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The Fermi-Hubbard model: from: Chiu et al., arXiv:1810.03584
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matter physics: by replacing !  with !  and !  with ! , the microscopic fermion !  remains 
unmodified. Hence the effective parton Hamiltonian has a local gauge symmetry, in this case with a U(1) 
gauge group. This can have observable physical consequences, as in the case of  visons — the analogues of 
photons or gluons in a theory with a Z2 gauge group — predicted in cuprates [18], although a direct 
experimental confirmation remains outstanding. In my ERC project we will devise alternative schemes to  
directly observe the underlying universal constituents, i.e. the partons.  
  

Lattice gauge theories (LGTs) [19], characterized by local instead of global symmetries, are closely related 
to quantum spin liquids and topologically ordered states of matter. Kitaev [20] introduced an exactly solvable 
Z2 LGT, the toric code model, and showed that this spin system hosts excitations with non-Abelian anyonic 
statistics. A direct experimental confirmation of such anyons is one of the major goals in physics. In my 
ERC project, I will study Z2 LGTs and their realizations with ultracold atoms. 

Doped quantum magnets & cuprates.— Shortly after high-Tc superconductors were discovered in the cuprate 
compounds [21], it became clear that the superconducting phases arises from a Mott-insulating parent state 
with localized spin-degrees of freedom described by the AFM Heisenberg model [22]. Doping this system 
with electrons or holes quickly destroys the AFM order and introduces superconductivity.  
  

Although a lot more is known today about the characteristic phase diagram shared by the cuprate compounds 
[23], see Fig. 1, many questions remain open. While it is widely believed that the complex interplay of spin 
and charge degrees of freedom is responsible for superconductivity in cuprates — instead of phonons 
leading to pairing in conventional BCS superconductors — the detailed pairing mechanism remains elusive. 
By now it has been established that high-Tc superconductors feature unconventional d-wave pairing [24] 
rather than conventional s-wave pairing, and that the fate of superconductivity at low doping is of a very 
different nature than in the BCS case: the superconducting state is destroyed by strong phase fluctuations 
[25] and it is believed that pre-formed pairs form before long-range phase coherence is established. 
  

The physics of the phases surrounding the superconducting state, 
especially at low doping, remains puzzling. At elevated temperatures, 
the AFM at very low doping turns into to the metallic pseudogap 
phase [26] which crosses over to another metallic state, the strange 
metal [27]. These novel metallic states of the cuprates [28] defy 
Landau’s paradigm: They cannot be described by weakly interacting 
quasiparticles [29], as manifested e.g. in their non-Fermi liquid 
transport properties. New insights about the nature of the charge 
carriers have recently been obtained by measurements of quantum 
oscillations [30]. At lower temperatures, additional ordered phases 
have been observed in which the spins and charges form density 
waves, for example in the famous stripe phase [31]. At low doping, 
strong nematic fluctuations have also been revealed [32].  
  

The overwhelming amount of exotic properties found in cuprates is a 
true challenge. Many of the observed phenomena taken alone require 
extraordinary assumptions to obtain a satisfying theoretical model. 
Numerical techniques mostly fail or become uncontrolled in the 
relevant parameter regimes [33], and a unifying effective theory 
capturing all essential properties of these rich systems is lacking. In 
my ERC project I will not attempt to derive a complete and unifying 
theory of high-temperature superconductivity either. Rather, I will 
approach this decades-old problem from a fresh perspective. 
  

An early contender for a unifying theory of high-Tc superconductivity 
was Anderson’s RVB ansatz [34]. He revoked his earlier idea that the 
ground state could be a quantum spin liquids without long-range order and argued that the system is 
frustrated by the motion of the doped holes, which competes with the AFM spin-exchange interactions. 
Anderson’s theory still stands out today because, in contrast to most contemporary approaches, it is (i) a 
completely microscopic theory formulated on the basis of a trial wavefunction, and (ii) it can explain 
many central aspects of high-Tc superconductors (e.g. d-wave pairing, etc.). One of its main problems, 
however, is, that it fails at very low doping where it cannot capture the competition of spin and charge 
on the most fundamental level. This is one of the starting points for my ERC project.  
  

Many other theoretical approaches have been taken over the years. Here we will mention only two: (i) one 
school of thought is that stripes [31] or, more generally, the density-wave phases are the key to understand 
the cuprate phase diagram [35]. In this approach it is assumed that quantum fluctuations eventually destroy 
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Figure 1: The phase diagram of 
the Fermi-Hubbard or t-J model, 
as conjectured from experiments 
in cuprate compounds, contains 
various exotic phases of matter: 
the anti-ferromagnet (AFM), 
pseudogap (PG), strange metal 
(SM), spin/charge density waves 
(DW), d-wave superconductor 
(d-SC) and Fermi-liquid (FL). 
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we find spin correlations across the entire disk that alternate in sign 
even up to the largest distance of d =  | d|  =  10, as expected for a state 
with antiferromagnetic long-range order. We determine the tempera-
ture of each sample by comparing the measured nearest-neighbour 
correlator C1 to quantum Monte Carlo predictions at half-filling, which 
gives T/t =  0.25(2) for the lowest temperature (Methods).

As temperature increases, the strength of antiferromagnetic order 
decreases rapidly, until for T/t =  0.64(6) only nearest-neighbour spin 
correlations remain. To quantitatively analyse the spin correlations, we 
plot in Fig. 2b a binned azimuthal average of the sign-corrected spin 
correlator (− 1)iCd as a function of distance d (Methods). For large  
distances (d >   2 sites), the measured correlation functions exhibit an 
exponential scaling with distance, verified by fitting N0exp(− d/ξ) to 
each dataset, with the correlation length ξ and N0 as free parameters (but 
keeping N0 the same across all fits). For our two-dimensional system,  
quantum fluctuations lead to an increase in spin correlations at short 
distances (d ≤  2) above the exponential dependence, most prominently 
visible in the nearest-neighbour correlator26. In Fig. 2d we show the 
experimentally determined correlation length as a function of temper-
ature, which increases markedly at temperatures around T/t =  0.4. For 
the lowest temperature, we find a correlation length of ξ =  8.3(9) sites, 
which is approximately equal to the system size of 10 sites, as expected 
for long-range order.

The long-wavelength and low-temperature behaviour of our system 
is expected to be well described by the quantum nonlinear σ model27, 
which contains three fundamental ground-state parameters: the sub-
lattice magnetization M, the spin stiffness constant ρs and the spin-
wave velocity c. The spin stiffness quantifies the rigidity of an ordered 
spin system upon twisting, and has been calculated to be ρs/t ≈  0.13 for 

U/t =  7, slightly below the Heisenberg model value28. Because the tem-
peratures and correlation lengths are independently determined in our 
experiment, we can obtain an experimental value of ρs directly by fitting 
the dependence in equation (2) to the data. The data show excellent 
agreement with the predicted exponential scaling of ξ with T−1 from 
equation (2). From the fit we determine ρs/t =  0.16(1), which is larger 
than the calculated value, possibly owing to finite-size effects (Methods).

Antiferromagnetic long-range order in solid-state systems is typi-
cally detected by neutron scattering or magnetic X-ray scattering. These 
methods measure the spin structure factor at wavevector q =  (qx, qy) 
and along the z direction, given by

∑= 〈 〉 ⎡
⎣
⎢⎢
⋅ − ⎤

⎦
⎥⎥Ω∈

q q r sS
N S

S S i( ) 1 1 ˆ ˆ exp ( )
r s

r s
z

N z z

,
2

In a square lattice, antiferromagnetic long-range order manifests as a 
peak in the structure factor at qAFM =  (π /a, π /a), the amplitude of which 
is directly related to the staggered magnetization: = /qm S N( )z z

AFM . 
For cold atom systems, the spin structure factor can be measured from 
noise correlations or Bragg scattering of light14. The site-resolved detection  
in our experiment enables a direct measurement of the spin structure 
factor, which is obtained from averaging the squared Fourier transfor-
mation of individual single-spin images (Methods). The same result is 
obtained when summing over all contributions of the spin correlation 
function (Extended Data Fig. 3).

For the lowest temperature, we observe a sharp peak in the structure 
factor at q =  qAFM, which confirms the presence of antiferromagnetic 
long-range order (Fig. 2c). For increasing temperatures, the amplitude 
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Figure 1 | Probing antiferromagnetism in the Hubbard model with a 
quantum gas microscope. a, Schematic of the two-dimensional Hubbard 
phase diagram, including predicted phases. We explore the trajectories 
traced by the red arrows for a Hubbard model with U/t =  7.2(2). The 
strongest antiferromagnetic order is observed at the starred point.  
b, Experimental set-up. We trap 6Li atoms in a two-dimensional square 
optical lattice. We use the combined potential of the optical lattice and 
the anticonfinement that is generated by the digital micromirror device 
(DMD) to trap the atoms in a central sample Ω  of homogeneous density, 

surrounded by a dilute reservoir, as shown in the plot. The system is 
imaged with 671-nm light along the same beam path as the projected  
650-nm potential, and separated from it by a dichroic mirror. c, Exemplary 
raw (left) and processed (right) images of the atomic distribution of single 
experimental realizations, with both spin components present (upper; 
corresponding to the starred point in a) and with one spin component 
removed (lower). The observed chequerboard pattern in the spin-removed 
images indicates the presence of an antiferromagnet.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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 Signatures of meson formation:

Ro-vibrational excitations

spins, and the hole is located on the opposite end.
By analyzing their quantum numbers, we note that the
domain wall corresponds to a spinon—it carries half a spin
and no charge—whereas the hole becomes a holon—it
carries charge but no spin. The spinon and holon are the
partons of our model. Because a longer string costs
proportionally more energy, the spinon can never be
separated from the holon. This is reminiscent of quark
confinement.
Partons also play a role in various phenomena of

condensed-matter physics. A prominent example is the
fractional quantum Hall effect [33,34], where electrons
form a strongly correlated liquid with elementary excita-
tions (the partons) which carry a quantized fraction of the
electron’s charge [35–37]. This situation is very different
from the case of magnetic polarons, which we consider
here, because the fractional quasiparticles of the quantum
Hall effect are to a good approximation noninteracting and
can be easily separated. Similar fractionalization has also
been observed in one-dimensional spin chains [38–44],
where holes decay into pairs of independent holons and
spinons as a direct manifestation of spin-charge separation.
Unlike in the situation described by Fig. 1(a), forming a
string costs no energy in one dimension and spinons and
holons are deconfined in this case.
Confined phases of partons are less common in

condensed-matter physics. It was first pointed out by
Béran et al. [45] that this is indeed a plausible scenario
in the context of high-temperature superconductivity, and
the t-J model in particular. In Ref. [45], theoretical
calculations of the dispersion relation and the optical
conductivity of magnetic polarons were analyzed, and it
was concluded that their observations can be well explained
by a parton theory of confined spinons and holons. A
microscopic description of those partons has not yet been
provided, although several models with confined spinon-
holon pairs have been studied [11,12,46].
The most prominent feature of partons that has previ-

ously been discussed in the context of magnetic polarons is
the existence of a set of resonances in the single-hole
spectral function [21,25,28,45,47–49], which can be mea-
sured by angle-resolved photoemission spectroscopy
(ARPES); see, e.g., Ref. [50] for a discussion. Such
long-lived states in the spectrum can be understood as
vibrational excitations of the string created by the motion of
a hole in a Néel state [15,16,18,47,49]. In the parton theory
they correspond to vibrational excitations of the spinon-
holon pair [45], where in a semiclassical picture the string
length is oscillating in time.
In this paper, we present additional evidence for the

existence of confined partons in the two-dimensional t-Jz
model at strong coupling. Using the microscopic parton
theory, we show that besides the known vibrational states,
an even larger number of rotational excitations of magnetic
polarons exist. This leads to a complete analogy with

mesons in high-energy physics, which we discuss next
(Sec. I B). The rotational excitations of magnetic polarons
have not been discussed before, partly because they are
invisible in traditional ARPES spectra. Quantum gas
microscopy [51,52] represents a new paradigm for studying
the t-Jz model, and we discuss below (Sec. I C) how it
enables not only measurements of rotational excitations,
but also direct observations of the constituent partons in
current experiments with ultracold atoms.

B. Rotational excitations of parton pairs

Mesons can be understood as bound states of two quarks
and thus are most closely related to the magnetic polarons
studied in this paper. The success of the quark model in
QCD goes far beyond an explanation of the simplest
mesons, including, for example, pions (π) and kaons
(K). Collider experiments that have been carried out over
many decades have identified an ever-growing zoo of
particles. Within the quark model, many of the observed
heavier mesons can be understood as excited states of the
fundamental mesons. Aside from the total spin s, heavier
mesons can be characterized by the orbital angular momen-
tum l of the quark-antiquark pair [53] as well as the
principle quantum number n describing their vibrational
excitations. In Table I we show a selected set of excited
mesons, together with the quantum numbers of the
involved quark-antiquark pair. Starting from the funda-
mental pion (kaon) state π (K), many rotational states with
l ¼ 1, 2, 3 (P , D, F) can be constructed [53,54] which
have been observed experimentally [55]. By changing n to
two, the excited states πð1300Þ and Kð1460Þ can be
constructed. Because of the deep theoretical understanding
of quarks, all these mesons are considered as composites
instead of new fundamental particles.
Similarly, rotationally and vibrationally excited states of

magnetic polarons can be constructed in the t-Jz model.
They can be classified by the angular momentum (rota-
tional) and radial (vibrational) quantum numbers l and n of
the spinon-holon pair, as well as the spin σ of the spinon.
An important difference to mesons is that we consider a
lattice model where the usual angular momentum is not

TABLE I. Examples of meson resonances corresponding to
rotational (l) and vibrational (n) excitations of the quark-
antiquark pair (qq̄). This list is incomplete and the data were
taken from Ref. [54]. The numbers in brackets denote the mass of
the excited meson state in units of MeV/c2.

n2sþ 1lJ ud̄ us̄

11S0 π K

11P 1 b1ð1235Þ K1B

11D2 π2ð1670Þ K2ð1770Þ
13F4 a4ð2040Þ K%

4ð2045Þ
21S0 πð1300Þ Kð1460Þ

PARTON THEORY OF MAGNETIC POLARONS: MESONIC … PHYS. REV. X 8, 011046 (2018)

011046-3

Amsler et al., Phys. Lett. B 667 (2008)

Gauss-law

Internal structure

the site of the spinon as defined above, and the spin index σ
depends on the sublattice index of site i and is suppressed
in the following. When holon trajectories are included
which are not straight but return to the origin, this label is
not always unique; see Ref. [18] or Sec. IVA. Thus, by
adding the new spinon label to the wave function, we obtain
an overcomplete basis.Wedealwith this issue later in Sec. IV
and argue that the use of the overcomplete basis is a useful
approach.
We also note that the spinon label basically denotes the

site where we initialize the hole and let it move around to
construct the basis of the model. In a previous work by
Manousakis [49], this site has been referred to as the “birth”
site without drawing a connection to the magnetization (the
spin) of the magnetic polaron localized around this site, as
shown in Fig. 6(a).

2. String theory: An overcomplete basis

Our goal in this section is to describe the distortion field
σ̂hi;ji by a conceptually simpler string on the square lattice.
This idea goes back to theworks byBulaevskii et al. [15] and
Brinkman and Rice [16], as well as works by Trugman [18]
and more recently byManousakis [49]. In Refs. [18,49] a set
of variational states was introduced, based on the intuition
that the holon leaves behind a string of displaced spins;
see Fig. 4.
Replacing the basis.—Within the approximations so far,

the orthogonal basis states are labeled by the value of the
distortion field σ̂zhi;ji on all bonds and the spinon and holon
positions:

ŝ†j j0iĥ
†
i j0ijfσzhi;jighi;jii: ð10Þ

The string description can be obtained by replacing this
basis by a closely related, but conceptually simpler, set of
basis states.

When the holon propagates in the Néel state, starting
from the spinon position, it modifies the distortion field
σ̂zhi;ji differently depending on the trajectory Σ it takes.
Here, we use the convention that trajectories Σ are defined
only up to self-retracing components, in contrast to paths,
which contain the complete information where the holon
went. The holon motion thus creates a memory of its
trajectory in the spin environment.
Given a trajectory Σ and the spinon position, we can

easily determine the corresponding distortion field
σ̂zhi;jiðΣ; xsÞ. In the following we assume that for all relevant
quantum states, the opposite is also true. Namely, that given
the distortion of the Néel state σ̂zhi;ji, we can reconstruct the
trajectory Σ defined up to self-retracing components, as
well as the spinon position. We show that this is an
excellent approximation. Using a quantum gas microscope
this one-to-one correspondence can be used for accurate
measurements of holon trajectories Σ in the Néel state
by imaging instantaneous spin and hole configurations.
We analyze the efficiency of this mapping in detail in
Sec. III D.
In some cases our assumption is strictly correct, for

example, in the one-dimensional Ising model. In that case
the spinon corresponds to a domain wall in the antiferro-
magnet; see Fig. 5(a). When its location is known, as well
as the distance of the holon from the spinon (i.e., the
trajectory Σ), the spin configuration σ̂zhi;ji can be recon-
structed; see Fig. 5(b). A second example, which is
experimentally relevant for ultracold atoms, involves a
model where the hole can only propagate along one
dimension inside a fully two-dimensional spin system [97].
For the fully two-dimensional magnetic polaron prob-

lem, there exist sets of different trajectories Σ which give
rise to the same spin configuration σ̂zhi;ji. Trugman has
shown [18] that the leading-order cases correspond to
situations where the holon performs two steps less than

FIG. 6. Partons forming the magnetic polaron. The spinon is defined as the end of the string of distorted spins created by the motion of
the spinless holon. Their position operators are denoted by X S and X h, respectively. (a) The spinon corresponds to a localized magnetic
moment, as can be seen from the magnetization hŜzðx − xsÞi calculated in the frame comoving with the spinon. (b) In the frame
comoving with the holon, in contrast, the magnetization hŜzðx − xhÞi is extended over an area a few lattice sites wide. (c) The charge
hn̂hðx − xsÞi calculated in the spinon frame is extended over a similar area around the spinon. We have performed calculations for the
nonlinear string theory of the t-Jz model as described in the text, at Jz ¼ 0.1t, S ¼ 1/2, and for a maximum string length lmax ¼ 10.
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by imaging instantaneous spin and hole configurations.
We analyze the efficiency of this mapping in detail in
Sec. III D.
In some cases our assumption is strictly correct, for

example, in the one-dimensional Ising model. In that case
the spinon corresponds to a domain wall in the antiferro-
magnet; see Fig. 5(a). When its location is known, as well
as the distance of the holon from the spinon (i.e., the
trajectory Σ), the spin configuration σ̂zhi;ji can be recon-
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FIG. 1. Analysis of a doped Hubbard chain. (A) Experimental spin and density resolved picture of a single, slightly-doped
Hubbard chain after a local Stern-Gerlach-like detection. The reconstructed chain is shown below the picture. (B) Illustration
of the magnetic environment around a hole. For aligned spins the hole cannot freely delocalize due to the magnetic energy
cost J , which is absent for anti-aligned spins. (C) Illustration of hole induced AFM parity flips, squeezed space and string
correlator. Hole doping leads to AFM parity flips highlighted by the color mismatch between the spins and the background
(top). Squeezed space is constructed by removing all sites with holes from the chain (bottom left). In the string correlator
analysis the flip in the AFM parity is canceled by a multiplication of �1 for each hole (bottom right). Comparing either of
these analyses to the conventional two-point correlator reveals the hidden finite-range AFM order in the system.

lations with distance that is faster than the one of the
Heisenberg model [3]. This decay can be understood from
spin-charge separation, allowing holes to freely move in
the AFM spin-chain. Consequently, the spins around the
hole are anti-aligned and the sign of the staggered mag-
netization (�1)iSz

i
, called AFM parity, changes. This

implies that a hole acts as a domain wall of the AFM
parity, which reduces the spin correlations. The spin or-
der however, is still present and can be revealed either in
squeezed space by effectively removing the holes in the
analysis or by evaluating string correlators, which take
the AFM parity domain walls into account by flipping
the sign of the correlator (Fig. 1C). Analytic and numer-
ical studies[18] have shown that at zero temperature, the
two-point spin correlations in squeezed space are com-
parable to the ones of a pure Heisenberg chain, for any
doping and any repulsive interaction U . This is readily
understood in the U/t ! 1 limit, where the many-body
wave function  ({xj,�}) =  ch({xj}) s({x̃j,�}) factor-
izes exactly into a density  ch and a spin  s part [15, 28].
The spin degree of freedom is described by a Heisenberg
model in squeezed space with the spins "living" on a lat-
tice defined by the positions of spinless, non-interacting
fermions [16]. Distances in squeezed space are rescaled
by the spinless fermion density x̃ ⇠ nx. Also at non-zero
temperature and finite interactions, the spin correlations
in squeezed space are governed by a Heisenberg model
with a renormalized exchange coupling Jeff(n) that de-
pends on the original density n [27].

The experiment started with a two-dimensional degen-
erate two-component Fermi gas. Using the large spacing
component of an optical superlattice (asl = 2.3µm),
the system was divided into about ten independent
one-dimensional tubes. The Fermi Hubbard chains
were then realized using a lattice of 1.15µm spacing
along the tubes. The atom number was set such that

the maximum density in the chains was typically just
below unity. At the final lattices depths the tunneling
amplitude reached t = h ⇥ 400Hz, and the confinement
due to the lattice beams fixed the length of the central
tubes to about 15 sites. The onsite repulsion U was
tuned to h⇥2.9 kHz using the broad Feshbach resonance
between the hyperfine states |#i = |F,mF i = |1/2,�1/2i
and |"i = |1/2, 1/2i to set a scattering length of 2000
Bohr radii at the end of the lattice ramps. These
parameters and the lattice ramps have been optimized
to produce cold, strongly interacting doped Hubbard
chains [27]. For the detection of the spin and density
degrees of freedom the lattice depth along the tubes
was rapidly increased, followed by a local Stern-Gerlach
like detection using a magnetic field gradient and the
short scale component of a superlattice transverse to the
tubes [25]. Applying Raman sideband cooling for 500
ms, we collected fluorescence photons on an EMCCD
camera to form a high contrast and site resolved image
of the atomic distribution [22] as shown in Fig. 1A.
From comparison of the measured spin-correlations at
half filling to Quantum Monte-Carlo results [25], we
estimated the temperature in the central chains to be
0.51(2) t or 0.90(3) J , which corresponds to an entropy
per particle of 0.63(2)kB .

To investigate the magnetic environment around a
hole, we calculate the conditional three-point spin-hole
correlation function CSH(2) = 4 hŜz

i
Ŝ
z

i+2i i#i+1 i+2
,

where the symbols describe the condition that the corre-
lator is only evaluated on configurations with the sites i

and i+2 singly occupied and the middle site empty [27].
The correlator indeed reveals anti-alignment of the spins
around individual holes (CSH(2) < 0) and Fig. 2A high-
lights the hole induced sign change by comparison to the

Hilker et al., Science 357 (2017)



Fabian Grusdt

The 1D t-J model

 11

Microscopic considerations — 1D
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Chargon motion keeps relative 
spin orientations intact!

Fractional spin excitation!

Spinon formation where hole was created!
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Spin-charge separation:
spinon

chargon

Ogata & Shiba, PRB 41 (1990)
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Solution of 1D t-J model by re-labeling
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Squeezed space: Ground state wavefunction: t � J

1D quant. Heisenberg AFM:
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FIG. 3. Effect of hole doping on spin order. (A) Com-
parison of the spin correlation function (blue) C(d) and the
spin-string correlation function (red) Cstr(d) averaged over
all local densities in the trap. The spin order is not visible
with the conventional two-point spin correlator, but can be re-
vealed by disentangling spin and charge sector with the string
correlator. The extracted exponential decay length of 1.2(1)
sites matches the one extracted at unity filling (cf. Fig. 1).
The insets show the data binned by density (bin widths 0.1)
for hni = 0.4 (blue), hni = 0.7 (red) and hni = 1 (green). Fi-
nite range AFM order in the conventional correlator C(d) is
present at hni = 1, while it quickly gets suppressed when
the system is doped away from half filling. At the same
time we observe an increasing periodicity of the two-point
spin correlations with decreasing density (left). In contrast,
string correlations Cstr(d) only marginally depend on den-
sity (right). Solid lines are guides to the eye. (B) Spin
correlation measured directly in squeezed space for d̃ = 1
(blue), d̃ = 2 (red) and d̃ = 3 (green) as a function of den-
sity n (bin widths 0.05). Dotted lines represent spin correla-
tions C(1) and C(2) in the Heisenberg model for temperatures
T/J = 0.6, 0.8, 1.0 obtained by exact diagonalization with a
coupling constant Jeff(n). The correlation decreases with in-
creasing ratio T/Jeff(n). All correlations shown are corrected
for the constant finite size offset [27].

C
str(d) (Fig. 3A). When analyzing the data in regions

of fixed density, we additionally observe an increasing
periodicity of the AFM correlations with decreasing den-
sity [3]. The amplitude of the string correlations, on the
other hand, even slightly increase in magnitude at a given

real space distance d which we attribute to the decreasing
distance d̃ ⇠ nd in squeezed space [27].

An analysis of the correlations directly in squeezed
space is also possible with the quantum gas microscope
by removing the empty and doubly occupied sites in the
analysis before evaluating the standard two-point corre-
lator C(d). This corresponds to a weighted summation
along the diagonals of Fig. 2B, and thus mixes events
that had different distances in real space. Similar to the
string correlator, the squeezed space analysis (Fig. 3B)
reveals the finite-range hidden antiferromagnetic order.
A quantitative comparison to a Heisenberg model with
renormalized coupling Jeff(n), that decreases with dop-
ing, agrees well at a temperature of T = 0.87(2) J ,
which demonstrates that the concept of squeezed space
can be successfully applied even away from the U/t ! 1
limit [29]. Here, Jeff was determined independently from
the microscopic parameters of the Hubbard model [27].
The discrepancy between theory and experiments at den-
sities below 0.45 might arise from adiabatic cooling when
decreasing the density during the preparation of the
chains.

In order to further confirm the independence of the
spin and density sectors, we define a tailored string cor-
relator

C
str
SH

(d, s) = 4

*
Ŝ
z

i

0

@
d�1Y

j=1,j 6=s

(�1)(1�n̂i+j)

1

A Ŝ
z

i+d

+

 i#i+s i+d

which isolates the effect of a single hole at distance s from
the first spin independent of the density. Here, the effect
of extra charge fluctuations is taken care of by inserting
string correlators around the hole. For a system with a
single hole this correlator is identical to the three-point
correlation function introduced before C

str
SH

= CSH . The
dependence of Cstr

SH
on the spin separation d and the po-

sition of the hole in the string s is shown in Fig. 4A. For
s = 0 and s = d the hole crosses one of the two spins,
which causes the previously discussed AFM parity flip,
while the correlation signal is almost independent of the
position of the hole between the two spins. This observa-
tion emphasizes spin-charge separation by the absence of
polaron-like effects, which would result in a local change
of the spin correlations around the hole. The rectified
correlator (�1)dCstr

SH
(d, s) in Fig. 4B highlights the two

domains of opposite AFM parity, demonstrating that the
hole acts as a domain wall for the magnetic order [30]. To
emphasize the symmetries of the three-point correlator,
the position of the hole is measured here relative to the
center of mass of the two spins.

Through the analysis of various local and non-local
correlation functions our measurements revealed strik-
ing equilibrium signatures of spin-charge separation in
one-dimensional Hubbard chains. An interesting exten-
sion of this work would be the detection of dynamic sig-
natures of spin-charge separation in quench experiments
through the measurements of different spin and charge
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FIG. 3. Effect of hole doping on spin order. (A) Com-
parison of the spin correlation function (blue) C(d) and the
spin-string correlation function (red) Cstr(d) averaged over
all local densities in the trap. The spin order is not visible
with the conventional two-point spin correlator, but can be re-
vealed by disentangling spin and charge sector with the string
correlator. The extracted exponential decay length of 1.2(1)
sites matches the one extracted at unity filling (cf. Fig. 1).
The insets show the data binned by density (bin widths 0.1)
for hni = 0.4 (blue), hni = 0.7 (red) and hni = 1 (green). Fi-
nite range AFM order in the conventional correlator C(d) is
present at hni = 1, while it quickly gets suppressed when
the system is doped away from half filling. At the same
time we observe an increasing periodicity of the two-point
spin correlations with decreasing density (left). In contrast,
string correlations Cstr(d) only marginally depend on den-
sity (right). Solid lines are guides to the eye. (B) Spin
correlation measured directly in squeezed space for d̃ = 1
(blue), d̃ = 2 (red) and d̃ = 3 (green) as a function of den-
sity n (bin widths 0.05). Dotted lines represent spin correla-
tions C(1) and C(2) in the Heisenberg model for temperatures
T/J = 0.6, 0.8, 1.0 obtained by exact diagonalization with a
coupling constant Jeff(n). The correlation decreases with in-
creasing ratio T/Jeff(n). All correlations shown are corrected
for the constant finite size offset [27].

C
str(d) (Fig. 3A). When analyzing the data in regions

of fixed density, we additionally observe an increasing
periodicity of the AFM correlations with decreasing den-
sity [3]. The amplitude of the string correlations, on the
other hand, even slightly increase in magnitude at a given

real space distance d which we attribute to the decreasing
distance d̃ ⇠ nd in squeezed space [27].

An analysis of the correlations directly in squeezed
space is also possible with the quantum gas microscope
by removing the empty and doubly occupied sites in the
analysis before evaluating the standard two-point corre-
lator C(d). This corresponds to a weighted summation
along the diagonals of Fig. 2B, and thus mixes events
that had different distances in real space. Similar to the
string correlator, the squeezed space analysis (Fig. 3B)
reveals the finite-range hidden antiferromagnetic order.
A quantitative comparison to a Heisenberg model with
renormalized coupling Jeff(n), that decreases with dop-
ing, agrees well at a temperature of T = 0.87(2) J ,
which demonstrates that the concept of squeezed space
can be successfully applied even away from the U/t ! 1
limit [29]. Here, Jeff was determined independently from
the microscopic parameters of the Hubbard model [27].
The discrepancy between theory and experiments at den-
sities below 0.45 might arise from adiabatic cooling when
decreasing the density during the preparation of the
chains.

In order to further confirm the independence of the
spin and density sectors, we define a tailored string cor-
relator
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which isolates the effect of a single hole at distance s from
the first spin independent of the density. Here, the effect
of extra charge fluctuations is taken care of by inserting
string correlators around the hole. For a system with a
single hole this correlator is identical to the three-point
correlation function introduced before C

str
SH

= CSH . The
dependence of Cstr

SH
on the spin separation d and the po-

sition of the hole in the string s is shown in Fig. 4A. For
s = 0 and s = d the hole crosses one of the two spins,
which causes the previously discussed AFM parity flip,
while the correlation signal is almost independent of the
position of the hole between the two spins. This observa-
tion emphasizes spin-charge separation by the absence of
polaron-like effects, which would result in a local change
of the spin correlations around the hole. The rectified
correlator (�1)dCstr

SH
(d, s) in Fig. 4B highlights the two

domains of opposite AFM parity, demonstrating that the
hole acts as a domain wall for the magnetic order [30]. To
emphasize the symmetries of the three-point correlator,
the position of the hole is measured here relative to the
center of mass of the two spins.

Through the analysis of various local and non-local
correlation functions our measurements revealed strik-
ing equilibrium signatures of spin-charge separation in
one-dimensional Hubbard chains. An interesting exten-
sion of this work would be the detection of dynamic sig-
natures of spin-charge separation in quench experiments
through the measurements of different spin and charge
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 Dynamical probe of parton formation:
Experiment Gross/Bloch group, MPQ
J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

Fig. 1. Probing spin-charge deconfinement with cold atoms. A, Cartoon depicting
fractionalization of a fermionic excitation into quasiparticles. The dynamics is initiated
by removing a fermion from the Hubbard chain. This quench creates a spin (spinon) and
a charge (holon) excitation, which propagate along the chain at di↵erent velocities vJ and
vt. B, Using quantum gas microscopy, we simultaneously detect the spin and density on
every site of the chain after a variable time after the quench. C, Average number of holes
in the chain a function of time. Error bars denote 1 s.e.m. The quench, performed at 0
ms creates a hole with a probability of ⇠ 78% in the central site of the chain (bottom).
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n̂h
i

n̂h i

Fig. 2. Time evolution of spin and charge excitations. A, Hole density distribu-
tion hn̂h

i i as a function of time after the quench. The wavefront of the distribution starts
at the center of the chain and expands outwards linearly with time. Interference peaks
and dips are visible throughout the dynamics, indicating the coherent evolution of the
charge excitation. B, One-dimensional cuts of the experimental hole density distributions
at times 0 ⌧t, 1.88 ⌧t and 3.77 ⌧t (blue circles) are compared with simulations of a single
particle quantum walk (grey squares). C, Nearest neighbor squeezed space spin correla-
tion C(x̃ = 1) distribution as a function of time after the quench. D, One-dimensional
cuts of the experimental C(x̃ = 1) distributions at times 0 ⌧J , 1.54 ⌧J and 3.08 ⌧J (red cir-
cles) along with exact diagonalization simulations of the Heisenberg model (grey squares).
Error bars denote 1 s.e.m.
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Fig. 2. Time evolution of spin and charge excitations. A, Hole density distribu-
tion hn̂h

i i as a function of time after the quench. The wavefront of the distribution starts
at the center of the chain and expands outwards linearly with time. Interference peaks
and dips are visible throughout the dynamics, indicating the coherent evolution of the
charge excitation. B, One-dimensional cuts of the experimental hole density distributions
at times 0 ⌧t, 1.88 ⌧t and 3.77 ⌧t (blue circles) are compared with simulations of a single
particle quantum walk (grey squares). C, Nearest neighbor squeezed space spin correla-
tion C(x̃ = 1) distribution as a function of time after the quench. D, One-dimensional
cuts of the experimental C(x̃ = 1) distributions at times 0 ⌧J , 1.54 ⌧J and 3.08 ⌧J (red cir-
cles) along with exact diagonalization simulations of the Heisenberg model (grey squares).
Error bars denote 1 s.e.m.
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Spin-charge deconfinement
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 Dynamical probe of parton formation:
Experiment Gross/Bloch group, MPQ
J. Vijayan*, P. Sompet* et al., arXiv:1905.13638
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 Dynamical probe of parton formation:
Experiment Gross/Bloch group, MPQ
J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

Fig. 3. Quasiparticle velocities of spinons and holons. A, Time evolution of
the widths of the hole density distributions (blue circles) and nearest neighbour spin
correlation distributions (red circles) after the quench. The measured widths are defined
as the full width at 30% of maxima of the distributions (see inset). Density and spin
excitations reach the edge of the unity filled region of the chain (central 9 sites) after
di↵erent evolution times. Their dynamics are in quantitative agreement with both a single
particle quantum walk for hole and exact diagonalization calculations of the Heisenberg
model for the spin (grey squares). They are also found to reproduce the predictions of the
extended t�J model (grey dashed lines). The velocities of the spin (0.58±0.04 sites/ms)
and the charge (3.08± 0.09 sites/ms) excitations are obtained as half the slope of a linear
fit (solid blue and red lines) of the widths ignoring the width immediately after the quench.
B, Holon velocities as a function of t/h. The velocities of the holon (blue circles) increase
linearly with the tunneling rate in the chain, consistent with vt

max
= 4⇡tax/h sites/ms

(blue dahsed line). C, Spin excitation velocities as a function of J/h. The velocities of
the spin excitation (red circles) increase linearly with the spin-exchange coupling in the
chain, consistent with vJ

max
= ⇡2Jax/h sites/ms (red dashed line). Error bars denote 1

s.e.m.
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Meson formation in 2D 
— geometric strings —

Theory collaboration: 
Annabelle Bohrdt, Michael Knap, 
Zheng Zhu, and Eugene Demler
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Long-range anti-ferromagnet in 2D:
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 Dynamical probe of parton formation:
MPS simulations: A. Bohrdt
M. Zaletel et al., PRB 91 (2015)
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fast ballistic 
expansion

cross-over

slow ballistic 
expansion

A. Bohrdt, FG, M. Knap, in prep.
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 Dynamical probe of parton formation:
MPS simulations: Annabelle Bohrdt
M. Zaletel et al., PRB 91 (2015)

Release hole in 2D

fast ballistic 
expansion

cross-over

slow ballistic 
expansion

meson theory

A. Bohrdt, FG, M. Knap, in prep.

preliminary
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Parton-picture of magnetic polarons:

Chargon motion quickly distorts 
2D Neel state!

Chargon is bound to the fractional 
spin (spinon) at end of string!

E / J ⇥ `

Fractional spin excitation!

`

t  ! `⇥ Jcompetition: > emergent length scale!
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number not conserved!

- weak polaronic dressing! 
- Decay of excited states!

magnon

effective mass:

Born-Oppenheimer:      
strong-coupling expansion!

chargon

hopping within one sub-lattice

effective mass:spinon

Parton-picture of magnetic polarons:

Grusdt et al., PRX 8 (2018)Beran et al., Nuc.Phys.B (1996)
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 Dynamical probe of parton formation:
MPS simulations: Annabelle Bohrdt
M. Zaletel et al., PRB 91 (2015)

Release hole in 2D

A. Bohrdt, FG, M. Knap, in prep.

free chargon motion

confinement sets in

free center-of-mass motion 
— dominated by spinon!

preliminary
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Solution of 2D t-J model by re-labeling

Grusdt et al., arXiv:1901.01113
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2D QHAF

Grusdt et al., PRX 8 (2018)
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 Focus on charge fluctuations (fastest)
- Frozen spin approximation (FSA): consider only chargon motion 
- Chargon motion assumed to create memory of its trajectory
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Grusdt et al., PRX 8 (2018)

6

FIG. 4. Frozen spin approximation. In the approxi-
mate FSA basis we only allow processes where the motion of
the chargon displaces the surrounding spins without changing
their quantum states. As a result, nearest neighbor correla-
tions Cey – red – (next-nearest neighbor correlations Cex+ey

– yellow – respectively) in the frozen spin background (a) con-
tribute to next-nearest neighbor correlators (nearest neighbor
correlators respectively) measured in states with longer string
lengths (b). This leads to the approximately linear string ten-
sion, Eq. (10), binding spinons to chargons.

Ref. [38]. When t � J , we expect that the chargon delo-
calizes until the energy cost for distorting the spin con-
figuration around js matches the kinetic energy gain. To
describe such chargon fluctuations we apply the ”frozen-
spin approximation” (FSA) [28, 44]: We assume that
the motion of the hole merely displaces the surround-
ing spins, without changing their quantum state or their
entanglement with the remaining spins. When the char-
gon moves along a trajectory C starting from the spinon,
it leaves behind a string ⌃ of displaced spins, which thus
change their corresponding lattice sites. This so-called
geometric string is defined by removing self-retracing
paths from C. For example, the spin operator located
at site j̃ initially, becomes S̃j̃ = Ŝj̃�ex

when the chargon

moves from j̃ � ex to j̃ along the string ⌃, see Fig. 4.

The geometric string construction provides the desired
generalization of squeezed space from 1D [25, 29–31] to
2D systems: the spins are labeled by their original lat-
tice sites j̃ before the chargon is allowed to move. We call
this space, which excludes the lattice site js where the
spinon is located, the 2D squeezed space. The motion of
the chargon along a string ⌃ changes the lattice geome-
try: the labels j̃ no longer correspond to the actual lattice
sites occupied by the spins. In particular, this changes
the connectivity of the lattice, and spins which are NN
in squeezed space can become next-nearest neighbors in
real space. Hence, in this ”geometric string” formulation
the Ĥt part of the t�J Hamiltonian is understood as in-
troducing quantum fluctuations of the underlying lattice
geometry. For an illustration, see Fig. 4.

When t � J , but before the Nagaoka regime is reached
around J/t ⇡ 0.05, the spins in squeezed space do not
have su�cient time to adjust to the fluctuating lattice
geometry introduced by the chargon motion. We note
that the shape and orientation of the geometric string
are strongly fluctuating, which leads to spatial averaging
of the e↵ects of the string on the spins in squeezed space.
This averaging is very e�cient because the string is in a
superposition of various possible configurations, the to-

tal number of which grows exponentially with the aver-
age string length. Hence the average e↵ect on a given
spin in squeezed space is strongly reduced, which pro-
vides a justification for the FSA ansatz. More technically,
this means that the coupling of the fluctuating string to
(para-) magnon excitations in squeezed space is weak and
can be treated perturbatively.
Now we formalize our approach. When the chargon

moves along a string ⌃, starting from the state |js,�, 0i
in Eq. (6), the many-body state within FSA becomes

|js,�,⌃i = Ĝ⌃ĥ
†
js f̂js,�| 0i. (7)

Here the string operator, defined by

Ĝ⌃ =
Y

hi,ji2⌃

✓
ĥ†
i ĥj

X

⌧=",#
f̂†
j,⌧ f̂i,⌧

◆
, (8)

creates the geometric string by displacing the spin states
along ⌃. The product

Q
hi,ji2⌃ is taken over all links

hi, ji which are part of the string ⌃, starting from the
valence spinon position js.
In a 2D classical Néel state, | N

0 i = |... "#" ...i, most
string states |js,�,⌃i are mutually orthonormal. Spe-
cific configurations, so-called Trugman loops [34], consti-
tute an exception, but within an e↵ective tight-binding
theory it has been shown that this only causes a weak
renormalization of the spinon dispersion [38]. Since the
ground state | 0i of the infinite 2D Heisenberg model
has strong AFM correlations, similar to a classical Néel
state, we expect that the assumption that string states
form an orthonormal basis remains justified. To check
this, we calculated all such states with string lengths up
to `  4 and arbitrary spinon positions js using exact
diagonalization (ED) in a 4 ⇥ 4 system. We found that
|hjs 0,�,⌃0|js,�,⌃i|2 < 0.06 unless ⌃ = ⌃0 or ⌃ and ⌃0

are related by a Trugman loop.
Now we will follow the example of Rokhsar and Kivel-

son: They introduced their celebrated dimer model [50]
by defining a new basis which reflects the structure of the
low-energy many-body Hilbert space in a class of micro-
scopic spin systems. Similarly, we will postulate in the
context of the FSA that all string states are mutually
orthonormal. This defines the new basis of string states
|js,�,⌃i which is at the heart of the FSA. Note, however,
that we will return to the full physical Hilbert space of
the original t� J model later.
For a spinon with spin � fixed at js, the e↵ective string

Hilbert space |js,�,⌃i has the structure of a Bethe lat-
tice, or a Cayley graph. Its depth reflects the maximum
length of the geometric string ⌃, and the branches cor-
respond to di↵erent directions of the individual string
elements. The e↵ective Hamiltonian Ĥt

e↵ describing the
chargon motion, i.e. fluctuations of the geometric string,
consists of hopping matrix elements t between neighbor-
ing sites of the Bethe lattice. In addition, the J-part ĤJ

of the t� J model gives rise to a potential energy term.
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Ref. [38]. When t � J , we expect that the chargon delo-
calizes until the energy cost for distorting the spin con-
figuration around js matches the kinetic energy gain. To
describe such chargon fluctuations we apply the ”frozen-
spin approximation” (FSA) [28, 44]: We assume that
the motion of the hole merely displaces the surround-
ing spins, without changing their quantum state or their
entanglement with the remaining spins. When the char-
gon moves along a trajectory C starting from the spinon,
it leaves behind a string ⌃ of displaced spins, which thus
change their corresponding lattice sites. This so-called
geometric string is defined by removing self-retracing
paths from C. For example, the spin operator located
at site j̃ initially, becomes S̃j̃ = Ŝj̃�ex

when the chargon

moves from j̃ � ex to j̃ along the string ⌃, see Fig. 4.

The geometric string construction provides the desired
generalization of squeezed space from 1D [25, 29–31] to
2D systems: the spins are labeled by their original lat-
tice sites j̃ before the chargon is allowed to move. We call
this space, which excludes the lattice site js where the
spinon is located, the 2D squeezed space. The motion of
the chargon along a string ⌃ changes the lattice geome-
try: the labels j̃ no longer correspond to the actual lattice
sites occupied by the spins. In particular, this changes
the connectivity of the lattice, and spins which are NN
in squeezed space can become next-nearest neighbors in
real space. Hence, in this ”geometric string” formulation
the Ĥt part of the t�J Hamiltonian is understood as in-
troducing quantum fluctuations of the underlying lattice
geometry. For an illustration, see Fig. 4.

When t � J , but before the Nagaoka regime is reached
around J/t ⇡ 0.05, the spins in squeezed space do not
have su�cient time to adjust to the fluctuating lattice
geometry introduced by the chargon motion. We note
that the shape and orientation of the geometric string
are strongly fluctuating, which leads to spatial averaging
of the e↵ects of the string on the spins in squeezed space.
This averaging is very e�cient because the string is in a
superposition of various possible configurations, the to-

tal number of which grows exponentially with the aver-
age string length. Hence the average e↵ect on a given
spin in squeezed space is strongly reduced, which pro-
vides a justification for the FSA ansatz. More technically,
this means that the coupling of the fluctuating string to
(para-) magnon excitations in squeezed space is weak and
can be treated perturbatively.
Now we formalize our approach. When the chargon

moves along a string ⌃, starting from the state |js,�, 0i
in Eq. (6), the many-body state within FSA becomes

|js,�,⌃i = Ĝ⌃ĥ
†
js f̂js,�| 0i. (7)

Here the string operator, defined by

Ĝ⌃ =
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i ĥj

X

⌧=",#
f̂†
j,⌧ f̂i,⌧

◆
, (8)

creates the geometric string by displacing the spin states
along ⌃. The product

Q
hi,ji2⌃ is taken over all links

hi, ji which are part of the string ⌃, starting from the
valence spinon position js.
In a 2D classical Néel state, | N

0 i = |... "#" ...i, most
string states |js,�,⌃i are mutually orthonormal. Spe-
cific configurations, so-called Trugman loops [34], consti-
tute an exception, but within an e↵ective tight-binding
theory it has been shown that this only causes a weak
renormalization of the spinon dispersion [38]. Since the
ground state | 0i of the infinite 2D Heisenberg model
has strong AFM correlations, similar to a classical Néel
state, we expect that the assumption that string states
form an orthonormal basis remains justified. To check
this, we calculated all such states with string lengths up
to `  4 and arbitrary spinon positions js using exact
diagonalization (ED) in a 4 ⇥ 4 system. We found that
|hjs 0,�,⌃0|js,�,⌃i|2 < 0.06 unless ⌃ = ⌃0 or ⌃ and ⌃0

are related by a Trugman loop.
Now we will follow the example of Rokhsar and Kivel-

son: They introduced their celebrated dimer model [50]
by defining a new basis which reflects the structure of the
low-energy many-body Hilbert space in a class of micro-
scopic spin systems. Similarly, we will postulate in the
context of the FSA that all string states are mutually
orthonormal. This defines the new basis of string states
|js,�,⌃i which is at the heart of the FSA. Note, however,
that we will return to the full physical Hilbert space of
the original t� J model later.
For a spinon with spin � fixed at js, the e↵ective string

Hilbert space |js,�,⌃i has the structure of a Bethe lat-
tice, or a Cayley graph. Its depth reflects the maximum
length of the geometric string ⌃, and the branches cor-
respond to di↵erent directions of the individual string
elements. The e↵ective Hamiltonian Ĥt

e↵ describing the
chargon motion, i.e. fluctuations of the geometric string,
consists of hopping matrix elements t between neighbor-
ing sites of the Bethe lattice. In addition, the J-part ĤJ

of the t� J model gives rise to a potential energy term.

Grusdt et al., arXiv:1901.01113 (accepted in PRB)
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Internal structure of mesons 
— rotational excitations —
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spinon

chargon
meson:

| i ⇡ | h(⌃)i ⌦ | spi ⌦ | 0isqz

string wavefunction 
— charge fluctuations

• Bethe lattice model

4

can be extracted as before. For both quantities, linear
string theory combined with spinon dynamics yields
remarkable agreement with the numerical simulations.

Infinite temperature.– In quantum gas microscopy
experiments, the temperature is always finite, with the
lowest achieved values to date of T/J = 0.5. The results
presented so far were based on the ground state of
the spin system, where long-range spin correlations are
present. At finite temperature, the chargon dynamics
should be well described by the linear string theory as
long as the short range spin-correlation and thereby the
string tension are finite.
While numerical simulations of dynamics starting from
a finite temperature state in a two dimensional system
are challenging, the limit of infinite temperature can
be studied by considering an ensemble of random
product states. In this case, all spin correlations are on
average zero and correspondingly the string tension is
zero. Nonetheless, the hole motion is associated with
a memory e↵ect in the spin system, since in general
di↵erent paths taken by the hole lead to di↵erent spin
configurations. In the case of J ⇡ 0, the hole dynamics
can be approximated by a quantum random walk on
the Bethe lattice, which assumes that all paths are
distinguishable. Mapping back to the square lattice, this
translates to di↵usive behavior. For the spin 1/2-system
considered here, di↵erent paths of the hole can lead
to the same spin configuration. As a consequence, the
di↵usive behavior expected for a system of infinite spin
will be slightly modified. In Fig. 4, the root mean square
distance of the hole to its initial point is shown. On
a cylinder of length 18, a hole initialized in the center
reaches the boundary already after the fast short time
dynamics. Run numerics for longer cylinder + put result
in same plot.
Adding Ising interactions e↵ectively creates a dis-
ordered potential on the Bethe lattice: in each
Fock space configuration, the motion of the hole by
one site changes the energy of the spin system by
�✏hiji = 0.25Jz (�N��̄ � �N��), where �N�(�̄)� is the
change in the number of (anti-)aligned spins on neigh-
boring sites. The energy di↵erence between neighboring
sites on the Bethe lattice �✏hiji is therefore a random
number between ±0.5(z � 1)Jz with z the coordination
number of the Bethe lattice. The hole motion can then
by described by a quantum random walk on the Bethe
lattice with a disordered potential Wl =

P
hiji �✏hiji,

where the sum runs over all bonds hiji between the
origin and site l. For the spin configuration depicted
in Fig. 4, the potential of the di↵erent hole position
along the considered path is Wl/Jz = 0,�1.5, 0, 0.5, 0.5.
Note that for sites further apart on the Bethe lattice,
the range of possible energy di↵erences scales with the
distance between the sites. In the case of strong Ising
interactions, Jz = 10t, the spreading of the hole is
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FIG. 4. Dynamics of a hole in an infinite temperature

initial state. (a) A hole is created in the center of a cylinder
with a random configuration of spins. As the hole moves
through the system, it rearranges the spins and thereby leaves
a memory. (b) Its dynamics can therefore be approximated as
a quantum random walk on the Bethe lattice. (c) For no spin
couplings, J = 0, the hole spreads di↵usively at intermediate
times. At long times, the edge of the cylinder is reached and
the root mean square distance thus saturates. In the case of
strong Ising interactions, Jz = 10t, the spreading is limited to
comparably short distances. Update plot, add data for t�Jz.

limited to rather short distances, see Fig. 4. The critical
disorder strength for Anderson localization on the Bethe
lattice is about Wc = 18t.
For the t � J model with J? = Jz = 0.5t, the spin
interactions similarily constitute a disorder potential
on the Bethe lattice. The additional spin dynamics
however limit our numerical simulations for the t � J
model with J? = Jz = 0.5t to short times. On the time
scales accessible, the fast initial growth of the root mean
squared distance to the initial place observed in all cases
takes place.

Summary and Outlook.– In this work, we have studied
the dynamics of a single hole created in a spin system.
Our findings in the ground state can be understood in the
framework of a parton construction, where the original
excitation is described by a chargon and a spinon. For
infinite temperature and no spin couplings, we see indi-
cations for di↵usive behavior, which can be explained by
the dynamics of a free particle on the Bethe lattice. In-

radial potential

localized spinon
C4 symmetry on 
central node

C3 symmetry per 
other node

rotational quantum 
numbers:

 Born-Oppenheimer Ansatz
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First rotationally excited states.– We begin by consid-
ering cases where all m3 = 0 are trivial, but m4 6= 0
becomes non-trivial. The Schrödinger equation in the
origin at ` = 0 now reads,

t
4X

j=1

ei
⇡
2 m4j (n,m4)

1 + V0 
(n,m4)
0 = E (n,m4)

0 . (33)

where n is the radial quantum number. Because the first
term becomes a Kronecker delta function �m4,0, we obtain

V0 
(n,m4)
0 = E (n,m4)

0 for m4 6= 0. Unless E = V0, this

equation only has the solution  (n,m4)
0 = 0. It is only

possible to have  (n,m4)
0 6= 0 if E = V0, which is not a

solution of det(Ĥ� E) = 0 in general.
Thus the first rotationally excited states are three-fold

degenerate (m4 = 1, 2, 3) and given by

 (n,m4)
0 = 0,

 (n,m4)
`,s = ei⇡m4s/2�`�

(n,m4)
` , s = 0, 1, 2, 3.

�` was defined in Eq. (25) and the radial part �(n,m4)
` is

the solution of the Schrödinger equation (27) - (29) for
the potential

V C4
` =

(
+1, ` = 0

V`, ` > 0
. (34)

For ` = 0 there is a large centrifugal barrier, preventing
the holon to occupy the same site as the spinon.

Higher rotationally excited states.– Higher rotation-
ally excited states with non-trivial P3 quantum numbers
m3 6= 0 at some node can be determined in a similar
way. Let us consider m3 6= 0 at a node corresponding to
a string of length `m. The Schrödinger equation at this
node reads

t
3X

j=1

ei
2⇡
3 m3j (n,m3)

`m+1 + t (n,m3)
`m�1 +V`m 

(n,m3)
`m

= E (n,m3)
`m

.

(35)
Again the first term is only non-zero when m3 = 0.

Thus for m3 6= 0, we obtain two sets of independent
eigenequations. The first involves only strings of length

`  `m. If it has a non-trivial solution with  (n,m3)
`m

6= 0
and energy E, there is a second eigenequation involving
strings of length ` � `m. In general the second equa-
tion cannot be satisfied, because the energy E is already

fixed. The trivial choice  (n,m3)
` = 0 for ` > `m does not

represent a solution because of a coupling to  (n,m3)
`m

6= 0.
Therefore the only general solution is trivial for `  `m

and non-trivial for longer strings,

 (n,m3)
` = 0, `  `m,

 (n,m3)
`,s = ei2⇡m3s/3�`�

(n,m3)
` , ` > `m,

for m3 6= 0 and with s = 0, 1, 2. The radial part of the
rotationally excited string is determined by the potential,

V P3
` (`m) =

(
+1, `  `m
V`, ` > `m

. (36)

In this case there exists an even larger centrifugal barrier
than for the C4 rotational excitations. It excludes all
string configurations of length `  `m.

Note that the rotationally excited states of the P3

operator are highly degenerate. Because the wavefunc-
tion vanishes for `  `m, there are 4 ⇥ 3`m�1 decoupled
paths on the Bethe-lattice. Together with the two choices

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

1

3

8

1
24

3

FIG. 8. Excitation spectrum of magnetic polarons in the
strong coupling theory, as a function of Jz/t. Note that the

ground state energy was subtracted, which scales as J2/3
z t1/3.

We used (a) LST with strings of length up to `0 = 100, and
(b) NLST with strings of length up to `0 = 8. The degen-
eracies of the lowest excited manifolds of states are indicated.
Dark blue lines correspond to radially excited states with-
out rotational excitations, i.e. m3 = m4 = 0. Orange lines
correspond to purely rotationally excited states with at least
one m3 or m4 6= 0. Light blue lines in (a) denote combined
ro-vibrational excitations. No calculations were performed in
the shaded areas. The finite gap predicted for small Jz/t
by NLST is a finite-size e↵ect related to the maximal string
length `0 = 8 used in the calculations.

— radial excitations         — rotational excitations 

 Simplified Bethe-lattice model Grusdt et al., PRX 8 (2018)
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 Rotational spectroscopy: t-J model
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Internal structure of mesons 
— geometric strings —
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Direct signatures of geometric strings?

Short-range hidden order  — washed out by averaging!

) Analyze individual snapshots!

…
averaging

Liquid-like correlations!
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 Single hole in the t-J model
DMRG simulations (A. Bohrdt) with one hole on a 6x8 cylinder, 
— sampling in Fock basis using Metropolis Monte-Carlo

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

2

FIG. 1. Meson formation and short-range hidden
string order in a 2D doped AFM. A single hole in an
AFM forms a mesonic bound state of a spinon and a holon,
similar to quark-antiquark pairs forming mesons in high en-
ergy physics. In the t � J model, a spinon can be bound
to a holon (a) by a geometric string of displaced spins. Such
strings (⌃) can be visualized in individual Fock configurations
by analyzing the di↵erence to a classical Néel pattern (b). We
use the matrix product state formalism (MPS) and DMRG
to generate snapshots of the T = 0 ground state of the t� J
model with a single hole, similar to the recent measurements
using ultracold fermions [25]. In (c) we show the distribution
function of the length ` of string-like objects emanating from
the hole. We observe a striking di↵erence between a localized
(t = 0) and mobile holes (t & J , indicated by symbols con-
nected with dotted lines), which is captured quantitatively by
the geometric string theory (FSA, shaded ribbons). The inset
shows the average string length h`i as a function of (t/J)1/3.

This observation leads us to a microscopic description of
individual holes doped into spin backgrounds with strong
AFM correlations. Specifically, we propose a trial wave-
function for a single hole, which goes beyond the RVB
paradigm by including short-range string correlations.
While most theories start from the weak coupling regime,
where the tunneling rate t of the hole is small compared
to the super-exchange energy J , our method works best
at strong couplings, where the bandwidth of a free hole
Wt = 8t is much larger than the energy range of the
(para-) magnon spectrum WJ ⇡ 2J , i.e. t � J/4. This
coincides with the experimentally most relevant regime in
high-temperature cuprate superconductors, where t ⇡ 3J
[1]. Note that we require J/t � 0.05, however, below
which the Nagaoka polaron is realized [19, 29].

Our microscopic approach provides elementary expla-
nations of the key properties of a single hole in an AFM.
Many of them do not immediately follow from the con-
ventional picture [6, 8, 9], where the hole becomes dressed
by magnetic fluctuations and forms a magnetic polaron:
Next we provide a brief review of these known properties
and their most common interpretation. (i) The disper-
sion relation of the hole is strongly renormalized, with a
bandwidth W / J rather than the bare hole hopping t.
(ii) The shape of the dispersion di↵ers drastically from
that of a free hole, �2t[cos kx + cos ky]. It has a mini-
mum at k = (⇡/2,⇡/2) and disperses weakly on the edge

of the magnetic Brillouin zone (MBZ), |kx| + |ky| = ⇡.
(iii) At strong couplings the ground state energy depends
linearly on (J/t)2/3 and approaches �2

p
3t when J ! 0.

In the conventional magnetic polaron picture, (i) and
(ii) are a consequence of a cloud containing strongly cor-
related magnons dressing the hole [6, 8, 9]. This po-
laron cloud is di�cult to describe quantitatively due to
the strong interactions t � J of the magnons with the
hole. The properties in (iii) can be obtained from nu-
merical calculations within the magnetic polaron theory,
but they do not appear to be universal at first. The
significance of (iii) is its relation to the string picture
[7, 28, 30–33], which applies for a hole moving in a clas-
sical Néel state [31, 34]. There, the hole motion creates
strings of overturned spins, leading to a confining force
[30, 32]. The approximately linear string tension / J
leads to the power-law dependence / J2/3 of the ground
state energy, and the asymptotic value �2

p
3t is a con-

sequence of the structure of the Hilbert space defined by
string states.

While it is generally acknowledged that strings play
a role for the overall energy of magnetic polarons in
the t � J model, the string picture itself cannot explain
the strongly renormalized dispersion relation of the hole.
This indicates that magnetic polarons have at least two
constituents. Indeed, based on an even broader analy-
sis, Béran et al. conjectured that magnetic polarons are
composite particles which closely resemble pairs of quarks
forming mesons in high-energy physics [35], see Fig. 1 (a).
The constituents are a heavy spinon and a light holon,
connected by a string, but a microscopic description of
the mesons was lacking so far.

Here we introduce quantitative models of spinons and
holons and develop a microscopic theory of the meson
formed by a single hole in an AFM. We have achieved this
recently for the t � Jz model, where the spinon motion
is entirely due to Trugman loops performed by the holon
[7, 28], and in systems with mixed dimensionality where
the strings form straight lines [36? ]. Instead of invoking
gauge fields for modeling the strings connecting spinons
and holons [35], our approach has a geometric origin and
generalizes the concept of squeezed space used to describe
doped 1D systems [22, 26, 27].

We expect that the spinon-holon binding mechanism
based on geometric strings is also relevant at finite dop-
ing, and for a microscopic justification of the FL⇤ theory
of the pseudogap phase in cuprates [37] in particular. Sig-
natures for geometric strings have recently been found in
experiments with ultracold atoms [25] at temperatures
T ' 0.7J . As shown in Fig. 1 (b) and (c), similar string
patterns as observed experimentally can also be revealed
in the T = 0 ground state, indicating that meson for-
mation may also play a role for the strongly correlated
ground states of the t� J model.

Results. We consider the 2D t � J model, described

- deviations from perfect 
checkerboard pattern

=> string length 

Grusdt et al., arXiv:1901.01113 (accepted in PRB)
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 Single hole in the t-J model
DMRG simulations (A. Bohrdt) with one hole on a 6x8 cylinder,
— sampling in Fock basis using Metropolis Monte-Carlo
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FIG. 1. Meson formation and short-range hidden
string order in a 2D doped AFM. A single hole in an
AFM forms a mesonic bound state of a spinon and a holon,
similar to quark-antiquark pairs forming mesons in high en-
ergy physics. In the t � J model, a spinon can be bound
to a holon (a) by a geometric string of displaced spins. Such
strings (⌃) can be visualized in individual Fock configurations
by analyzing the di↵erence to a classical Néel pattern (b). We
use the matrix product state formalism (MPS) and DMRG
to generate snapshots of the T = 0 ground state of the t� J
model with a single hole, similar to the recent measurements
using ultracold fermions [25]. In (c) we show the distribution
function of the length ` of string-like objects emanating from
the hole. We observe a striking di↵erence between a localized
(t = 0) and mobile holes (t & J , indicated by symbols con-
nected with dotted lines), which is captured quantitatively by
the geometric string theory (FSA, shaded ribbons). The inset
shows the average string length h`i as a function of (t/J)1/3.

This observation leads us to a microscopic description of
individual holes doped into spin backgrounds with strong
AFM correlations. Specifically, we propose a trial wave-
function for a single hole, which goes beyond the RVB
paradigm by including short-range string correlations.
While most theories start from the weak coupling regime,
where the tunneling rate t of the hole is small compared
to the super-exchange energy J , our method works best
at strong couplings, where the bandwidth of a free hole
Wt = 8t is much larger than the energy range of the
(para-) magnon spectrum WJ ⇡ 2J , i.e. t � J/4. This
coincides with the experimentally most relevant regime in
high-temperature cuprate superconductors, where t ⇡ 3J
[1]. Note that we require J/t � 0.05, however, below
which the Nagaoka polaron is realized [19, 29].

Our microscopic approach provides elementary expla-
nations of the key properties of a single hole in an AFM.
Many of them do not immediately follow from the con-
ventional picture [6, 8, 9], where the hole becomes dressed
by magnetic fluctuations and forms a magnetic polaron:
Next we provide a brief review of these known properties
and their most common interpretation. (i) The disper-
sion relation of the hole is strongly renormalized, with a
bandwidth W / J rather than the bare hole hopping t.
(ii) The shape of the dispersion di↵ers drastically from
that of a free hole, �2t[cos kx + cos ky]. It has a mini-
mum at k = (⇡/2,⇡/2) and disperses weakly on the edge

of the magnetic Brillouin zone (MBZ), |kx| + |ky| = ⇡.
(iii) At strong couplings the ground state energy depends
linearly on (J/t)2/3 and approaches �2

p
3t when J ! 0.

In the conventional magnetic polaron picture, (i) and
(ii) are a consequence of a cloud containing strongly cor-
related magnons dressing the hole [6, 8, 9]. This po-
laron cloud is di�cult to describe quantitatively due to
the strong interactions t � J of the magnons with the
hole. The properties in (iii) can be obtained from nu-
merical calculations within the magnetic polaron theory,
but they do not appear to be universal at first. The
significance of (iii) is its relation to the string picture
[7, 28, 30–33], which applies for a hole moving in a clas-
sical Néel state [31, 34]. There, the hole motion creates
strings of overturned spins, leading to a confining force
[30, 32]. The approximately linear string tension / J
leads to the power-law dependence / J2/3 of the ground
state energy, and the asymptotic value �2

p
3t is a con-

sequence of the structure of the Hilbert space defined by
string states.

While it is generally acknowledged that strings play
a role for the overall energy of magnetic polarons in
the t � J model, the string picture itself cannot explain
the strongly renormalized dispersion relation of the hole.
This indicates that magnetic polarons have at least two
constituents. Indeed, based on an even broader analy-
sis, Béran et al. conjectured that magnetic polarons are
composite particles which closely resemble pairs of quarks
forming mesons in high-energy physics [35], see Fig. 1 (a).
The constituents are a heavy spinon and a light holon,
connected by a string, but a microscopic description of
the mesons was lacking so far.

Here we introduce quantitative models of spinons and
holons and develop a microscopic theory of the meson
formed by a single hole in an AFM. We have achieved this
recently for the t � Jz model, where the spinon motion
is entirely due to Trugman loops performed by the holon
[7, 28], and in systems with mixed dimensionality where
the strings form straight lines [36? ]. Instead of invoking
gauge fields for modeling the strings connecting spinons
and holons [35], our approach has a geometric origin and
generalizes the concept of squeezed space used to describe
doped 1D systems [22, 26, 27].

We expect that the spinon-holon binding mechanism
based on geometric strings is also relevant at finite dop-
ing, and for a microscopic justification of the FL⇤ theory
of the pseudogap phase in cuprates [37] in particular. Sig-
natures for geometric strings have recently been found in
experiments with ultracold atoms [25] at temperatures
T ' 0.7J . As shown in Fig. 1 (b) and (c), similar string
patterns as observed experimentally can also be revealed
in the T = 0 ground state, indicating that meson for-
mation may also play a role for the strongly correlated
ground states of the t� J model.

Results. We consider the 2D t � J model, described
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 Single hole in the t-J model
DMRG simulations (A. Bohrdt) with one hole on a 8x8 cylinder, 
— sampling in Fock basis using Metropolis Monte-Carlo

- full DMRG simulation:

- short-range hidden 
string order!
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Signatures for meson formation 
— experimental results — 
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String patterns:
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String patterns:
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Average string length:

Disappearance of the AFM by doping         
— hidden correlations?
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Disappearance of the AFM by doping         
— hidden correlations?

0.0 0.1 0.2 0.3
doping �

1.4

1.6

1.8

2.0

2.2
av

er
ag

e
st

rin
g

le
ng

th
`(

si
te

s)

experiment
effective T via mz + sprinkled holes
effective T via C1 + sprinkled holes

strings

B
independent holes 

with strings attached
overlapping 

strings

Chiu et al., arXiv:1810.03584



Fabian Grusdt

Outlook

 42

Senthil & Fisher, PRB 62 (2000)

 Deconfinement of partons: description by Z2 LGT

Can be implemented in ultracold atom systems! 
Barbiero et al., arXiv:1810.02777

3

interactions of the same magnitude, U = ! [43]. This
provides coherent control over the synthetic gauge fields
induced by the lattice modulation at frequency !, see
also Refs. [10–14].

We consider a situation where atoms of a first species,
with annihilation operators â, represent a matter field.
The atoms of the second type, associated with annihi-
lation operators f̂ , will become the sources of synthetic
magnetic flux for the matter field, see Fig. 1 (A). Namely,
the magnetic flux felt by the a-particle, as captured by
its assisted hopping over the lattice, is only e↵ective in
the presence of an f -particle. To avoid that – vice-versa
– the f -particles become subject to magnetic flux cre-
ated by the a-particles, static potential gradients a↵ect-
ing only the f -particles are used. In the following, we
assume that both atomic species are hard-core bosons,
although generalizations are possible, for instance when
one or both of them are replaced by fermions.

Model. The largest energy scale in our problem is set
by strong inter-species Hubbard interactions,

Ĥint = U

X

j

n̂
a
j n̂

f
j , (1)

where n̂
a,f
j denote the density operators of a and f -

particles on lattice site j. In order to break the symmetry
between a- and f -particles, we introduce state-dependent
static potentials V↵(j), where ↵ = a, f . We assume
that the corresponding energy o↵sets between nearest-
neighbor (NN) lattice sites i and j are integer multiples
m

↵
hi,ji 2 Z of the large energy scale U , up to small cor-

rections |�V ↵
hi,ji| ⌧ U which are acceptable; namely,

�↵
hi,ji ⌘ V↵(i)� V↵(j) ⇡ m

↵
hi,jiU. (2)

A minimal example is illustrated in Fig. 2 (A).
Coherent dynamics of both fields are introduced by NN

tunneling matrix elements in the µ = x, y directions, t↵µ
respectively. Thus the free part of the Hamiltonian is

Ĥ0 = �

X

µ=x,y

X

hi,jiµ

h
t
a
µâ

†
j âi + t

f
µf̂

†
j f̂i + h.c.
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+
X

j

h
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j + Vf (j) n̂

f
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(3)

where hi, jiµ denotes a pair of NN sites along direction
µ. Tunnel couplings are initially suppressed by the ex-
ternal potentials �↵ = m

↵
U and the strong Hubbard

interactions,

U � |t
↵
x,y|. (4)

To restore tunnel couplings with complex phases we
include a time-dependent lattice modulation,

Ĥ!(t) =
X

j

V!(j, t)
⇣
â
†
j âj + f̂

†
j f̂j

⌘
. (5)

FIG. 2. Z2 LGT in a two-well system. (A) We con-
sider a double-well setup with one atom of each type, a and
f . Coherent tunneling between the two orbitals at j1 and
j2 = j1 + ey is suppressed for both species by strong Hub-
bard interactions U = !, and for f -particles by the energy
o↵set �f = !. (B) Tunnel couplings can be restored by res-
onant lattice modulations with frequency !. The sign of the
restored tunneling matrix element is di↵erent when the a-
particle gains (left panel) or looses (right panel) energy. (C)
This di↵erence in sign gives rise to a Z2 gauge structure and
allows to implement Z2 minimal coupling of the matter field
â to the link variable defined by the f -particles. This term is
the common building block for realizing larger systems with
a Z2 gauge structure. (D) Such systems are characterized by
a symmetry Ĝj associated with each lattice site j. Here Ĝj

commutes with the Hamiltonian and consists of the product
of the Z2 charge, Q̂j = (�1)n̂

a
j , and all electric field lines –

for which ⌧
x = �1 – emanating from a volume around site j

(orange).

It acts equally on both species and is periodic in time,
V!(j, t + 2⇡/!) = V!(j, t), with frequency ! = U res-
onant with the inter-species interactions. Summarizing,
our Hamiltonian is

Ĥ(t) = Ĥ0 + Ĥint + Ĥ!(t). (6)

E↵ective hopping Hamiltonian. From now on we
consider resonant driving, U = ! � |t

↵
µ |, where the lat-

tice modulation Ĥ!(t) in Eq. (5) restores, or renormal-
izes, all tunnel couplings of a- and f -particles. As derived
in the Supplements (SM), we obtain an e↵ective hopping
Hamiltonian to lowest order in 1/!,

Ĥe↵ = �

X

µ=x,y

X

hi,jiµ


t
a
µ â

†
i âj �̂

µ
hi,jiµ e

i'̂µ
hi,jiµ + h.c.

+ t
f
µ f̂

†
i f̂j ⇤̂µ

hi,jiµ e
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�
. (7)

The Hermitian operators �̂µ
hi,jiµ and '̂

µ
hi,jiµ (respectively

⇤̂µ
hi,jiµ and ✓̂

µ
hi,jiµ) in Eq. (7) describe the renormaliza-

tion of the tunneling amplitudes and phases, for a (resp.
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Figure 1. 1D Z2 lattice gauge theory coupled to mat-
ter. Circles describe lattice sites, which are empty (gray) or
occupied by a matter particle (blue). a Elementary ingredi-
ents: Z2 charge Q̂j =ei⇡n̂a

j , Z2 gauge field ⌧̂z
hj,j+1i= n̂f

j �n̂f
j+1,

Z2 electric field ⌧̂x
hj,j+1i = f̂†

j f̂j+1 + h.c., and local symmetry
operator Ĝj with conserved quantities gj . Matter and gauge
fields are implemented using two internal states a (blue) and f
(red). Matter-gauge coupling occurs with strength Ja. b Dy-
namics of the 1D model (1) for different values of Jf/Ja with
an initial state, where a single matter particle is located on
site j=0 and the gauge field is in an eigenstate of the electric
field. The evolution is calculated using exact diagonalization
on a system with 13 sites based on Eq. (1).

gauge transformations defined by the local operators

Ĝj=Q̂j

Y

i:hi,ji

⌧̂
x

hi,ji,
h
Ĥ, Ĝj

i
=0 8j, (2)

where
Q

i:hi,ji denotes the product over all links con-
nected to lattice site j. The eigenvalues of Ĝj are
gj = ±1. The dynamics of the model is constraint by
the Z2 Gauss’s law, Ĝj | i=gj | i, in analogy to electro-
dynamics. Gauss’s law effectively separates the Hilbert
space into different subsectors, which are characterized
by the set of conserved quantities {gj}. Lattice sites
with gj =�1 are interpreted as local static background
charges. Different subsectors can be explored by prepar-
ing suitable initial states. The two states sketched in
Fig. 1a (lower right) belong to the same subsector and
illustrate the basic matter-gauge coupling according to
Gauss’s law, i.e. tunneling of the matter particle occurs

in combination with a change of the electric field from
+1 to �1.

In order to gain more insight into the physics of the 1D
model (1), we consider a system initially prepared in an
eigenstate of the electric field operator, with ⌧

x
=+1 on

all links, and a single matter particle located on site j =

0. For this initial state gj =+1, 8j 6= 0 and gj =�1 for
j = 0 (Fig. 1b). In the limit of vanishing electric field
strength Jf ! 0, the matter particle can tunnel freely
along the 1D chain, thereby changing the electric field on
all traversed links. For Jf 6= 0, tunneling of the matter
particle is detuned due to the energy of the electric field
and the matter particle is bound to the location of the
static background charge at j = 0. In this regime the
energy of the system scales linearly with the distance
between the static charge and the matter particle, which
we interpret as a signature of confinement.

Here, we engineer the elementary interactions of the
Z2 model on a two-site lattice following Ref. [33]. The
matter and gauge fields are implemented using two dif-
ferent species denoted as a- and f -particles, which are
realized by two Zeeman levels of the hyperfine ground-
state manifold of 87Rb, |ai ⌘ |F =1,mF =�1i and |fi ⌘
|F =1,mF =+1i. We prepare one a- and one f -particle
in each two-site system. The matter field is associated
with the a-particle. The Z2 gauge field is the number im-
balance ⌧̂zhj,j+1i= n̂

f

j
� n̂

f

j+1 of the f -particle and the Z2

electric field corresponds to tunneling of the f -particle,
⌧̂
x

hj,j+1i = f̂
†
j
f̂
j+1 + f̂

†
j+1f̂j , where f̂

†
j

is the creation op-
erator of an f -particle on site j and n̂

f

j
= f̂

†
j
f̂
j

is the
corresponding number-occupation operator.

The driving scheme is based on a species-dependent
double-well potential with tunnel coupling J between
neighboring sites and an energy offset �f only seen by
the f -particle. Experimentally the driving scheme is re-
alized with a magnetic-field gradient, making use of the
opposite magnetic moments of the two states |ai and
|fi [45]. In the limit of strong on-site interactions U � J ,
first-order tunneling processes are suppressed but can be
restored resonantly with a periodic modulation at the
resonance frequency ~! =

p
U2 + 4J2 ⇡ U . The full

time-dependent Hamiltonian can be expressed as

Ĥ(t)=� J

⇣
â
†
2â1 + f̂

†
2 f̂1 + h.c.

⌘

+ U

X

j=1,2

n̂
a

j
n̂
f

j
+�f n̂

f

1

+A cos (!t+ �) (n̂
a

1 + n̂
f

1 ),

(3)

where A is the modulation amplitude and � is the mod-
ulation phase. In the high-frequency limit ~! ⇡ U � J ,
the lowest order of the effective Floquet Hamiltonian con-
tains renormalized tunneling matrix elements for both a-
and f - particles [38–40], Ĵaei'̂a and Ĵfei'̂f . For gen-
eral modulation parameters, the amplitudes and phases
are operator-valued and explicitly depend on the site-

Real-space probes of confinement
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Fig. 2. (a) Dependence of the CDW intensity at 15 K, showing a finite correlation length (as
inferred from the width of the peak). Adapted from Ref. 25. (b) Temperature dependence of
the peak intensity as a function of magnetic field. The onset shows a gradual non-mean-field like
behavior. At zero-field, the intensity decreases below the superconducting Tc, showing competition
between the two order-parameters. Adapted from Ref. 27. (c) Quadrupole part of the splitting
of the O line showing a field-induced transition. Adapted from Ref. 23. (d), (e) R-Maps taken at
150 mV. Adapted from Ref. 29.

depends upon Q. In particular the state described by PQ(k) ⇠ cos(kx) � cos(ky),
proposed in Refs. 41,42, is a d-form factor bond density wave which preserves time-
reversal and which will play an important experimental role shortly. In contrast,
the state FQ(k) ⇠ cos(kx) � cos(ky), considered by others, is a di↵erent state;
for general Q, it is a mixture of components that are both even and odd under
time-reversal, and so it is not a useful starting point for a symmetry analysis.

Conventional charge density waves with PQ(k) independent of k lead only to
an on-site charge modulation, with the overall modulation period set by 2⇡/|Q|.
However, this is not the case in the context of the cuprates. The experiments on at
least two di↵erent families of the cuprates (BSSCO and Na-CCOC), which involves
phase-sensitive STM32 and X-ray43 measurements, have now unveiled the form
factor PQ(k) to be predominantly of a d-wave nature, i.e. PQ(k) ⇠ (cos kx�cos ky).
In addition, as already mentioned above, almost all the experiments point towards
a strong evidence for the wavevector Q to be along the Cu-O bonds, i.e. (±Q0, 0)

ARPES (Angle-resolved photo-emission spectroscopy)

energy & momentum resolution

RIXS (Resonant inelastic X-ray 
 scattering)
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Fig. 13. On the left is the spectral function of the FL* state computed in Ref. 72. On the right
are photoemission measurements of the pseudogap phase by Shen et al. in Ref. 92.

5. Connecting the high and low T regimes

We will now connect our description of the FL* model in Section 4 to the charge
order and superconducting instabilities presented in Section 3.

For theoretical purposes, and also with the aim of reviewing part work, it is useful
to first present the instabilities of a conventional Fermi liquid state in Section 5.1.
It turns out that these instabilities lead to some discrepancies with experimental
observations. We will then argue in Section 5.3 that these discrepancies are naturally
resolved by replacing the Fermi liquid by the FL* phase as the parent phase of the
orderings at low T .

5.1. Ordering instabilities of a Fermi liquid with

antiferromagnetic correlations

In this subsection, we return to the soft-spin theory in Eq. (10) for the properties
of a Landau Fermi liquid in the presence of amplitude fluctuations of a SDW order.
Starting from Eq. (10) it is useful to focus on the low energy theory for fermions
near the ‘hot spots’ on the Fermi surface, shown in Fig. 14. Such a Lagrangian is
given by,

Lsdw = Lf + L' + Lf',

Lf =  
†m
1p (@⌧ � ivm

1 · r) m
1p +  

†m
2p (@⌧ � ivm

2 · r) m
2p,

Lf' =
�p
Nf

' · ( †m
1p �pp0 

m
2p0 +  

†m
2p �pp0 

m
1p0),

(28)

and where L' part of the action was already written down in Eq.14. In the above,
vm
1 , vm

2 represent the velocities at the hot-spots labelled ‘A’, ‘C’, or, ‘B’, ’D’ within

partons, 
mesons,

…

high-energy regime

Quantum gas microscopy

temporal & spatial resolution

gradient and the short-scale component of a
superlattice transverse to the tubes (25). Apply-
ing Raman sideband cooling for 500 ms, we
collected fluorescence photons on an EMCCD
(electronmultiplying charge-coupled device) cam-
era to form a high-contrast and site-resolved
image of the atomic distribution (22) (Fig. 1A).
Following our analysis in (25), we estimated the
temperature in the central chains to be 0:51ð2Þ t
or0:90ð3Þ J, which corresponds to an entropy per
particle of 0:63ð2ÞkB (where kB is the Boltzmann
constant).
To investigate the magnetic environment

around a hole, we calculate the conditional three-
point spin-hole correlation function CSHð2Þ ¼
4hŜ z

i Ŝiþ2
z i•i∘iþ1•iþ2

, where the symbols describe
the condition that the correlator is evaluated only
on configurations with the sites i and i þ 2 singly
occupied and the middle site empty (27). The
correlator indeed reveals anti-alignment of the
spins around individual holes [CSHð2Þ < 0], and
Fig. 2A highlights the hole-induced sign change by
comparison to the standard two-point correlator
CðdÞ ¼ 4ðhŜ z

i Ŝiþd
z i•i•iþd

% hŜ z
i i•i hŜ

z
iþdi•iþd

Þof an
undoped spin chain. To obtain unity filling, the
latter was evaluated on a hole-free subset of
the data. The additional condition indicatedby the
filled circular symbols removes the trivial n2 den-
sity dependence of the two-point spin correlator
in the doped case (27) but has no effect at unity
filling. The measured modulus of the correlation
around a hole is jCSHð2Þj ¼ 0:184ð4Þ , consider-
ably larger than Cð2Þ ¼ 0:057ð3Þ and about half
of the next-neighbor value of jCð1Þj ¼ 0:316ð2Þ.
At zero temperature forU=t →1 one expects
jCSHð2Þj ¼ jCð1Þj, as the hole has no effect on
the magnetic alignment of its surrounding spins.
For our interaction strength, the measured dif-
ference agrees with exact diagonalization results
at a temperature0:94ð5Þ J (27). These calculations
take into account the experimental fluctuations
of the magnetization per chain. Because of fi-
nite size effects, the correlation function shows
a small offset at large distances, for which we
correct in the subsequent analysis throughout
this paper (27).
The influence of larger doping on the spin order

is revealed by studying CSHðdÞ as a function of the
number of holes between the two spins; that is,
by evaluating CSH;Nh ðdÞ ¼ 4hŜ z

i Ŝiþd
z i•if∘gNh •iþd

with exactly Nh holes on the otherwise singly
occupied string of length d þ 1. The results of
this analysis, shown in Fig. 2B, reveal a sign
change of CSH;Nh at fixed distance d for each
newly introduced hole and antiferromagnet-
ic correlations versus distance for fixed hole
numberNh. Thus, each hole indeed corresponds
to a flip of the antiferromagnetic parity. In a
thermodynamic ensemble, the hole number be-
tween the two measured spins fluctuates, result-
ing in a weighted averaging over the alternating
correlations for different hole numbers. This di-
rectly explains the suppression of magnetic cor-
relations with hole doping (compare Fig. 3A).
The strong reduction in the amplitude of spin

correlations caused by hole fluctuations does not
imply the absence of magnetic order in the sys-

tem, but rather suggests that it is hidden by the
fluctuations in the position of the atoms. This
situation is similar to the Haldane phase of spin-
1 chains (9, 12–14), where fluctuating j0i spins
hide correlations between the jT1i components,
leading to exponentially decaying local corre-
lators. The intrinsic AFM order is unveiled by
considering a nonlocal correlation function. By
identifying double occupancies and holes with
spin j0i states, one can use the same procedure
to construct a string correlator that probes the

underlying spin order in the doped Hubbard
chain(18):

CstrðdÞ ¼ 4 Ŝ
z
i

 

P
d%1

j¼1
ð%1Þð1%n̂ iþjÞ

!

Ŝiþd

z

+

•i•iþd

*

ð2Þ

This string correlator takes the antiferromag-
netic parity flips into account by a correspond-
ing sign flip for each hole (compare Fig. 1C). The
unique ability to detect the spin and density
locally on single images (25) enables the direct
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Hole doping
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1 2 3 4 5 6 7 81 2 4 5 6 8

J

String correlatorSqueezed space

Fig. 1. Analysis of a doped Hubbard chain. (A) Experimental spin and density-resolved image
of a single, slightly doped Hubbard chain after a local Stern-Gerlach-like detection. The
reconstructed chain is shown below the picture. (B) Illustration of the magnetic environment
around a hole. For aligned spins (top) the hole cannot freely delocalize because of the magnetic
energy cost J, which is absent for anti-aligned spins (bottom). (C) Illustration of hole-induced
AFM parity flips, squeezed space, and string correlator. Hole doping leads to AFM parity flips
highlighted by the color mismatch between the spins and the background (top). Squeezed space
is constructed by removing all sites with holes from the chain (bottom left). In the string
correlator analysis, the flip in the AFM parity is canceled by a multiplication of –1 for each hole
(bottom right). Comparing either of these analyses to the conventional two-point correlator
reveals the hidden finite-range AFM order in the system.
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Fig. 2. Revealing the magnetic environment around holes. (A) Connected two-point spin
correlation function CðdÞ analyzed on occupied sites only (blue). The finite-range AFM order
without holes asymptotically falls off with an exponential decay length of 1:3ð2Þ sites. The spin
correlations at a distance of two sites switch sign in the presence of a hole as measured by CSHð2Þ
(red diamond) demonstrating an AFM environment surrounding the hole. The solid black line
indicates the finite-size offset (27), the blue line is a guide to the eye, and statistical uncertainties
are smaller than the symbol sizes. (Inset) Comparison of experimental values (red lines) of
CSHð2Þ % Cð1Þ (top) and CSHð2Þ % Cð2Þ (bottom) with finite temperature results from exact
diagonalization (gray curves). The systematic error originating from a finite atom loss rate of up
to 3% during imaging is negligible. (B) Amplitude of the correlation function CSH;Nh

ðdÞ as a
function of distance d and the number of holes Nh between the two spins with the finite-size
offset subtracted. The parity of the AFM order flips with every hole.
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