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Outline

into complex plane

real/complex Langevin dynamics: theory

stability, convergence, and all that

SU(3) spin model

analytical solution for distributions

SU(N ) and gauge cooling

QCD with heavy quarks

GA, Introductory lectures on lattice QCD at nonzero baryon number,

J. Phys. Conf. Ser. 706 022004 [arXiv:1512.05145 [hep-lat]].
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Caveats

incomplete overview

focus on work with Seiler, Stamatescu, Sexty, . . .

recent results not included

incomplete references
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machine learning: cat or dog/chihuahua or muffin
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Overlap problem

Z =

∫

Dφe−S S ∈ C

configurations differ in an essential way from those

obtained at with |e−S |

cancelation between configurations with ‘positive’ and
‘negative’ weight

dominant configurations
in the path integral? x

 x)Reρ(  
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics

Parisi 83, Klauder 83

ECT* June 2019 – p. 6



Real Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ R

Langevin equation

ẋ = −∂xS(x) + η, 〈η(t)η(t′)〉 = 2δ(t− t′)

associated distribution ρ(x, t)

〈O(x(t)〉η =

∫

dx ρ(x, t)O(x)

Langevin eq for x(t) ⇔ Fokker-Planck eq for ρ(x, t)

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

stationary solution: ρ(x) ∼ e−S(x)
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Fokker-Planck equation

stationary solution typically reached exponentially fast

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

write ρ(x, t) = ψ(x, t)e−
1

2
S(x)

ψ̇(x, t) = −HFPψ(x, t)

Fokker-Planck hamiltonian:

HFP = Q†Q =

[

−∂x +
1

2
S′(x)

] [

∂x +
1

2
S′(x)

]

≥ 0

Qψ(x) = 0 ⇔ ψ(x) ∼ e−
1

2
S(x)

ψ(x, t) = c0e
− 1

2
S(x) +

∑

λ>0

cλe
−λt → c0e

− 1

2
S(x)
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Complex Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ C

complex Langevin equation: complexify x→ z = x+ iy

ẋ = −Re ∂zS(z) + η 〈η(t)η(t′)〉 = 2δ(t− t′)

ẏ = −Im ∂zS(z) S(z) = S(x+ iy)

associated distribution P (x, y; t)

〈O(x+ iy)(t)〉 =

∫

dxdy P (x, y; t)O(x+ iy)

Langevin eq for x(t), y(t) ⇔ FP eq for P (x, y; t)

Ṗ (x, y; t) = [∂x (∂x +Re ∂zS) + ∂yIm ∂zS]P (x, y; t)

generic solutions? semi-positive FP hamiltonian?
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Equilibrium distributions

complex weight ρ(x) real weight P (x, y)

main premise:

∫

dx ρ(x)O(x) =

∫

dxdy P (x, y)O(x+ iy)

if equilibrium distribution P (x, y) is known analytically:
shift variables
∫

dxdy P (x, y)O(x+ iy) =

∫

dxO(x)

∫

dy P (x− iy, y)

⇒ ρ(x) =

∫

dy P (x− iy, y)

correct when P (x, y) is known analytically

hard to verify in numerical studies!
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Field theory

path integral Z =
∫

Dφe−S

Langevin dynamics in “fifth” time direction

∂φ(x, t)

∂t
= − δS[φ]

δφ(x, t)
+ η(x, t)

Gaussian noise

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′)

compute expectation values 〈φ(x, t)φ(x′, t)〉, etc

study converge as t→ ∞

Parisi & Wu 81, Parisi, Klauder 83

Damgaard & Hüffel 87
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Some achievements

complex Langevin dynamics can

handle severe sign problems . . .
. . . in thermodynamic limit

describe onset at expected critical chemical potential
i.e. not at phase-quenched value (Silver Blaze problem)

describe phase transitions

be implemented for gauge theories

however, success is not guaranteed
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Troubled past

1. numerical problems: runaways, instabilities

⇒ adaptive stepsize

no instabilities observed, works for SU(3) gauge theory
GA, James, Seiler & Stamatescu, 0912.0617

a la Ambjorn et al 86

2. theoretical status unclear

⇒ detailed analyis, identified necessary conditions
GA, FJ, ES & IOS, 0912.3360, 1101.3270

3. convergence to wrong limit

⇒ better understood but not yet resolved
GA, ES, DS & IOS, 1701.02322
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Analytical understanding

consider expectation values and Fokker-Planck equations

one degree of freedom x, complex action S(x), ρ(x) ∼ e−S(x)

wanted: 〈O〉ρ(t) =
∫

dx ρ(x, t)O(x)

∂tρ(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

solved with CLE:

〈O〉P (t) =

∫

dxdy P (x, y; t)O(x+ iy)

∂tP (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t)

with Kx = −ReS′, Ky = −ImS′

question: 〈O〉P (t) = 〈O〉ρ(t) if P (x, y; 0) = ρ(x; 0)δ(y) ?
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Analytical understanding

question: 〈O〉P (t) = 〈O〉ρ(t) as t→ ∞?

answer: yes, use Cauchy-Riemann equations
and satisfy some conditions:

distribution P (x, y) should drop off fast enough in y
direction

partial integration without boundary terms possible

actually O(x+ iy)P (x, y) for large enough set O(x)

⇒ distribution should be sufficiently localized

can be tested numerically via criteria for correctness

〈LO(x+ iy)〉 = 0

with L Langevin operator 0912.3360, 1101.3270
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SU(3) spin model

apply these ideas to 3D SU(3) spin model
GA & James, 1112.4655

earlier solved with complex Langevin Karsch & Wyld 85

Bilic, Gausterer & Sanielevici 88

however, no detailed tests performed

⇒ test reliability of complex Langevin using developed tools

analyticity in µ2:

from imaginary to real µ

Taylor series

criteria for correctness

comparison with flux formulation Gattringer & Mercado 12
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SU(3) spin model

3-dimensional SU(3) spin model: S = SB + SF

SB = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

SF = −h
∑

x

[

eµPx + e−µP ∗
x

]

SU(3) matrices: Px = TrUx

gauge action: nearest neighbour Polyakov loops

(static) quarks represented by Polyakov loops

complex action S∗(µ) = S(−µ∗)

effective model for QCD with static quarks, centre symmetry
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SU(3) spin model

phase structure

effective model for QCD with static quarks
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SU(3) spin model

phase structure at µ = 0: 〈P + P ∗〉/2

0.12 0.125 0.13 0.135 0.14

β
0

0.5

1

1.5

<
 T

r(
U

+
U

-1
)/

2 
>

µ=0, h=0.02, 10
3
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SU(3) spin model

real and imaginary potential:

first-order transition in β − µ2 plane, 〈P + P ∗〉/2

-1 -0.5 0 0.5 1

µ2

0

0.5

1

1.5

2

<
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r(
U

+
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-1
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2 
>

β=0.135
β=0.134
β=0.132
β=0.130

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

β=0.128
β=0.126
β=0.124
β=0.120

h=0.02, 10
3

negative µ2: real Langevin — positive µ2: complex Langevin
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SU(3) spin model

Taylor expansion (lowest order)

free energy density

f(µ) = f(0)− (c1 + c2h)hµ
2 +O(µ4)

density 〈n〉 = 2 (c1 + c2h)hµ+O(µ3)

Polyakov loops

〈P 〉 = c1 + c2hµ+O(µ2) 〈P ∗〉 = c1 − c2hµ +O(µ2)

in terms of

c1 =
1

Ω

∑

x

〈Px〉µ=0 c2 =
1

2Ω

∑

xy

〈

(Px − P ∗
x )

(

Py − P ∗
y

)〉

µ=0

c2 is absent in phase-quenched theory

ECT* June 2019 – p. 20



SU(3) spin model

start in ‘confining’ phase and increase µ

density 〈n〉 = 〈heµPx − he−µP ∗
x 〉: no Silver Blaze region

0 0.5 1 1.5 2 2.5 3 3.5
µ

0

0.5

1

1.5

<
n>

full
phase quenched

0 0.4 0.8 1.2
0

0.005

0.01

0.015

0.02

β=0.125, h=0.02, 10
3

inset: lines from first-order Taylor expansion
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SU(3) spin model

start in ‘confining’ phase and increase µ

splitting between 〈P 〉 and 〈P ∗〉: no Silver Blaze region

0 0.5 1 1.5 2 2.5 3 3.5
µ

0

0.5

1
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2

<
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r 
U

>
,  
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U

-1
>
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<Tr U

-1
>
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<Tr U
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>

β=0.125, h=0.02, 10
3

inset: lines from first-order Taylor expansion
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SU(3) spin model

severeness of sign problem: 〈e−iImS〉pq = e−Ω∆f

0 1 2 3 4
µ

0

0.2

0.4

0.6

0.8

1
<

eiϕ
>

pq

4
3

8
3

12
3

β=0.125, h=0.02, phase quenched

∆f ≡ f − fpq = −c2h2µ2 +O(µ4) (c2 < 0)
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SU(3) spin model

lowest-order discretization: φn+1 = φn+ ǫK(φn)+
√
ǫηn

linear stepsize dependence: need extrapolation

higher order: Chien-Cheng Chang 87

ψn = φn +
1

2
ǫK(φn)

ψ̃n = φn +
1

2
ǫK(φn) +

3

2

√
ǫ α̃n

φn+1 = φn +
1

3
ǫ
[

K(ψn) + 2K(ψ̃n)
]

+
√
ǫ αn

noise α̃n =
1

2
αn +

√
3

6
ξn 〈αnαn′〉 = 〈ξnξn′〉 = 2δnn′

very little stepsize dependence remaining in
observables
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SU(3) spin model

comparison with result obtained using flux representation
Gattringer & Mercado 12

0.0 0.5 1.0
µ2

0.0

0.5

1.0

1.5
<

P
 +

 P
* >

 / 
2V

τ = 0.135
τ = 0.134
τ = 0.132
τ = 0.130
τ = 0.128
τ = 0.126
τ = 0.120

Filled symbols

Empty symbols

   = flux

   = c. Langevin

Asterisks = spin

X = improved 
   c. Langevin

CL: finite stepsize errors in lowest-order algorithm

improved algorithm removes discrepancy in critical
region
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Distributions

crucial role played by distribution P (x, y)

does it exist?
usually yes, constructed by brute force by solving the CL process

direct solution of FP equation extremely hard

GA, ES & IOS 09, Duncan & Niedermaier 12, GA, PG & ES 13

what are its properties?
localization in x− y space, fast/slow decay at large |y|
essential for mathematical justification of approach

GA, ES, IOS (& FJ) 09, 11

smooth connection with original distribution when the
weight is real?

study with histograms, scatter plots, flow, FPE, . . .

⇒ implications for gauge theories

ECT* June 2019 – p. 26



Quartic model

Z =

∫ ∞

−∞

dx e−S S(x) =
σ

2
x2 +

λ

4
x4

complex mass parameter σ = A+ iB, λ ∈ R

often used toy model Ambjorn & Yang 85, Klauder & Petersen 85,

Okamoto et al 89, Duncan & Niedermaier 12

essentially analytical proof∗: GA, Giudice & ES, 1306.3075

CL gives correct result for all observables 〈xn〉
provided that A > 0 and A2 > B2/3

based on properties of the distribution P (x, y)

follows from classical flow or directly from FPE

∗
0912.3360, 1101.3270
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Quartic model

classical flow
(A = B = 1)

-2 -1 0 1 2
x

-2

-1

0

1

2

y

determine where drift KI = −Im∂zS(z) vanishes
(blue lines)

at the extrema: impenetrable barrier (for real noise)

distribution localised between dashed lines
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Quartic model

from Fokker-Planck equation:

FPE can be written as Ṗ = ∇ · ~J
vanishing charge, with ∂yQ(y) = 0,

Q(y) =

∫

dx Jy(x, y) =

∫

dxKI(x, y)P (x, y) = 0

since P (x, y) ≥ 0:

when KI has definite sign, P (x, y) has to vanish

stripes: y2− < y2 < y2+

with

y2± =
1

2λ

(

A±
√

A2 − B2/3
)
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Quartic model

numerical solution of FPE for P (x, y)
following Duncan & Niedermaier 12

distribution is localised in a strip around real axis

|y| < y− with y− = 0.3029 for A = B = 1

GA, Giudice & ES, 1306.3075
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Localised distributions

if

the action is holomorphic (no log dets!)

and

the distribution is localised, i.e.

P (x, y) = 0 for |y| > ymax [or P (x, y) → 0 fast enough]

then

the correct result is obtained

extend this to gauge theories ...
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Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): CL update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM
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Gauge theories

SU(N ) gauge theory: complexification to SL(N,C)

links U ∈ SU(N ): CL update

U(n+1) = R(n)U(n) R = exp
[

iλa
(

ǫKa +
√
ǫηa

)]

Gell-mann matrices λa (a = 1, . . . N2 − 1)

drift: Ka = −Da(SB + SF ) SF = − ln detM

complex action: K† 6= K ⇔ U ∈ SL(N,C)

deviation from SU(N ): unitarity norms

1

N
Tr

(

UU † − 11
)

≥ 0
1

N
Tr

(

UU † − 11
)2 ≥ 0
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Gauge theories

deviation from SU(3): unitarity norm GA & IOS, 0807.1597

1

3
TrUU † ≥ 1

heavy dense QCD, 44 lattice with β = 5.6, κ = 0.12, Nf = 3
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Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors
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Gauge theories

controlled evolution: stay close to SU(N ) submanifold when

small chemical potential µ

small non-unitary initial conditions

in presence of roundoff errors

in practice this is not the case

⇒ unitary submanifold is unstable!

process will not stay close to SU(N )

wrong results in practice, e.g. jumps when µ2 crosses 0

also seen in abelian XY model
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Unstable gauge theories

what is the origin? can this be fixed?

gauge freedom: link at site k

Uk → ΩkUkΩ
−1
k+1 Ωk = eiω

k

aλa

in SU(N ): ωk
a ∈ R ⇒ in SL(N,C): ωk

a ∈ C

choose ωk
a purely imaginary, orthogonal to SU(N )

direction

control unitarity norm
1

N
Tr

(

UU † − 11
)

≥ 0

gauge cooling
ES, DS & IOS, 1211.3709

see also GA, LB, ES, DS & IOS, 1303.6425
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Gauge cooling

cooling update at site k Ωk = e−αfk

aλa α > 0

Uk → ΩkUk Uk−1 → Uk−1Ω
−1
k

unitarity norm: distance D =
∑

k

1

N
Tr

(

UkU
†
k − 11

)

after one update, D → D

′

linearise

D

′ − D = − α

N
(fka )

2 +O(α2) ≤ 0

reduce distance from SU(N ) SU(   )

NSL(   ,C)

N
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Gauge cooling

what is fka? Ωk = e−αfk

aλa

D

′ − D = −α/N(fka )
2 + . . .

choose fka as the gradient of the unitarity norm

fka = 2Trλa

(

UkU
†
k − U †

k−1Uk−1

)

if U ∈ SU(N ): fka = 0, D = 0, no effect

cooling brings the links as
close as possible to SU(N )

SU(   )

NSL(   ,C)

N
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Gauge cooling

simple example: one-link model 1303.6425

S =
1

N
TrU U → ΩUΩ−1

D =
1

N
Tr

(

UU † − 11
)

fa = 2Trλa
(

UU † − U †U
)

note: c = TrU/N, c∗ = TrU †/N invariant under cooling

cooling dynamics:

D

′ − D ≡ ˙

D = − α

N
f2a = −16α

N
TrUU †[U,U †]

in SU(2)/SL(2,C):

˙

D = −8α
(

D

2 + 2
(

1− |c|2
)

D+ c2 + c∗2 − 2|c|2
)
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Gauge cooling

SU(2)/SL(2,C) one-link model

˙

D = −8α
(

D

2 + 2
(

1− |c|2
)

D+ c2 + c∗2 − 2|c|2
)

c = 1
2TrU, c∗ = 1

2TrU
† invariant under cooling

if c = c∗: U gauge equivalent to SU(2) matrix

˙

D = 8α(D+ 2− 2c2)D D(t) ∼ e−16α(1−c2)t → 0

if c 6= c∗: U not gauge equivalent to SU(2) matrix

D(t) → D0 = |c|2 − 1 +
√

1− c2 − c∗2 + |c|4 > 0

minimal distance from SU(2)
reached exponentially fast
power law in case of many links
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Langevin with gauge cooling

complex Langevin dynamics with gauge cooling:

alternate CL updates with gauge cooling updates

monitor unitarity norm

stay fairly close to SU(N )

models

Polyakov chain (exactly solvable)

S = β1TrU1 . . . UNℓ
+ β2TrU

−1
Nℓ

. . . U−1
1 β1,2 ∈ C

heavy dense QCD ES, DS & IOS 12, GA, Attanasio, Jäger,

Sexty 16

full QCD Dénes Sexty 13
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Langevin with gauge cooling

SU(2) Polyakov loop model 1303.6425

0 250 500 750 1000
Langevin time

1e-06

0.0001

0.01

1

T
r(

U
U

✝
)/

2 
- 

1

no cooling
α = 0.001 (10 gc steps)
α adaptive (10 gc steps)

SU(2) Polyakov chain, N
links

= 30, β = (1+i sqrt(3))/2

evolution of unitarity norm
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Langevin with gauge cooling

SU(2) Polyakov loop model
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Re S
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no cooling
α = 0.001 (10 gc steps)
α adaptive (10 gc steps)

SU(2) Polyakov chain

β = (1+i sqrt(3))/2
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=30

-10 -5 0 5 10
Im S

1e-06

1e-05

0.0001

0.001

0.01

hi
st

og
ra

m

no cooling
α = 0.001 (10 gc steps)
α adaptive (10 gc steps)

SU(2) Polyakov chain

β = (1+i sqrt(3))/2

N
links

=30

histograms of observables

without cooling: broad distributions, no rapid decay

with some cooling: reduced

with sufficient adaptive cooling: narrow distributions
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Langevin with gauge cooling

SU(2) Polyakov loop model

0 2 4 6 8 10
gauge cooling steps

-0.15

-0.1

-0.05

R
e 

<S
>

α = 0.001
α adaptive

0.15

0.2

0.25

0.3

Im
 <

S>

α = 0.001
α adaptive

N
links

= 30, β = (1+i sqrt(3))/2
SU(2) Polyakov chain

observables depend on gauge cooling

exact results are reproduced when distributions are
narrow and unitarity norm close to 0
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Langevin with gauge cooling

in QCD:

unitary submanifold very unstable

gauge cooling essential

many things to sort out

combine with dynamical stabilisation Attanasio & Jäger

non-holomorphicity due to log det ⇒
poles in Langevin drift 1701.02322

boundary terms at infinity and around poles

heavy dense QCD under control

full QCD not yet
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Outlook

towards the phase diagram of QCD from the lattice

various ideas under investigation

new algorithms: implementation in simpler models

complexified manifolds

interplay with thimbles and variations thereof

applications to other systems, e.g. non-relativistic
models, very promising

perhaps some technical complications less relevant
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