NEUTRINO-NUCLEON INTERACTIONS IN DENSE AND HOT MATTER

Micaela Oertel

micaela.oertel@obspm.fr

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot

ECT* workshop, Trento, October 14 - 18, 2019

Collaborators: M. Mancini, J. Novak, A. Pascal

• • • • • • • • • • • •

servatoire

OUTLINE

Micaela Oertel (LUTH)

2 Charged current neutrino nucleon reactions

Micaela Oertel (LUTH)

 νN interactions

Trento, October 15th, 2019 2 / 20

2 Charged current neutrino nucleon reactions

3 Some preliminary results

Micaela Oertel (LUTH)

• • • • • • • • • • • • •

2 Charged current neutrino nucleon reactions

3 Some preliminary results

→ Ξ →

< □ > < ^[] >

NEUTRINO INTERACTIONS

Why are we wondering about ?

1. Core-collapse supernovae

- Neutrino-driven explosion mechanism
- Small changes in interactions rates can push explosions e.g. [Melson 2015]
- Neutrino driven wind and nucleosynthesis
- Proto-neutron star cooling by neutrino emission

NEUTRINO INTERACTIONS

Why are we wondering about ?

2. Binary neutron star mergers

- Neutron rich and hot environment \rightarrow intense neutrino emission
- Determine neutron to proton ratio in the ejecta (conditions for heavy element nucleosynthesis)
- Release energy (cooling effect)
- Energy and momentum exchange with matter

Image: A math a math

NEUTRINO INTERACTIONS

Why are we wondering about ?

3. Neutron star cooling

- Energy loss by surface photon and neutrino emission
- Theory predicts essentially three cooling stages
 - Crust thermalisation (~ 10-50 yrs)
 - Neutrino cooling $(\sim 10^5 10^6 \text{ yrs})$
 - Photon cooling $(t \gtrsim 10^6 \text{ yrs})$
- $\bullet~{\rm Neutrino~emissivities} \\ {\rm dominant~for~about~} 10^6~{\rm yrs}$

NEUTRINO MATTER INTERACTIONS

- Different types of interactions with matter (nucleons, nuclei and charged leptons, photons)
 - scattering (neutral current)
 - absorption/creation processes (charged current)
 - pair creation (neutral current)

SOME TYPICAL REACTIONS $p + e^{-} \Leftrightarrow n + \nu_{e}$ $n + e^{+} \Leftrightarrow p + \overline{\nu}_{e}$ $(A, Z) + e^{-} \Leftrightarrow (A, Z - 1) + \nu_{e}$ $N + N \Rightarrow \nu + \overline{\nu} + N + N$ $\nu + A \Rightarrow \nu + A$ $\nu + N \Rightarrow \nu + N$

• Here : charged current processes on nucleons (for a recent work on reactions on nuclei see e.g. [Pascal 2019])

THERMODYNAMIC CONDITIONS

RELEVANT FOR NEUTRINO-MATTER INTERACTIONS

- CCSN and BNS merger remnants
 - Emission from dense and hot central part
 - Neutrino opacities close to the neutrinosphere determine p/n ratio of ejecta and efficiency of neutrino heating mechanism
 - Matter more neutron rich for BNS mergers
 - Typical neutrino energies several to tens of MeV
- Neutron star cooling
 - \blacktriangleright Neutrino emission from the core, typical neutrino energies $\sim T$

Hot o	entral part	Neutrinosphere	NS cooling	
$n_B \gtrsim$	$.1 {\rm fm}^{-3}$	$10^{-4} \text{fm}^{-3} \lesssim n_B \lesssim .1 \text{fm}^{-3}$	$n_B \gtrsim .1 \mathrm{fm}^{-3}$	
$T\gtrsim 1$	10 MeV	$5 { m MeV} \lesssim T \lesssim 10 { m MeV}$	$T \lesssim 100 { m ~keV}$	
$Y_e \sim$	0.1-0.3	$Y_e\sim 0.1$ -0.3	$Y_e \sim 0.1$	bservatoire - LUTH
understeining (hereis 《다》《큔》《王》 문》 문 《오(아				

NEUTRINO-NUCLEON CHARGED CURRENT REACTIONS

Basic charged current weak interaction [Fermi 1934,...] :

 $G_F V_{ij} \bar{q}_i \gamma_\mu (1-\gamma_5) q_j \, \bar{\psi}_{l_1} \gamma^\mu (1-\gamma_5) \psi_{l_2}$

Attention : interaction with quarks not nucleons !

• Governs the following reactions (not all of them are equally relevant)

ELECTRON/POSITRON CAPTURENEUTRON/PROTON DECAY $p + e^- \leftrightarrow n + \nu_e$ $n \leftrightarrow p + e^- + \bar{\nu_e}$ $n + e^+ \leftrightarrow p + \bar{\nu_e}$ $p \leftrightarrow n + e^+ + \nu_e$

• Main problem : in medium nuclear response (matrix element + phase space)

GENERAL FORM (HERE : $p + e^- \rightarrow n + \nu_e$) $\frac{\partial f_{\nu}}{\partial t} \propto (1 - f_{\nu}) \int d_{q_0} n_e \int dq \, L^{\lambda\sigma} \, \mathrm{Im} \Pi_{\lambda\sigma}$

イロト イポト イヨト イヨ

servatoire — LUTH

BASIC APPROXIMATION

ELASTIC APPROXIMATION [BRUENN 1985]

• Nuclear matrix element

$$\langle N | \bar{q} \gamma_{\mu} q | N \rangle \rightarrow g_V \bar{N} \gamma_{\mu} N$$
 (vector)
and
 $\langle N | \bar{q} \gamma_{\mu} \gamma_5 q | N \rangle \rightarrow g_A \bar{N} \gamma_{\mu} \gamma_5 N$ (axial)

• $g_V = 1$ and $g_A = 1.26$ from free neutron decay

- Neglect momentum transfer to the nucleons
- Non (special-)relativistic kinematics
- No nuclear interaction :
 - \rightarrow free nucleon masses and single particle energies

 \rightarrow energy transferred to the nuclear medium is $E_e - E_{
u} = m_n - m_p$

 \rightarrow simple analytic expressions for opacities widely used in simulations

< □ > < ^[] >

bservatoire

FREE MATRIX ELEMENT AND KINEMATICS

CORRECTIONS TO THE NUCLEAR MATRIX ELEMENT [Horowitz 2002]

- \bullet Weak magnetism correction \propto difference of neutron and proton anomalous magnetic moment relevant at any density
- Nucleon internal structure corrections : e.g. $g_V \rightarrow g_V(Q^2)$ typical energy scale is 1 GeV \rightarrow small correction for relevant energies
- \rightarrow (slightly less) simple analytic expressions for opacities

PHASE SPACE AND RECOIL [HOROWITZ 2002, LEINSON 2001]

- Take momentum transfer to the nucleon into account and use momentum dependence in phase space
 - To lowest order in $E_{
 u}/M
 ightarrow$ analytic expressions [Horowitz 2002]
 - Full (special relativistic) kinematics \rightarrow numerical expressions [Leinson 2001]
- We are concerned with a hot and dense asymetric $(n_n \neq n_p)$ matter we need to consider nucleonic correlations

4 3 5 4 3

A D > A A

CORRECTIONS FROM NUCLEON NUCLEON CORRELATIONS AT HIGH DENSITIES

MEAN FIELD CORRECTIONS

[Reddy 1998, Leinson 2001]

- Nucleonic interactions via mean field potentials $U_{n,p}(T, n_B, Y_e)$ and effective masses (as in many EoS)
 - $\rightarrow E_{n,p} = \frac{\vec{p}_{n,p}^2}{2m_{n,p}^*} + U_{n,p} \text{ and thus}$

 $E_{\nu} - E_e = m_n - m_p + U_n - U_p$

- Energy difference between ν_e and $\bar{\nu_e}$ increased
- Neutron rich ejecta possible in CCSN neutrino driven winds
 → consequences for nucleosynthesis

[Roberts 2012, Martinez-Pinedo 2012]

CORRECTIONS FROM NUCLEON NUCLEON CORRELATIONS AT HIGH DENSITIES

RANDOM PHASE APPROXIMATION (RPA)

[Reddy 1999, Burrows 1999, Margueron 2006, Dzhioev 2018, ...]

- Summing up particle-hole excitations of the nuclear medium (long range collective response) → collective Fermi (vector) and Gamow-Teller (axial) modes
- Widely used in nuclear physics
- Reduce to mean field at low densities
- Significant suppression of neutrino opacities and energy dependent enhancement/suppression for antineutrinos

IVGDR STRENGTH CALCULATED IN RPA

NEUTRINO OPACITIES FROM ABSORPTION/CREATION

PRELIMINARY RESULTS FOR DIFFERENT THERMODYNAMIC CONDITIONS Equation of state : SLy4 model [Guiminelli 2015]

- Antineutrinos : shift of reaction threshold due to $U_n U_p$, collective RPA response reduces effect
- Collective effects less important for high (anti-)neutrino energies

Micaela Oertel (LUTH)

NEUTRINO OPACITIES FROM ABSORPTION/CREATION

PRELIMINARY RESULTS FOR DIFFERENT THERMODYNAMIC CONDITIONS

- Antineutrinos : shift of reaction threshold less pronounced for less neutron rich matter (neutron/proton potential difference smaller)
- Qualitative agreement with [Dzhioev 2018] (different EoS)

< □ > < ^[] >

NEUTRINO OPACITIES FROM ABSORPTION/CREATION PRELIMINARY RESULTS FOR DIFFERENT THERMODYNAMIC CONDITIONS

• Very strong (special) relativistic effects have to be checked (in agreement with [Leinson 2001])

< □ > < ^[] >

NEUTRINO OPACITIES FROM ABSORPTION/CREATION

PRELIMINARY RESULTS FOR DIFFERENT THERMODYNAMIC CONDITIONS

• At low densities and temperatures different approximations agree except for very small (anti-)neutrino energies

< □ > < ^[] >

vatoire

POLYONOMIAL FIT TO THE OPACITIES

- Analytic approximations can be used in simulations "on the run", but improved calculations too time consuming \rightarrow provide opacities in tabular form on a large (T, n_B, Y_e) grid (same as underlying EoS, $\sim 10^6$ grid points) to be used in simulations
- Give coefficients of polyonmial fit (logarithmic scale) to opacities with domains in energy chosen from thresholds

Micaela Oertel (LUTH)

 νN interactions

A REMARK ON RPA

- Many Skyrme forces show an instability in the spin-isospin channel at high densities/temperatures [Pastore 2014]
- Two proposed remedies (this channel anyway poorly constrained) :
 - Microscopically motivated residual interaction $(\pi \rho)$ model [Reddy 1999]
 - Add additional repulsive term in this channel (coherent with EoS) [Margueron 2009]

NEUTRINO TOOL KIT

- Neutrino opacities in dense and hot matter sensitive to nuclear interaction
- Aim : provide results ready for use in simulations
 - Consistent with the underlying EoS model
 - Charged current reactions with full isospin breaking corrections $(m_n \neq m_p!)$
 - Different levels of approximation : full (non)-relativistic kinematics, RPA correlations with EoS dependent residual interaction
 - Corrections are energy dependent (difficult to cast into a "gray" correction factor)
 - Polynomial fit to the results on the same (T, n_B, Y_e) grid as EoS

- First CCSN results consistent
 - CoCoNuT code
 - FMT neutrino treatment [Müller 2015]
 - ▶ 15 solar mass progenitor, HS(DD2) EoS
 - spherical symmetry

SUMMARY AND OUTLOOK

1. Summary

- Neutrino nucleon interactions important ingredient in
 - Core-collapse supernovae and (proto)-neutron star cooling
 - Binary neutron star mergers
- Collective effects important in dense matter \rightarrow considerably modified neutrino opacities !
- Provide polynomial representations for rates including collective effects coherent with EoS within the Compose data base https://compose.obspm.fr

2. Outlook

- Implement additional contributions to CC reactions (weak magnetism) and effects (e.g. magnetic field)
- Full "neutrino tool kit" : extent the calculations to neutral current reactions, reactions on nuclei and leptons
- Any comments are welcome !

< ロ > < 同 > < 回 > < 回

bservatoire — LUTH