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Why do we need Hamiltonian Lattice Gauge theories?

Time Evolution

The Wick rotation eliminates the notion of time when going to a Eucledian action

t → −iτ

Sign Problem

⟨O[U]⟩ =
∫DUDΨD ̄ΨO[U]e−SE[U]− ̄ΨM[U]Ψ

∫DUDΨD ̄Ψe−SE[U]− ̄ΨM[U]Ψ

=
∫DUO[U] det(M[U])e−SE[U]

∫DU det(M[U])e−SE[U]

For μ > 0: det(M[U]) ∈ C
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Kogut-Susskind Hamiltonian

KS Hamiltonian

HKS = − 1

2g2
∑
p

( ̂U(p) + ̂U†(p)) + g

2
∑
x,k

̂E2
k
(x) with ̂U(p) = ̂U1

̂U2
̂U†
3

̂U†
4

̂U(p) + ̂U†(p) = cos (θ1 + θ2 − θ3 − θ4) = cos(a2B2)

We recover the standard free field Hamiltonian

of electrodynamics (H ≈ E2 + B2) in the

classic continuum limit.

̂U1

̂U2

̂U†
3

̂U†
4

p
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Lattice Systems

Hilbert space

H ⊂ Hgauge fields ⊗Hfermions

A general state

|Ψ⟩ = ∫DG |G⟩ |Ψ(G)⟩
with DG = ∏

x,k dg(x, k)

Presentation follows Erez Zohar and J. Ignacio Cirac, 2018, Physical Review D
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Expectation value of an Observable

Assume that O acts only on the gauge field and is diagonal in the group element basis:

⟨O⟩ = ⟨Ψ|O|Ψ⟩
⟨Ψ|Ψ⟩

=
∫DG∫DG′ ⟨Ψ(G′)∣ ⟨G′∣O |G⟩ |Ψ(G)⟩

∫DG∫DG′ ⟨Ψ(G′)∣ ⟨G′∣G⟩ |Ψ(G)⟩

=
∫DG ⟨G|O |G⟩ ⟨Ψ(G)|Ψ(G)⟩

∫DG′ ⟨Ψ(G′)∣Ψ(G′)⟩

= ∫DGFO(G)p(G)

with p(G) = ⟨Ψ(G)|Ψ(G)⟩
∫DG′⟨Ψ(G′)∣Ψ(G′)⟩ = ⟨ψ(G)∣ψ(G)⟩

Z
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Open Questions

Expectation value

⟨O⟩ = ∫DGFO(G)p(G)

with p(G) = ⟨Ψ(G)|Ψ(G)⟩
Z

How do we construct |Ψ(G)⟩?
How do we efficiently calculate p(G)?
What can we do with this new formalism?
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Creation of the fermionic state

Desirable properties

|Ψ⟩ fulfills the Gauss law

|Ψ(G)⟩ allows efficient calculations of

the norm

expectation values

Definition of |Ψ⟩
|Ψ⟩ = ∫DG |G⟩ |Ψ(G)⟩

Choice for |Ψ(G)⟩
We pick |Ψ(G)⟩ to be a gaussian state and construct it with a tensor network.

Details about the construction may be found in Erez Zohar, 2018, arXiv:1807.01294 [cond-mat, physics:hep-lat, physics:hep-th,

physics:quant-ph]
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Creating a fermionic state

∣ψ0⟩ = ⟨ΩV ∣

∏
x,k

ω(x, k)

∏
x

A(x) |Ω⟩

x00 x10 x20

x01 x11 x21
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Creating a fermionic state

∣ψ0⟩ = ⟨ΩV ∣ ∏
x,k

ω(x, k) ∏
x

A(x) |Ω⟩

x00 x10 x20

x01 x11 x21

ω00,h ω10,h

ω01,h ω11,h

ω00,v ω10,v ω20,v
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Fiducial state in detail

Ψ

r+

r−

l+

l−

u+u−

d+d−

A(x) = exp⎛⎜
⎝

∑
ij

Tijα
†
i
(x)α†

j
(x)⎞⎟

⎠

Symmetries

1 Translational invariance

2 Rotational invariance

3 Global U(1) invariance
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Definition of Modes

Gauss law in terms of our modes

G0 = Er − El + Eu − Ed

= r†+r+ − r†−r− − l†+l+ + l†−l− + u†
+u+ − u†

−u− − d†
+d+ + d†

−d−

Ψ

r+

r−

l+

l−

u+u−

d+d−

Definition of pos. and neg. modes

a: {l+, r−,u−,d+} (neg. modes)

b: {l−, r+,u+,d−} (pos. modes)

Fiducial operator

A(x) = exp(∑ij Tija
†
i
(x)b†

j
(x))

Erez Zohar et al., 2015, Annals of Physics
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Coupling different sites

Coupling in the x and y direction

ω0(x) = exp(l†+(x + e1)r†−(x)) exp(l†−(x + e1)r†+(x))
ω1(x) = exp(d†

+(x + e2)u†
−(x)) exp(d†

−(x + e2)u†
+(x))

Unnormalized projector

ω(x) = ω0(x)ω1(x)Ω(x)ω†
1(x)ω†

0(x)
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Fermionic state with global symmetry

Globally invariant state

∣ψ0(T)⟩ = ⟨Ωv ∣ ∏
x
ω(x) ∏

x
A(x) |Ω⟩

x00 x10 x20

x01 x11 x21
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Moving towards local symmetry

Lattice Gauge theory

We demand a local symmetry

∑
x
G(x) |Ψ⟩ = 0 → G(x) |Ψ⟩ = 0

x00 x10 x20

x01 x11 x21

Erez Zohar et al., 2015, Annals of Physics

Erez Zohar and Michele Burrello, 2016, New Journal of Physics
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Local symmetry – The state

Substitution

r†±(x) → e±iθ(x)r†±(x)

x00 x10 x20

x01 x11 x21
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Fermionic state

Fermionic state

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x) ∏
x

A(x) |Ω⟩

� Gauge invariance of |Ψ⟩ by constructing Ψ(G)
� Obeys all demanded symmetries

? Efficient to calculate with
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Is |Ψ(G)⟩special?

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x) ∏
x

A(x) |Ω⟩

A(x) =
⎧{
⎨{⎩

exp(∑ij Tija
†
i
(x)b†

j
(x)) x even

exp(∑ij Tijb
†
i
(x)a†

j
(x)) x odd.

ω(x) = ω0(x)ω1(x)Ω(x)ω†
1(x)ω†

0(x)

ω0(x) = exp(l†+(x + e1)r†−(x)) exp(l†−(x + e1)r†+(x))

ω1(x) = exp(d†
+(x + e2)u†

−(x)) exp(d†
−(x + e2)u†

+(x))
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Gaussian States

Definition

Fermionic Gaussian states are represented by density operators that are exponentials of a

quadratic form in Majorana operators.

ρ = K exp(− i
4
γTGγ)

Covariance matrix

Covariance matrix for a stateΦ:

Γab = i
2

⟨[γa, γb]⟩ = i
2

⟨Φ|[γa,γb]|Φ⟩
⟨Φ|Φ⟩
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Covariance matrices

A

−BT

B

D

Majorana Fermions

γ(1)
i

= (ci + c†
i
)

γ(2)
i

= i (ci − c†
i
) .

ΓM
i,j = i

2
⟨[γi, γj]⟩.
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Covariance matrices

Single Site Full system

A

−BT

B

D

A0

⋱

AN−1

−
B
T 0

⋱

−
B
T N

−
1

B0

⋱

BN−1

D0

⋱

DN−1
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Calculating the Norm and the Observables

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

;Γin(G)

∏
x

A(x)
⏟⏟⏟⏟⏟

;ΓM

|Ω⟩

ΓM
i,j = ( A B

−BT D
)

A Physical-Physical correlations

B Physical-Virtual correlations

C Virtual-Virtual correlations

Norm

⟨ψ(G)∣ψ(G)⟩ = √det(1 − Γin(G)MD

2
)

Slide 20 Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories | 14th of June | PE, EZ, MCB, IC



The whole framework

Draw new gauge field configuration ∣G′⟩ Build the state ∣Ψ(G′)⟩

Calculate the acceptance probability

by computing ⟨Ψ(G′)∣Ψ(G′)⟩
Accept or decline

the new configuration G′[Measure observables]
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Results for Z3
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Different phases

We can model different phases with our variational Ansatz for the state.
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Translationally invariant system
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Phase diagram

4 phases that are confining or deconfining static

charges

418 E. Zohar et al. / Annals of Physics 363 (2015) 385–439

Fig. 10. Semilogarithmic plot of the exponential decay of the correlation function of two non-contractible Wilson loops as a

function of their distance l2 [see Eq. (148)]. The data plotted correspond to









WNC(20)WNC(20 + l2)


−


WNC(30)
2






in a system

of size 6 (l2 + 40). The correlation of the two Wilson loops decays exponentially in all the phases. Due to the fast exponential

decay, for larger values of the distance l2 the numerical errors becomes too large to obtain reliable data.

Fig. 11. A schematic plot of the phase diagram for the pure gauge theory (t = 0), with y, z ≥ 0 (straightforwardly generalizable

to any y, z ∈ R as explained in the text). The A, B phases seem to confine static charges, while the C,D phases seem to be

deconfined.

the Wilson loop into Wilson lines acting on the four 1D systems: WC = WbotWleftWtopWright where

these 1D operators have a structure such thatWtop = W
Ď

bot andWleft = W
Ď

right. We obtain



WC(l1,l2)



= |⟨hor|Wbot|hor⟩|
2 |⟨ver|Wleft|ver⟩|

2 . (151)

Such an expectation value vanishes exactly at z = 0, because the finite Wilson lines violate the local

Gauss law in each 1D system. In particular, in the decoupled z = 0 limit, due to the periodic boundary

conditions, each 1D horizontal state is a cat state of the form

|hor⟩ ∝


1 + y2L1


|0, 0, 0, . . .⟩ + yL1 |1, 1, 1, . . .⟩ + yL1 |−1, −1, −1, . . .⟩. (152)

Image taken from Erez Zohar et al., 2015, Annals of Physics
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Extension to 3 spatial dimensions

Fermionic state

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x) ∏
x

A(x) |Ω⟩
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Summary

A Hamiltonian approach shows promising possibilities (time evolution, finite μ)

We can construct a gauged gaussian PEPS (GGPEPS) with local building blocks such that the

state obeys the gauge symmetry

The GGPEPS Ansatz shows confined and non-confined phases

Extension to 3 spatial dimension follows a clear roadmap
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Outlook

Generalization of the Ansatz to 3 spatial dimensions

Variational minimization of the energy in two and three spatial dimensions

Optimization of the Monte Carlo procedure for the sampling
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