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Why do we need Hamiltonian Lattice Gauge theories?

Time Evolution

The Wick rotation eliminates the notion of time when going to a Eucledian action
t— —it

Sign Problem

[ DUDWDYO[U]e~SelVI-¥MIUI¥

[ DUDWDWPe~SelVI-¥MIUIY For p > 0: det(M[U]) € C
_ [ puO[U] det(M[U])e%elV]
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(O[u)) =
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Kogut-Susskind Hamiltonian

KS Hamiltonian

1 - - . o I
Hes = ~52 ; (0> + 0t () + 2 ik 200 with U(p) = 0,0,050;
X,

U(p) + Ut (p) = cos (6; + 8, — B3 — 6,) = cos(a®B?)

We recover the standard free field Hamiltonian
of electrodynamics (H ~ E2 + B2) in the 0,
classic continuum limit.
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Lattice Systems

()
[
[

3 > ) > 3 Hilbert space

- - - - HC Hgauge fields ® errmions
("]

o A general state
)

¥y = [ DGIG) 1¥(G))
with DG = Hx,k dg(x, k)

Presentation follows Erez Zohar and J. Ignacio Cirac, 2018, Physical Review D
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Expectation value of an Observable

Assume that O acts only on the gauge field and is diagonal in the group element basis:
(YIO|¥)
O = ~wmw
_ DG [ DG (W(G)H(F'|01G) 1¥(G))
DG [ DG (W(G)I(G|G) I¥(G))
_ IDG(GI016) (W (DI¥(9))
DG (W)W
= [ DGFo(G)P(9)

(HDI¥(9) _ WOw©)
I DG (W(GHI¥(G)) z

with p(G) =
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Open Questions

Expectation value

(0) = [ DGFo(9)P(9)

with p(G) = MQ)ZM

= How do we construct |#(G))?
= How do we efficiently calculate p(G)?
= What can we do with this new formalism?
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Creation of the fermionic state

Desirable properties
= |W) fulfills the Gauss law Definition of |¥)

= |¥(G)) allows efficient calculations of Wy = f DGIG) |¥(G))
- the norm
= expectation values

Choice for | (G))

We pick |¥(G)) to be a gaussian state and construct it with a tensor network.

Details about the construction may be found in Erez Zohar, 2018, arXiv:1807.01294 [cond-mat, physics:hep-lat, physics:hep-th,
physics:quant-ph]
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Creating a fermionic state

Wo) = (Qv| []AX Q)
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Creating a fermionic state

|Wo)

(@l [Tox.k [T A Q)
x,k X
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Fiducial state in detail

w A(x) = exp (Z,]: Til-a;r (x)a; (x))
o

Symmetries

@ Translational invariance
® Rotational invariance
® Global U(1) invariance
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Definition of Modes

Gauss law in terms of our modes

Go=E —E+E,—-Eq4
=riry—rtr_ -, +1H_+ulu, —utu_—dld, +did_

Definition of pos. and neg. modes

@ a: {l,,r_,u_,d,} (neg. modes)
= b: {I_,r,,u,,d_} (pos. modes)
=

17}
Fiducial operator

A) = exp (T Tyal 0] (0)

Erez Zohar et al., 2015, Annals of Physics
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Coupling different sites

Coupling in the x and y direction

wo(x) = exp(lj_ (x+ el)ri(x)) exp(li (x+ el)ri(x))
w1 (x) = exp(di(x + ep)ut (x)) exp(di (x + ez)ufF (x))

Unnormalized projector

W(X) = Wo(x) w1 (X)Q(x) W] (x)w (x)
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Fermionic state with global symmetry

Globally invariant state

[Wo(T)) = (QuITT, () [T, AX) Q)
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Moving towards local symmetry

Lattice Gauge theory

We demand a local symmetry
Y)W =0->G(x)|¥)=0

Erez Zohar et al., 2015, Annals of Physics
Erez Zohar and Michele Burrello, 2016, New Journal of Physics

Slide 13 Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories | 14th of June | PE, EZ, MCB, IC



Local symmetry — The state

Substitution

ri (x) = ex®0rf (x)
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Fermionic state

Fermionic state

W) = ([ Jwe) [[Uop [ [AC) 12)

+ Gauge invariance of |¥) by constructing ¥ (G)
+ Obeys all demanded symmetries
? Efficient to calculate with
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Is |¥Y(G))special?

W) = ([ Jwo) [[Uop [ [ A 12)
X X X

exp (Eij Tijaj (X)b; (x)) X even

A =
() {exp (Zl/ T,-jb;‘ (x)a; (x)) x odd.

W(X) = Wy (X)W1 (X)Q(X) W] (x)w (%)
wo(x) = exp(li(x +eprt (x)) exp(li(x + el)ri (x))
wy(x) = exp(di (x+ ez)ui(x)) exp(di(x + e2)u1(x))
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Gaussian States

Fermionic Gaussian states are represented by density operators that are exponentials of a
guadratic form in Majorana operators.

p=Kexp(—4yTGy)

Covariance matrix

Covariance matrix for a state @:

(PIYa.YpllP)
Fab =% ([Va Ypl) = § =ared™
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Covariance matrices

_BT D

Majorana Fermions

7= (o))
y,-(z) =i (c,- = cf) .

= 5[viv])-
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Covariance matrices

Single Site Full system

o By
ex By-1
A B
i .
_BT D
T
T‘I‘z D1

Slide 19 Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories | 14th of June | PE, EZ, MCB, IC



Calculating the Norm and the Observables

W) = (| [ [0 [ [Uop [[AX) 1)

~Tin(9) ~ly
A B A Physical-Physical correlations
,-M —
ij = (—BT D) B Physical-Virtual correlations

C Virtual-Virtual correlations

Norm

1—-T M
WD) = \[det(#)
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The whole framework

Draw new gauge field configuration |g’)

Y

Build the state |¥(G"))

Y

Y

Accept or decline -
the new configuration G’ |

A

[Measure observables]

Calculate the acceptance probability
by computing (¥ (G")|¥(G"))
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Results for Z;

<2W(1,1)> <2wW>

0
0 020406081 12141618 2

We can model different phases with our variational Ansatz for the state.

-0.45
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Translationally invariant system

o
° a
0 070406081 17141618 2
¥

Confining

o
G0z 040608 1 17141618 2
v

Phase diagram
4 phases that are confining or deconfining static C D
charges Deconfining Deconfining

y

Image taken from Erez Zohar et al., 2015, Annals of Physics
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Extension to 3 spatial dimensions

Fermionic state

W) = ([ Jwe) [ [Uop [ [ AX) 1)
X X X
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Summary

A Hamiltonian approach shows promising possibilities (time evolution, finite L)

We can construct a gauged gaussian PEPS (GGPEPS) with local building blocks such that the
state obeys the gauge symmetry :

The GGPEPS Ansatz shows confined and non-confined phases

Extension to 3 spatial dimension follows a clear roadmap

Slide 25

Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories | 14th of June | PE, EZ, MCB, IC



Outlook

= Generalization of the Ansatz to 3 spatial dimensions

= Variational minimization of the energy in two and three spatial dimensions

= Optimization of the Monte Carlo procedure for the sampling
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