

Neutron star cooling with microscopic equations of state

Jinbiao Wei

INFN CATANIA

Collaboration with F. Burgio and H.-J. Schulze.

J.-B Wei, G. F. Burgio, and H.-J.Schulze, MNRAS 484, (2019)

Trento, October 16th, 2019

Outline

Neutron star cooling

Standard cooling of a Neutron star

Neutron star cooling

Cooling equations

$\frac{d(Le^{2\Phi})}{dt} = \frac{1}{\sqrt{1}}$	$\frac{4\pi r^2 e^{\Phi}}{-2Gm/c^2 r} \left(c_V \frac{dT}{dt} + e^{\Phi} Q_V \right)$	Energy balance
$d(Te^{\Phi})$	$1 \qquad Le^{\Phi}$	
dr	$-\frac{\lambda}{4\pi r^2\sqrt{1-2Gm/c^2r}}$	Energy transport

cv : specific heat capacity λ : thermal conductivity Qv: neutrino emission rate

Modified Urca cycle (neutron branch)	$ \begin{vmatrix} n+n \to n+p+e^- + \bar{\nu}_e \\ n+p+e^- \to n+n+\nu_e \end{vmatrix} $	$\sim 2\!\!\times\!\!10^{21}RT_9^8$	Slow
Modified Urca cycle (proton branch)	$\left \begin{array}{c} p+n \rightarrow p+p+e^- + \bar{\nu}_e \\ p+p+e^- \rightarrow p+n+\nu_e \end{array}\right $	$\sim 10^{21} \; R T_9^8$	Slow
Bremsstrahlung	$\begin{array}{l} n+n \rightarrow n+n+\nu +\bar{\nu} \\ n+p \rightarrow n+p+\nu +\bar{\nu} \\ p+p \rightarrow p+p+\nu +\bar{\nu} \end{array}$	$\sim 10^{19} \; R T_9^8$	Slow
Direct Urca cycle	$ \begin{array}{c} n \rightarrow p + e^- + \bar{\nu}_e \\ p + e^- \rightarrow n + \nu_e \end{array} $	$\sim 10^{27} \; R T_9^6$	Fast

D. Page, et al, Nuclear Physics A 777 (2006) 497–530

Cooling Processes

EOS

Results

Conclusion

Direct Urca process

EOS: within the Brueckner–Hartree– Fock (BHF) approach.

BOB: Bonn B + microscopic TBF V18: Argonne V18 + microscopic TBF N93: Nijmegen N93 +microscopic TBF UIX : Argonne V18 + phenomenological TBF

The Direct Urca starts early except EOS BOB.

EOS	Xdu	ρου	MDU	M _{max}
BOB	0.1357	0.41	1.56	2.51
V18	0.1348	0.37	1.01	2.34
N93	0.1331	0.3	0.82	2.13
UIX	0.1363	0.45	1.17	2.04

Cooling Processes

EOS

Results

Conclusion

Cooling Curves (done with public code by Dany. Page)

M =1.0, 1.1, ..., Mmax

- No superfluidity:
- 1. If DU is active (xp \gtrsim 13%), it dominates all other processes
- 2. Too fast cooling of most NS

Superfluidity

Superfluidity

1. Damping of DU, MU, BNN reactions and specific heat.

$$c_{\rm v}(T) \longrightarrow c_{\rm v}^{\rm paired}(T) = R_c(T/T_{\rm c}) \times c_{\rm v}^{\rm normal}(T),$$

 $\epsilon_{\nu}(T) \longrightarrow \epsilon_{\nu}^{\text{paired}}(T) = R_{\nu}(T/T_{\text{c}}) \times \epsilon_{\nu}^{\text{normal}}(T) \,,$

2. A new cooling process: Pair Breaking and Formation: $Q_{PBF} \sim 10^{21} \ RT_9^7$

Conclusion

Cooling

Processes

EOS

Results

D. Page, et al, Nuclear Physics A 777 (2006) 497–530

Superfluidity

Cooling Curves

Yes pairing(1S0):

 the BCS p1S0 gap alone is able to suppress sufficiently the DU cooling.

No PBF

1. The effect of PBF is not obvious.

Combined with non and fully accreted cases, all data could be described for all microscopic EoSs. 9

EOS

Mass Distribution

The mass distribution of cooling data extracted from the cooling curves.

- 1. The error bar is disregard
- 2. Shows a small dependence on envolope model.

BOB model is excluded if we assume the mass distribution is similar to overall mass distribution in the Universe.

Mass Distribution

The deduced NS mass distributions (shown as insets) depend sensitively on the gap scaling factor.

11

Conclusion

NS Cooling with microscopic EOS derived from BHF, and consistent 1SO BCS gaps are considered.

> All EOSs feature strong DU cooling for a wide range of masses.

Cooling Processes EOS Results

Conclusion

> The presence of superfluidity is required for realistic cooling scenarios. With the suppression due to the gaps , all current cooling data for isolated NSs can be achieved with any of the proposed EOSs.

> A naive and straightforward analysis of the deduced NS mass distribution would exclude only the stiffest EOS BOB.

Thank you!