From symmetry breaking to symmetry protection

Daniel González Cuadra ICFO – The Institute of Photonic Sciences Quantum Optics Theory Group

13th June 2019

Introduction

Intertwined Topological Phases

 \mathbb{Z}_2 Bose-Hubbard Model

Summary and Outlook

Introduction

Classifying Quantum Matter

Landau's Paradigm

Phases of matter have different symmetries: Gas, solid, ferromagnet, superconductor, etc.

Spontaneous Symmetry Breaking

Different phases are classified using local order parameters :

- $\langle \psi_0(g) | \, \hat{\mathcal{O}} \, | \psi_0(g)
 angle = 0$ for $g < g_{
 m c}$
- $\left<\psi_0(g)\right|\hat{\mathcal{O}}\left|\psi_0(g)\right>
 eq 0$ for $g>g_{
 m c}$

Symmetry-Protected Topological Phases (SPT)

- Symmetry classes
 - 1, 2, 3, 4....

Symmetry-Protected Topological Phases (SPT)

Symmetry Protection

SPT phases are classified using **topological invariants**. They are protected against perturbations that respect the **protecting symmetry** as long as the gap does not close.

Intertwined Topological Phases

SSH Model

Su-Schrieffer-Heeger Model (SSH)

SSH Hamiltonian: electrons + phonons [Su et al, PRL 42, 1698 (1979)]

Theorem [Peierls, 1955] A 1D equally spaced chain with one electron per ion is unstable

Su-Schrieffer-Heeger Model (SSH)

SSH Hamiltonian: electrons + phonons [Su et al, PRL 42, 1698 (1979)]

Theorem[Peierls, 1955]A 1D equally spaced chain with one electron per ion is unstable

Bond Order Wave

 $\langle \hat{c}_i^\dagger \hat{c}_{i+1} + \mathsf{H.c.}
angle \sim 1 + \delta (-1)^i$

Degenerate g.s.

• Inversion Symmetry

Topological invariant: Zak phase

Band insulator: $\varphi_{Zak} = 0$

Topological insulator: $\varphi_{\mathsf{Zak}} = \pi$

 $\varphi_{\mathsf{Zak}} = \int_{\mathsf{BZ}} \mathrm{d}k \left\langle u_{n,k} | \partial_k u_{n,k} \right\rangle \mathrm{mod}2\pi$

Simulating Lattice Dynamics with Spins

DG *et al*, Phys. Rev. Lett. **121**, 090402 (2018) DG *et al*, Phys. Rev. B **99**, 045139 (2019)

$$\begin{split} \hat{H}_{\mathsf{B}\mathsf{H}} &= -t \sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \mathsf{H.c.} \right) + \frac{U}{2} \sum_{i} \hat{n}_{i} (\hat{n}_{i} - 1), \\ \hat{H}_{\mathbb{Z}_{2}} &= -\alpha \sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{\sigma}_{i,i+1}^{z} \hat{b}_{i+1} + \mathsf{H.c.} \right) + \beta \sum_{i} \hat{\sigma}_{i,i+1}^{x}, \\ \hat{H}_{\Delta} &= \frac{\Delta}{2} \sum_{i} \hat{\sigma}_{i,i+1}^{z}, \quad \hat{H}_{\mathbb{Z}_{2}\mathsf{B}\mathsf{H}} &= -\hat{H}_{\mathbb{Z}_{2}} + \hat{H}_{\mathsf{B}\mathsf{H}} + \hat{H}_{\Delta} \end{split}$$

$$\beta (\Delta) (t+\alpha) (t+$$

Half Filling: $\rho = 1/2$

Topological Bond Order Wave (TBOW)

Jordan-Wigner transformation: $U \rightarrow \infty$, $\beta = 0$

$$\hat{H} = -\sum_{i} \left[\hat{c}_{i}^{\dagger} (t + \alpha \hat{\sigma}_{i}^{z}) \hat{c}_{i+1} + \text{h.c.} \right] + \frac{\Delta}{2} \sum_{i} \hat{\sigma}_{i}^{z}$$

Topological Bond Order Wave (TBOW)

Jordan-Wigner transformation: $U \rightarrow \infty$, $\beta = 0$

$$\hat{H} = -\sum_{i} \left[\hat{c}_{i}^{\dagger} (t + \alpha \hat{\sigma}_{i}^{z}) \hat{c}_{i+1} + \text{h.c.} \right] + \frac{\Delta}{2} \sum_{i} \hat{\sigma}_{i}^{z}$$

- Metallic phase $\Delta = 0, \ \Delta \gg \alpha$
- Bond Order Wave $\Delta_c^- < \Delta < \Delta_c^+$

Simulating SSH physics

We obtain an **intertwined topological phase** using a simplified dynamical lattice. Trivial BOW_{1/2}: $\varphi_{Zak} = 0$

Topological BOW_{1/2}: $\varphi_{\mathsf{Zak}} = \pi$

• TBOW_{1/2} survives for $\beta > 0$

New (synthetic) phase of matter

TBOW_{1/2} survives for finite U (Bosonic Peierls Transition).

New (synthetic) phase of matter

TBOW_{1/2} survives for finite U (Bosonic Peierls Transition).

Many-body edge states

- (a) Trivial BOW
- (b) Topological BOW

Interaction-Induced Transition

 $m = \sum_{i} (-1)^{i} \langle \sigma_{i,i+1} \rangle$

Fractional fillings: $\rho = 1/3$, $\rho = 2/3$

DG et al, arXiv:1903.01911 (2019) (accepted in Nat. Commun.)

 \mathcal{T} : translation, \mathcal{I} : inversion, γ : topology

 $\mathcal{O}_1\mathcal{O}_2 = \langle \sigma_1^z - \sigma_2^z \rangle \langle \sigma_2^z - \sigma_3^z \rangle$

12

Self-Adjusting Fractional Pumping

Thouless Pumping

Archimedes's screw

Rice-Mele model

Quantum Pumping

The integrated particle current produced by a slow periodic variation of the potential of a Schrödinger equation in an infinite periodic system with full bands must have an integer value. Thouless, Phys. Rev. B 27, 6083 (1983)

$$\Delta n = -\frac{1}{2\pi} \sum_{n} \int_{0}^{T} \mathrm{d}t \, \int_{\mathrm{BZ}} \mathrm{d}q \, \Omega_{qt}^{n}$$

$$\Omega_{qt}^n = i \left(\langle \partial_q u_n | \partial_t u_n \rangle - \langle \partial_t u_n | \partial_q u_n \rangle \right)$$

 $\hat{H} = -\sum_i \left([t + \delta \cos(\varphi)(-1)^i] \hat{c}_i^\dagger \hat{c}_{i+1} + \text{H.c.} \right) + \Delta \sin(\varphi) \sum_i (-1)^i \hat{n}_i$

Self-Adjusted Fractional Pumping

$$t_k = t + \alpha \langle \sigma_k^z \rangle$$

Transported charge

$$\begin{aligned} P_L(t) &= \frac{1}{L} \sum_j (j - j_0) \left\langle \Psi(t) \right| \hat{n}_j \left| \Psi(t) \right\rangle \\ \Delta P_L(t_i) &= P_L(t_i^+) - P_L(t_i^-) \\ \Delta n_L &= -\sum_i \Delta P_L(t_i) \end{aligned}$$

14

Summary and Outlook

DG *et al*, Phys. Rev. Lett. **121**, 090402 (2018) DG *et al*, Phys. Rev. B **99**, 045139 (2019) DG *et al*, arXiv:1903.01911 (2019) (accepted in Nat. Commun.)

- We model a dynamical lattice using \mathbb{Z}_2 fields
- Simulation of Peierls physics with cold atoms
- Beyond SSH: Bosonic Peierls transition
- **TBOW**: Interaction-induced intertwined topological phase
- Interplay between SSB and SPT: constrained topological transitions and self-adjusted fractional pumping

Special thanks: Alexandre Dauphin, Przemysław R. Grzybowski, Paweł Wójcik, Maciej Lewenstein, Alejandro Bermudez