GW emission of neutron stars can shed light on the
interior of these stars.

• Some interesting constraints on the EoS have been already inferred
from GW170817 (and its EM counterparts).

• The Advanced LIGO and Virgo detectors are currently in their third
observation run:

https://gracedb.ligo.org/superevents/public/O3/

Thank you!
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Gravitational-wave spectrum
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Gravitational-wave spectrum
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Nuclear-matter properties

Expanding the energy per nucleon of infinite nuclear matter of density
n = n0(1 + ε) and charge asymmetry η = (nn − np)/n about the
equilibrium density n = n0 (= saturation density) and η = 0:

e(n, η) = av +
(
J + 1

3Lε
)
η2 + 1

18 (Kv + η2Ksym)ε2 + · · ·

• Pure Neutron Matter:

eNeuM(n) ≡ e(n, 1) ' av + J + 1
3Lε+ 1

18 (Kv + Ksym)ε2 + · · ·

• Symmetric Nuclear Matter:

eSNM(n) ≡ e(n, 0) = av + 1
18Kv ε

2 + · · ·

• Symmetry energy:

S(n) = eNeuM(n)− eSNM(n) ' J + 1
3Lε+ 1

18Ksymε
2 + · · ·
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Nuclear-matter properties for the BSk EoSs

BSk19 BSk20 BSk21 BSk22 BSk23 BSk24 BSk25 BSk26
J [MeV] 30.0 30.0 30.0 32.0 31.0 30.0 29.0 30.0
L [MeV] 31.9 37.4 46.6 68.5 57.8 46.4 36.9 37.5

Kv [MeV] 237.3 241.4 245.8 245.9 245.7 245.5 236.0 240.8
Ksym [MeV] -191.4 -136.5 -37.2 13.0 -11.3 -37.6 -28.5 -135.6

NeuM FP APR LS2 LS2 LS2 LS2 LS2 APR

• J = symmetry-energy coefficient
(at saturation),

• L = slope of the symmetry energy,

• Kv = incompressibility coefficient,

• Ksym = symmetry incompressibility
coefficient.

F FP = Friedman & Pandharipande,
Nucl. Phys. A 361 (1981),

F APR = ‘A18 + δv + UIX?’ EoS of
Akmal et al., PRC 58 (1998),

F LS2 = ‘V18’ EoS of Li & Schulze,
PRC 78 (2008).

More details can be found in Potekhin et al., A&A 560 (2013) and
Pearson et al., MNRAS 481 (2018).
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Pure Neutron Matter
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Symmetry energy
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Tidal deformations

During the last orbits preceding the merger, the two neutron stars are
strongly deformed by tidal effects.
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Computing tidal deformabilities (1/2)

• TOV equations:

dP(r)
dr = −G E(r)m(r)

c2r2

[
1 + P(r)
E(r)

][
1 + 4πP(r)r3

c2m(r)

][
1− 2Gm(r)

c2r

]−1
,

m(r) = 4π
c2

ˆ r

0
E(r ′)r ′ 2 dr ′ ,

• Additional equation for Λ:

H ′′(r) + H ′(r)f (r) + H(r)g(r) = 0 ,

• Boundary conditions:

m (0) = 0 , E (0) = Ec , H(0) = 0 and H ′(0) = 0 .
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Computing tidal deformabilities (2/2)

• Love number:

k2 = 8C5

5 (1− 2C)2
[
2 + 2C(y − 1)− y

] {
2C
[
6− 3y + 3C(5y − 8)

]
+ 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)

]
+ 3(1− 2C)2

[
2− y + 2C(y − 1)

]
ln(1− 2C)

}−1
,

where y ≡ R H ′(R)/H(R) and C is the compactness parameter of the
star.

• The Love number and the tidal deformability are related through:

Λ = 2
3 k2

(
c2R
GM

)5

.
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Love numbers
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Tidal deformability of a 1.4M� NS

10 11 12 13 14
R [km]

0

200

400

600

800

1000

1200

Λ

Fattoyev et al. (2018)
Annala et al. (2018)
De et al. (2018)
Malik et al. (2018)
Tews et al. (2019)
Zhou et al. (2019)

BSk26

BSk25
BSk24/BSk21

BSk22

BSk19

BSk20

33 ECT* meeting Trento - October 16, 2019



Constraints on Mmax

F Different analyses of the short gamma-ray burst and of the kilonova
emission, combined with the total binary mass Mtot = 2.74+0.04

−0.01 M� inferred
from the GW signal, have led to constraints on the maximum mass of a
nonrotating NS.

F Assuming the formation of a short-lived NS, Margalit & Metzger (2017)
obtained Mmax . 2.17 M�, Rezzolla et al. (2018) Mmax . 2.16+0.17

−0.15 M�, and
Ruiz et al. (2018) 2.16± 0.23 M� . Mmax . 2.28± 0.23 M�.

F Shibata et al. (2017, 2019) obtained compatible estimates, namely
2.1 M� . Mmax . 2.3 M�, under the assumption of a longer-lived NS (with a
lifetime up to tens of seconds).

F Alternatively, other authors have interpreted the late-time electromagnetic
emission in terms of a very long-lived NS remnant (with a lifetime of about 20
days) and concluded that Mmax & 2.6 M� (see, e.g., Yu et al. (2018)).

Any firm conclusion on the EoS can hardly be drawn in view of the lack of
consensus on the interpretation of the EM counterparts of GW170817.
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Constraints on R

F The amount of material ejected during the collision, i.e. ∼ 0.02− 0.05 M�,
inferred from observations of the EM counterpart of GW170817 points against
a prompt collapse to a black hole. The total mass Mtot = M1 + M2 should thus
be lower than some threshold value Mthres.

F Combining Mtot = 2.74+0.04
−0.01 M� with

an empirical relation for Mthres, Bauswein
et al. (2017) obtained the lower limit:
R1.6 ≥ 10.30+0.15

−0.03 km.

Assuming further that the remnant lived for
more than 10 ms, they obtained the more
stringent constraint R1.6 ≥ 10.68+0.15

−0.04 km.

F Using a different empirical relation for Mthres but similar arguments, Köppel
et al. (2019) derived a tighter bound on NS radii:
R ≥ −0.88M2 + 2.66M + 8.91 km for 1.2 M� < M < 2 M�.
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Tests of convergence
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Eigenfunctions
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Eigenfunctions
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Eigenfunctions
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Cowling approximation

Cowling approximation: Φ(r , t) = Φ(r , 0), ∀t.
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Cowling approximation

Cowling approximation: Φ(r , t) = Φ(r , 0), ∀t.
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