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Notation

Tensors:

Operations among tensors:
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Tensor Network states

● Express exponentially large tensors

● As contraction of small elementary 
tensors, example matrix product state
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Low entangled states 

Full Hilbert space

Theorems for
 gapped, local Hamiltonians (1D)

 this is the relevant corner 
for low energy states 
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Physics out of a single tensor

● State of an infinite 1D chain 

or infinite                                2D lattice
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Properties of MPS
● The correlations decay exponentially

● There is an area law for entanglement
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Critical ground states

Algebraically decaying correlation functions

Logarithmic increase of entanglement 
entropy 
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Thermodynamic limit

Same region

On larger 

and larger

Systems
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Constructing field theories with 
TN
● Continuous field theory, divergences, regularized 
on the lattice

● Take the continuum
 limit
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 MPS for critical systems?
● The correlations should decay as power

● Rank           should increase with size of A



Numerical results 1D critical MPS 

● Ising model in transverse field 

● We optimize the MPS matrices over 
increasingly large rings with fix D
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Energy results 
● Critical Ising model, gap decreases with the system size

At fixed bond dimension the results deviate from the 
exact line,the deviation is systematic, we can 
extrapolate Pirvu et. al. (LT) 2012LT et al. PRB 08,

see also Nishino et al. 96, Pollman et al. 09 ...



  19

Finite correlation (D) scaling
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Properties of conformal critical 
points in 2D (isolated)

● Correlations decay algebraically

● Area law for entanglement entropy
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Properties of PEPS
● The correlation function are infinite 2D TN and can decay:

- exponentially

-but also algebraically)

● Area law
 for entanglement

Cirac Verstraete 2004 ...
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Numerical results 2D
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Interacting fermions on the 
Honey Comb lattice with iPEPS

Wang et al. 2014
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Slight technical complication, 
Contracting the 2D TN introduces an extra 
parameter

● Morally we have 2 parameters   
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Our relevant parameters

● The distance from the critical point

● The PEPS bond dimension D

● The boundary bond dimension

● We get rid of the last by taking it sufficiently large  
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The order parameter
● The location of the critical point is known 

from Monte-Carlo (dashed line)

● There  m is expected to vanish as  
Wang et al 2014

Corboz...(LT) 2018
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Finite correlation length

● Strong dependence of the correlation 

length on 

● We need to
extrapolate it 
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Order parameter vs correlation 
length
● Using the scaling hypothesis, we expect 

that m scales as 

MonteCarlo prediction 0.65(4) 
Wang et al 2014
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1.356(1) Wang et al (2014) 0.52(3) Wang et al (2014)

Locating the critical point, 
extracting critical exponents 
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The critical exponents

 0.52(3)  0.80(3) Wang et al. (2014)



Applications, extrapolating 
finite D results
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Heisenberg model on the square 
lattice

We plot the square magnetization as a 
function of the correlation length

The state of the art is                        (Sandvik 
2010)  



  36

Outline
● Background

– Tensor networks
– Critical ground states
– MPS for critical systems (D scaling)
– PEPS for critical systems

● Results
– Finitely correlated PEPS,
– Applications, finite correlation length 

scaling and extrapolations 
– TN beyond entanglement



  37

ﾺ

Beyond entanglement 
universality, 
Robustness to approximations,
RG framework



Conclusions part 1
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Finitely correlated TN states

● From our numerical results it seems that both 1D 
and 2D TN states with finite D are finitely correlated.

● This in 1D matches our expectations based on 
entanglement scaling, but in 2D it does not. 

● Once we identify the presence of a finite correlation 
length and understand how to tune it (change D), we 
can use it to unveil universal information about the 
critical points.

● There is life beyond entanglement, robust 
phenomena



Part 2 out of equilibrium



Long time, equilibration
● Surace Piani Tagliacozzo arXiv:1810.01231

see also Levlatan et al  arXiv:1702.08894
C. D. White et al arXiv:1707.01506
….
C. B. Mendl, arXiv:1812.11876
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Translational invariant picture 
Calabrese Cardy
● After a quench, the excess energy produces a 

radiation of correlations

● Can be explained in terms of radiation of 
entangled pseudo-particles

Calabrese Cardy, Phys. Rev. Lett. 96, 136801 (2006).
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Equilibration
● A closed system undergoes unitary dynamics 

and thus does not equilibrate, but keeps rotating

● Locally however the observables relax

● The evolution creates very complex states

● These states locally they look pretty simple



  46

Robustness obtained by   
protecting local correlations 

● If we perform an approximate dynamics that 
protects local correlations we should locally 
equilibrate to the correct state,

● The local dynamic is thus robust against 
changing the long-distance properties of the 
states,

● We can choose the simplest state that has the 
correct local properties, and project the 
dynamics on that state, from pure to mixed 
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TN algorithm  that protects local 
correlations
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Test it on fermionic Gaussian 
states
● Ground states of quadratic Hamiltonian of 

fermionic/bosonic operators are gaussian

● Ground states are completely described by their 
correlation matrices 

See also White  
Fishman (14)
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Practically on the correlation 
matrix

● The relevant correlations are inside a band of size 
m in the correlation matrix

● At the truncation stage all correlation that are 
outside the band are zeroed
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The quench protocol
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Quenches in Ising, using only 
local correlations



  55

Precision of the long time 
predictions
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Physicality of the state



Conclusions
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Conclusions

● There are robust aspects in physics that can be   
predicted with limited computational resources

● Criticality at equilibrium and its universality.
● At short times, the presence and shape of the light cones 
are robust even to the addition of long range interactions

● At long times, the local equilibration process is robust 
once we protect from errors and imperfections  certain 
local correlations

● We can exploit this robustness in order to design 
approximate algorithms that allow to predict those robust 
aspects of the OED.



Part 3 emerging gauge 
symmetry
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Second solution, emerging 
gauge theories 

● Rather than working at the microscopic level, we 
can look for systems where gauge theories are 
known to emerge at low energies (e.g spin 
liquids)

● Natural candidates are fermions on frustrated 
lattice, but this is still challenging 
experimentally

● Here we focus on an exotic bosonic system that 
should be easier to realize [LT4] see also 
seminal works by Pachos, Fisher...
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Exotic bosonic system
● Two species a bosons, and b bosons

● The b bosons don’t interact and form tubes

Dutta LT et al .Phys. Rev. A 95, 053608 (2017)
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Bosonic system 2
● The hopping of the a boson is modulated

– In amplitude

– In phase

● The a bosons are hard-core  



06/17/19

Low energy effective theory

At half filling for a bosons 

The b boson states are all degenerate,
 no interactions, no hopping.

The unperturbed Hamiltonian (a hard-core) 
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Low energy effective theory 2

● We add the y hopping of the a bosons as a 
perturbation

● Second order processes produce an effective 
potential for the b bosons,  
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Four body effective interaction 

● The four body term, depends on the difference 
of occupations inside a plaquette 
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The plaquette algebra 

● The plaquette variable is compact,

● We can introduce the conjugate operator that 
increases, or decreases B  
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Stripes of non interacting plaquettes

● Each column is independent (as a 
consequence of dimerized a bosons)

● We can now add the hopping of b bosons



06/17/19

Inside the column

● Horizontal

● Vertical …. 
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Among the columns
● The hopping of b bosons changes four 

plaquettes ,

That up to a local transformation is equivalent 
to
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Summarizing, low energy bosonic 
model (compact)

● The effective H is 
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Why is it interesting?

● We have a spin/bosonic model (of plaquettes) 
that we can reinterpret as a gauge theory



Until now, 
Integrating out a bosons

From staggered configuration of a bosons, 
we obtain  a gauge theory for b bosons 



Exotic gauge theory

Both monopoles (standard) and dipoles elementary 
excitations (exotic)

Ground state is the vacuum of the plaquettes



Gas of monopoles vs gas of dipoles

Dipoles on the other hand do not screen, so they 
condense but still lead to long-range interactions (see 
Frolich 80s).  

In 2D a Coulomb gas is screened (monopoles), thus 
monopole condense, and theory is confined Polyakov 
(70s).

We can expect to have a phase with a masless photon 
in 2D. 



Sketch of the phase diagram

Deconfined QED3

Based on mapping to an effective action 
(Sine Gordon) for dipoles
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Thank you !!!
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