CONSTRAINING THE EOS FROM GRAVITATIONAL-WAVE AND ELECTROMAGNETIC MEASUREMENTS

Lukas Weih (Institute for Theoretical Physics, Frankfurt)

Based on: Weih, Most and Rezzolla, ApJ (ApJ 881:73, 2019)

Helmholtz Graduate School for Hadron and Ion Research

ECT*, Trento 14. Oct. 2019

EOS VS. NEUTRON STARS: WHAT HAVE WE ALWAYS KNOWN?

I.) Antoniadis et al. (2013): $M_{TOV} > 1.97$

2.) Causality: $c_S < 1$

3.) pQCD: $c_S \rightarrow 1/\sqrt{3}$

GIVEN THESE CONSTRAINTS, HOW WELL WILL NS-RADIUS MEASUREMENTS FURTHER CONSTRAIN THE EOS?

HOW DO WE ASSESS THIS?

I.) Compute EOSs (~10⁷) via parametrization

HOW DO WE ASSESS THIS?

LOW- AND HIGH-DENSITY REGIME

Low density: $\mu < 1.12 GeV$

High density: $1.12 \text{GeV} < \mu < 1.44 \text{GeV}$

3.0

 $\frac{\log_{10} p \, [{\rm MeV}/{\rm fm^3}]}{12}$

1.0

WHAT IF WE ALREADY HAVE A MEASUREMENT?

RESULTS

Same behavior for all cases considered

Averages should be interpreted carefully!

RESULTS

CONCLUSION

I.) Massive NS give best constraints

2.) Optimal range at $M \sim 1.8 M_{\odot}$ for low density

3.) Low-mass NS might give good constraints, but unlikely

OUTLOOK

Do the same thing for whatever type of constraint and decide wheather it's worth the effort