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Neutron star cooling
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Energy balance

Energy transport

➢ Cooling equations

cv : specific heat capacity           λ: thermal conductivity     
Qν: neutrino emission rate
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Direct Urca process

EOS xDU ρDU MDU Mmax

BOB 0.1357 0.41 1.56 2.51

V18 0.1348 0.37 1.01 2.34

N93 0.1331 0.3 0.82 2.13

UIX 0.1363 0.45 1.17 2.04

➢ EOS:  within the Brueckner–Hartree–
Fock (BHF) approach.

BOB: Bonn B  + microscopic TBF
V18:  Argonne V18 + microscopic TBF
N93: Nijmegen N93 +microscopic TBF 
UIX : Argonne V18  + phenomenological   

TBF
➢ The Direct Urca starts early except EOS 

BOB.
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Cooling Curves (done with public code by Dany. Page) 

➢ No superfluidity:

1. If DU is active (xp ≳ 13%), it dominates all other processes
2. Too fast cooling of most NS

M =1.0, 1.1, …, Mmax
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Superfluidity

➢ Superfluidity
1. Damping of DU,MU,BNN reactions and specific heat.

2. A new cooling process:  Pair Breaking and Formation:

D. Page, et al, Nuclear Physics A 777 (2006) 497–530

𝑄𝑃𝐵𝐹  ~ 1021  𝑅𝑇9
7 
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Superfluidity

EOS ρDU ρ1S0 M1S0

BOB 0.41 0.59 2.23

V18 0.37 0.6 1.91

N93 0.3 0.52 1.59

UIX 0.45 0.7 1.7

➢ Gaps: 
Derived from BHF method with V18 
N-N potential. 

Zhou et al, Phys. Rev. C, 70, 048802
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➢ Yes pairing(1S0):

1. the BCS p1S0 gap alone 
is able to suppress 
sufficiently the DU 
cooling.

➢ No PBF
1. The effect of PBF is not 

obvious.

Combined with  non and fully accreted cases, all  data could be described 
for all microscopic  EoSs. 

M =1.0, 1.1, …, Mmax Only 1S0 gap is considered.
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Mass Distribution

➢ The mass distribution of cooling
data extracted from the cooling 
curves.

1. The error bar is disregard    
2. Shows a small dependence on  

envolope model.

➢ BOB model is excluded if we assume
the mass distribution is similar to  
overall  mass distribution in the  
Universe.
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❖ Dependence on the gap

The deduced   NS mass distributions (shown as insets) depend 
sensitively on the gap scaling factor.

Scaling 
factor s:
0.2, 0.5, 1, 
2.
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Conclusion

➢ All EOSs feature strong DU cooling for a wide range of masses.

➢ The presence of superfluidity is required for realistic cooling 
scenarios. With the suppression due to the gaps , all current 
cooling data for isolated NSs can be achieved with any of the 
proposed EOSs.

➢ A naive and straightforward analysis of the deduced NS mass 
distribution would exclude only the stiffest EOS BOB.

NS  Cooling  with microscopic EOS derived from 
BHF, and consistent 1S0 BCS gaps are considered.  
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Thank you!




