

Meson formation in strongly correlated quantum matter – A high-energy perspective –

Fabian Grusdt

¹Department of Physics, Technical University Munich, Garching, Germany

Collaborators:

<u>Theory</u>: A. Bohrdt, Z. Zhu, T. Shi, L. Pollet, L. Barbiero, N. Goldman, M. Knap, E. Demler <u>Fermions Harvard</u>: C. S. Chiu, G. Ji, M. Xu, M. Greiner, D. Greif <u>Fermions Munich</u>: J. Koepsell, J. Vijayan, G. Salomon, P. Sompet, S. Hirte T. Hilker, I. Bloch, C. Gross <u>Bosons Munich</u>: C. Schweizer, M. Berngruber, I. Bloch, M. Aidelsburger

https://sites.google.com//site/quantmanybody/

Strongly correlated states of matter

effective gauge theories

The Fermi-Hubbard & *t-J* models

Fermi-Hubbard model:

$$\hat{\mathcal{H}}_{\rm FH} = -t \sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} (\hat{c}^{\dagger}_{\mathbf{i}, \sigma} \hat{c}_{\mathbf{j}, \sigma} + \text{h.c.}) \\ +U \sum_{\mathbf{j}} \hat{n}_{\mathbf{j}, \uparrow} \hat{n}_{\mathbf{j}, \uparrow}$$

from: Chiu et al., arXiv:1810.03584

* Large-U limit: t-J model

no double-occupancy!

$$\hat{\mathcal{H}}_{t-J} = -t \ \hat{\mathcal{P}} \Big[\sum_{\langle \mathbf{i}, \mathbf{j} \rangle, \sigma} \hat{c}^{\dagger}_{\mathbf{i}, \sigma} \hat{c}_{\mathbf{j}, \sigma} + \text{h.c.} \Big] \hat{\mathcal{P}} + J \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \Big(\hat{\mathbf{S}}_{\mathbf{i}} \cdot \hat{\mathbf{S}}_{\mathbf{j}} - \frac{1}{4} \hat{n}_{\mathbf{i}} \hat{n}_{\mathbf{j}} \Big)$$

ТΠ

Motivation

Micro-constituents

Strong interactions:

hopping spin exchange

Physical Phenomena

High-temperature superconductors

Motivation

cause

Anderson, Science (1987); Laughlin, PRL (1997); Senthil, PRB (2001), FG et al., PRX (2018);

Physical Phenomena

High-temperature superconductors

TUT

* Mesons in correlated quantum matter — meaning & signatures

***** Meson formation in 2D — theory

J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

Grusdt et al., PRX 8 (2018); Grusdt et al., SciPost Phys. 5 (2018); Bohrdt et al., PRB 97 (2018); Grusdt et al., arXiv:1901.01113 (accepted in PRB); Bohrdt et al., in prep.

* Signatures for meson formation — Greiner lab

* Spinons & chargons in 1D — Gross / Bloch lab

Chiu et al., arXiv:1810.03584 Bohrdt et al., arXiv:1811.12425

Hilker et al., Science 357 (2017)

Mesons in strongly correlated quantum matter — meaning & signatures —

charge, no spin

$\stackrel{\scriptstyle{\frown}}{=}$ Signatures of meson formation:

Internal structure

* Ro-vibrational excitations

$n^{2s+1}\ell_J$	иđ	us
$1^{1}S_{0}$	π	K
$1^{1}P_{1}$	$b_1(1235)$	K_{1B}
$1^{1}D_{2}$	$\pi_2(1670)$	$K_2(1770)$
$1^{3}F_{4}$	$a_4(2040)$	$K_4^*(2045)$
$2^{1}S_{0}$	$\pi(1300)$	K (1460)

Amsler et al., Phys. Lett. B 667 (2008)

Spinons & chargons in 1D — partons —

collaboration: Gross / Bloch group at MPQ Munich

Hilker et al., Science 357 (2017)

The 1D t-J model

Microscopic considerations — 1D

$$t \gg J$$

Impurity physics — single-hole case

- * Fractional spin excitation! S=1/2
- * Chargon motion keeps relative spin orientations intact!
- * Spinon formation where hole was created!

Spin-charge separation:

deconfined spinons and chargons: $t \gg J$

Squeezed space – 1D

Solution of 1D t-J model by re-labeling

- $j = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$ real space $\sum_{\Sigma_1} x_1^{s} \qquad \sum_{\Sigma_2} x_2^{s}$ $x_2^{s} \qquad x_2^{s}$ squeezed space $j = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$
- * Ground state wavefunction: $t \gg J$

Kruis et al., PRB 70 (2004)

* Squeezed space:

Squeezed space – 1D

Solution Non-local string correlator: C $(d) = 4 \left\langle \hat{S}_{j+d}^z \right\rangle$

Experiment Gross/Bloch group, MPQ

factor (-1) for each hole!

 \hat{S}_j^z

density n = 1 - doping real space hidden AFM correlations (a) = 0.4 (a) = 0.7 (a) = 1.0 (b) = 0.2 (a) = 0.2 (b) = 0.2 (a) = 0.2 (b) = 0.2 (a) = 0.2 (b) = 0.2 (b) = 0.2 (b) = 0.2 (c) = 0.2(c) = 0.2

Spin-charge deconfinement

Dynamical probe of parton formation:

Experiment Gross/Bloch group, MPQ

J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

* Release hole in 1D

ЛРО

Dynamical probe of parton formation:

Experiment Gross/Bloch group, MPQ

J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

Dynamical probe of parton formation:

Experiment Gross/Bloch group, MPQ

J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

ТЛП

Spin-charge deconfinement

\mathbf{P} Dynamical probe of parton formation:

Experiment Gross/Bloch group, MPQ

J. Vijayan*, P. Sompet* et al., arXiv:1905.13638

Meson formation in 2D — geometric strings —

Theory collaboration: Annabelle Bohrdt, Michael Knap, Zheng Zhu, and Eugene Demler

Long-range AFM in 2D

Long-range anti-ferromagnet in 2D:

Experiment Greiner group, Harvard

Mazurenko et al., Nature 545 (2017) 10 10¹ 8 ξ (sites) 10⁰ 6 ξ (sites) 4 2 3 5 1 4 $(T/t)^{-1}$ 2 0 0.4 1.2 0.2 0.6 0.8 1.0 T/t

ПП

Confinement?

Dynamical probe of parton formation:

٦Π

Confinement?

Dynamical probe of parton formation:

MPS simulations: Annabelle Bohrdt

Parton picture

Parton-picture of magnetic polarons:

- * Fractional spin excitation! S = 1/2
- Chargon motion quickly distorts
 2D Neel state!

 $t \longleftrightarrow \ell \times J$

- * Chargon is bound to the fractional spin (spinon) at end of string!
 - $E \propto J \times \ell$

competition:

> emergent length scale!

Parton picture

Parton-picture of magnetic polarons:

chargon

- effective mass:
- hopping within one sub-lattice
- * effective mass:

0 C

$$m_{\rm h} \simeq 1/t \ll m_{\rm s}$$

 $m_{\rm s} \simeq 1/J$

Born-Oppenheimer: strong-coupling expansion!

 $\hat{\sigma}^x_{\langle i,j \rangle}$

- number not conserved!
 - weak polaronic dressing!
 Decay of excited states!

Parton picture

\mathbf{P} Dynamical probe of parton formation:

Squeezed space – 2D

Solution of 2D t-J model by re-labeling

***** Squeezed space:

* Ground state wavefunction:

Squeezed space – 2D

Focus on charge fluctuations (fastest)

- Frozen spin approximation (FSA): consider only chargon motion
- Chargon motion assumed to create memory of its trajectory

Grusdt et al., PRX 8 (2018) Grusdt et al., arXiv:1901.01113 (accepted in PRB)

ΤЛ

Internal structure of mesons — rotational excitations —

Rotational excitations

- C4 symmetry on central node
- C3 symmetry per other node
- rotational quantum numbers:
 - $m_4, m_3^{(1)}, m_3^{(2)}, m_3^{(3)}, \dots$

Rotational excitations

Simplified Bethe-lattice model Grusdt et al., PRX 8 (2018) 2.5 energy E_n-E_0 (units of t)(1 3 2 $E_{\rm vib} \propto t^{1/3} J^{2/3}$ 24 1.5 8 3 0.5 $E_{\rm rot} \propto J$ 0 0.2 0.4 0.6 0.8 0 J_z/t

n — radial excitations — $m_{3,4}$ — rotational excitations

ΤЛ

Bohrdt et al., in prep.

Internal structure of mesons — geometric strings —

* Short-range hidden order — washed out by averaging!

 \Rightarrow Analyze individual snapshots!

Detecting geometric strings

Internal structure of mesons: pattern analysis

Detecting geometric strings

Single hole in the t-J model

 DMRG simulations (A. Bohrdt) with one hole on a 6x8 cylinder, — sampling in Fock basis using Metropolis Monte-Carlo

Grusdt et al., arXiv:1901.01113 (accepted in PRB)

Single hole in the t-J model

DMRG simulations (A. Bohrdt) with one hole on a 6x8 cylinder,
 — sampling in Fock basis using Metropolis Monte-Carlo

Grusdt et al., arXiv:1901.01113 (accepted in PRB)

Single hole in the *t-J* model

 DMRG simulations (A. Bohrdt) with one hole on a 8x8 cylinder, — sampling in Fock basis using Metropolis Monte-Carlo

- full DMRG simulation:

 short-range hidden string order!

Grusdt et al., arXiv:1901.01113 (accepted in PRB)

Signatures for meson formation — experimental results —

collaboration: Greiner group at Harvard

Chiu et al., arXiv:1810.03584

Chiu et al., arXiv:1810.03584

Detecting string patterns

Disappearance of the AFM by doping

— hidden correlations?

Chiu et al., arXiv:1810.03584

Detecting string patterns

Disappearance of the AFM by doping — hidden correlations?

Deconfinement of partons: description by Z2 LGT

Senthil & Fisher, PRB 62 (2000)

$$\mathbb{Z}_2$$
 minimal coupling $-t_y^a \lambda^y \hat{\tau}_{\langle \mathbf{j}_2, \mathbf{j}_1 \rangle}^z \hat{a}_{\mathbf{j}_2}^\dagger \hat{a}_{\mathbf{j}_1} + \text{h.c}$

Can be implemented in ultracold atom systems!
 Barbiero et al., arXiv:1810.02777
 Schweizer et al., arXiv:1901.07103

Parton dynamics

* Real-space probes of confinement

Schweizer et al., arXiv:1901.07103

Quantum gas microscopy

Summary

... thanks for your attention!

Annabelle Bohrdt (Munich)

Markus Greiner (Harvard)

Eugene Demler (Harvard)

Christian Gross (Munich)

Immanuel Bloch (Munich)

Daniel Greif (Harvard)

PHYSICS

Ultracold magnetism

https://sites.google.com//site/quantmanybody/

Z2 lattice gauge theory

C. Schweizer, L. Barbiero, M. Berngruber, I. Bloch, M. Aidelsburger, Eugene Demler, Nathan Goldman

Eugene Demler Markus Greiner Immanuel Bloch Daniel Greif Christian Gross Annabelle Bohrdt Christie Chiu **Geoffrey Ji** Muging Xu Timon Hilker Joannis Koepsell Guillaume Salomon Javadev Vijavan Pimonpan Sompet Sarah Hirte Michael Knap Zheng Zhu Tao Shi Lode Pollet Ahmed Omran Marton Kanasz-Nagy