Rotor formulation of 3D $U(1)$ gauge theory and quantum simulation with ultra cold atoms in an optical lattice

Judah Unmuth-Yockey ${ }^{1}$, Alexei Bazavov ${ }^{4}$, Yannick Meurice ${ }^{5}$, Shan-Wen Tsai ${ }^{2}$, Johannes Zeiher ${ }^{3}$, Jin Zhang ${ }^{2}$
${ }^{1}$ Syracuse University
${ }^{2}$ University of California Riverside
${ }^{3}$ University of California Berkeley
${ }^{4}$ Michigan State University
${ }^{5}$ University of lowa

Motivation

The situation:

- quantum computing (QC) will solve many issues with classical computing for lattice gauge theory.
- The scaling for digital QC is slow right now for number of qubits.
- Other quantum simulation techniques could give answers faster.

- I'll focus on optical lattice simulations.

Plan

- 3D $U(1)$ is what I'm excited about
- 2D Abelian Higgs model as a step
- Tensor \& continuous-time limit
- Optical lattice set-up
- back to $3 \mathrm{D} U(1)$

the Abelian Higgs model

The Abelian Higgs model in two Euclidean space-time dimensions: This model

- is the Schwinger model with the fermion replaced by a complex scalar field.
- is believed to be confining, in the sense that there is a linear potential.
- has topological solutions.
- Here the Higgs mode is taken infinitely massive.

$$
\begin{aligned}
S= & -\beta_{p l} \sum_{x} \sum_{\nu<\mu} \cos \left(\left(A_{x, \mu}-A_{x+\nu, \mu}\right)-\left(A_{x, \nu}-A_{x+\mu, \nu}\right)\right) \\
& -2 \kappa \sum_{x} \sum_{\nu=1}^{2} \cos \left(\theta_{x+\nu}-\theta_{x}+A_{x, \nu}\right)
\end{aligned}
$$

The Abelian Higgs model

- The original partition function is a sum over the compact fields

$$
Z=\int \mathcal{D}\left[A_{x, \mu}\right] \mathcal{D}\left[\theta_{x}\right] e^{-S}
$$

- The Boltzmann weights can be Fourier expanded

$$
e^{\beta_{\rho l} \cos \left(F_{x, \mu \nu}\right)}=\sum_{m=-\infty}^{\infty} I_{m}\left(\beta_{p l}\right) e^{i m F_{x, \mu \nu}}
$$

$$
\begin{aligned}
e^{2 \kappa \cos \left(\theta_{x+\nu}-\theta_{x}+A_{x, \nu}\right)}=\sum_{n=-\infty}^{\infty} I_{n}(2 \kappa) e^{i n\left(\theta_{x+\nu}-\theta_{x}+A_{x, \nu}\right)} \text { plaquettes (dual sites). } \\
\text { • No residual gauge freedom. }
\end{aligned}
$$

The Abelian Higgs model

The Abelian Higgs model

The tensors

$$
\begin{gathered}
Z=\sum_{\{m\}}\left(\prod_{x, \mu \nu} I_{m}\left(\beta_{p I}\right)\right)\left(\prod_{x, \mu} I_{m-m^{\prime}}(2 \kappa)\right) \\
A_{m m^{\prime}} \equiv I_{m-m^{\prime}}(2 \kappa)
\end{gathered}
$$

The Polyakov loop

We looked at the Polyakov loop: A Wilson loop wrapped around the temporal direction of the lattice. This operator

- is a product of gauge fields in the time direction.
- is an order parameter for confinement in gauge theories.

$$
P=\prod_{n=1}^{N_{\tau}} U_{x^{*}+n \hat{\tau}, \tau}
$$

$$
\begin{aligned}
& \langle P\rangle=\frac{1}{Z} \int \mathcal{D}\left[A_{x, \mu}\right] \mathcal{D}\left[\theta_{x}\right] e^{-S} P \\
& =\frac{1}{Z} \sum_{\{m\}}\left(\prod_{x, \mu \nu} I_{m}\left(\beta_{p \prime}\right)\right)\left(\prod_{x, \mu} I_{m-m^{\prime}}(2 \kappa)\right)\left(\prod_{n=1}^{N_{\tau}} \frac{I_{m-m^{\prime}-1}(2 \kappa)}{I_{m-m^{\prime}}(2 \kappa)}\right)
\end{aligned}
$$

space

TRG \& MC comparison

Varying $\beta_{p l}$ keeping volume fixed. 16×16.

Comparison between MC and TRG.

Continuous time limit

original lattice \rightarrow

a, κ_{s} smaller \&
$\beta_{p l}, \kappa_{\tau}$ larger
a, κ_{s} smaller \&
$\beta_{p l}, \kappa_{\tau}$ larger

a, κ_{s} smaller \&
$\beta_{p l}, \kappa_{\tau}$ larger

The quantum Hamiltonian

- This model has a continuous-time limit which has no residual gauge freedom.
- The continuous-time limit: taking $\beta_{p l}, \kappa_{\tau} \rightarrow \infty$, and $\kappa_{s}, a \rightarrow 0$, such that

$$
U \equiv \frac{1}{\beta_{p / a}}=\frac{g^{2}}{a}, \quad Y \equiv \frac{1}{2 \kappa_{\tau} a}, \quad X \equiv \frac{2 \kappa_{s}}{a}
$$

are held constant.

$$
\begin{aligned}
H & =\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{z}\right)^{2}+\frac{Y}{2} \sum_{i}^{\prime}\left(L_{i+1}^{z}-L_{i}^{z}\right)^{2}-X \sum_{i=1}^{N_{s}} U_{i}^{X} \\
L^{z}|m\rangle & =m|m\rangle, \quad U^{x}=\frac{1}{2}\left(U^{+}+U^{-}\right), \quad U^{ \pm}|m\rangle=|m \pm 1\rangle .
\end{aligned}
$$

The Polaykov loop

- The Polyakov loop has a continuous-time limit:

$$
P=\prod_{n=1}^{N_{\tau}} U_{x^{*}+n \hat{\tau}, \tau} \rightarrow \prod_{n=1}^{N_{\tau}} \frac{I_{m-m^{\prime}-1}(2 \kappa)}{I_{m-m^{\prime}}(2 \kappa)} \mapsto-\frac{Y}{2}\left(2\left(L_{i^{*}+1}^{z}-L_{i^{*}}^{z}\right)-1\right)
$$

This gets put into the quantum Hamiltonian.

- The Hamiltonian with the Polyakov loop inserted:

$$
\tilde{H}=H-\frac{Y}{2}\left(2\left(L_{i^{*}+1}^{Z}-L_{i^{*}}^{Z}\right)-1\right)
$$

- In this form ΔE comes from the difference in the ground states of the two Hamiltonians.

Collapse across limits

- The energy gap between a system with a Polyakov loop, and one without:

$$
\Delta E=E_{\mathrm{PL}}^{(0)}-E^{(0)}
$$

and a system with an external field, and one without:

$$
\Delta E=E_{01 \mathrm{BC}}^{(0)}-E^{(0)} .
$$

- We found for sufficiently small $\left(g N_{s}\right)^{2}$

$$
N_{s} \Delta E=f\left(g^{2} N_{s}^{2}\right)
$$

Furthermore, this collapse survives the continuous time limit!

Ladder system Hamiltonian

$\hat{H}=-\frac{J}{2} \sum_{i=1}^{N_{s}} \sum_{m=-s}^{s-1}\left(\hat{a}_{m, i}^{\dagger} \hat{a}_{m+1, i}+\right.$ h.c. $)-\sum_{i=1}^{N_{s}} \sum_{m=-s}^{s} \epsilon_{m, i} \hat{n}_{m, i}+\sum_{i, i^{\prime}=1}^{N_{s}} \sum_{m, m^{\prime}=-s}^{s} V_{m, m^{\prime}, i, i^{\prime}} \hat{n}_{m, i}, \hat{n}_{m^{\prime}, i^{\prime}}$

Hamiltonian mapping

$$
\begin{align*}
H_{\text {rotor }} & \rightarrow H_{\text {boson }} \tag{1}\\
-\frac{X}{2} \sum_{i=1}^{N_{s}}\left(U_{i}^{+}+U_{i}^{-}\right) & \rightarrow-\frac{J}{2} \sum_{i=1}^{N_{s}} \sum_{m=-s}^{s-1}\left(\hat{a}_{i, m+1}^{\dagger} \hat{a}_{, m}+\hat{a}_{i, m}^{\dagger} \hat{a}_{i, m+1}\right) \tag{2}\\
\frac{U}{2} \sum_{i=1}^{N_{s}}\left(L_{i}^{Z}\right)^{2} & \rightarrow \sum_{i=1}^{N_{s}} \sum_{m=-s}^{s} \epsilon_{m, i} \hat{i}_{m, i} \tag{3}\\
\frac{Y}{2} \sum_{\langle i j\rangle}\left(L_{i}^{Z}-L_{j}^{Z}\right)^{2} & \rightarrow \sum_{\langle i j\rangle} \sum_{m, m^{\prime}=-s}^{s} V_{m, m^{\prime}, i j} \hat{n}_{m, i} \hat{n}_{m^{\prime}, j} \tag{4}
\end{align*}
$$

The quadratic potential

- The local potentials and hopping map straightforwardly.
- The nearest-neighbor rung interactions:

$$
\begin{aligned}
V_{m, m^{\prime}, i, i^{\prime}} & =V_{m, m^{\prime}} \delta_{i^{\prime}, i+1} \\
& =\left(-\left|V_{0}\right|+\frac{Y}{2}\left(m-m^{\prime}\right)^{2}\right) \delta_{i^{\prime}, i+1}
\end{aligned}
$$

can be accomplished using an asymmetric ladder and a Rydberg-dressed potential.

3D $U(1)$ gauge theory

- Free electrodynamics in 3D ($2+1 \mathrm{D}$):

$$
\begin{aligned}
S & =-\beta \sum_{x, \mu \nu} \cos \left(F_{x, \mu \nu}\right) \\
& \rightarrow Z=\int \mathcal{D}\left[A_{x, \mu}\right] e^{-S}
\end{aligned}
$$

- One can expand just as before:

$$
e^{\beta \cos \left(F_{x, \mu \nu}\right)}=\sum_{m=-\infty}^{\infty} I_{m}\left(\beta_{p l}\right) e^{i m F_{x, \mu \nu}}
$$

-

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{d A_{x, \mu}}{2 \pi} e^{i A_{x, \mu}\left(n_{1}+n_{2}-n_{3}-n_{4}\right)} \\
=\delta_{n_{1}+n_{2}, n_{3}+n_{4}}
\end{gathered}
$$

associated with each link. The ns are associated with the plaquettes.

- The Kronecker delta is solved by a curl

$$
\begin{gathered}
\Delta_{\mu} n_{x, \mu \nu}=0 \\
\Longrightarrow n_{x, \mu \nu}=\epsilon_{\mu \nu \rho} \Delta_{\rho} m_{x^{*}}
\end{gathered}
$$

3D $U(1)$ gauge theory

- Z can now be written as

$$
Z=\sum_{\{m\}}\left(\prod_{i^{*}, \mu} I_{\Delta_{\mu} m_{i *}}(\beta)\right)
$$

- Separating space and time in anticipation

$$
\begin{array}{r}
Z=\sum_{\{m\}}\left(\prod_{i^{*}, \tau} I_{\Delta_{\tau} m_{i^{*}}}\left(\beta_{s}\right)\right) \times \\
\left(\prod_{i^{*}, a} I_{\Delta_{a} m_{i^{*}}}\left(\beta_{\tau}\right)\right)
\end{array}
$$

The quantum Hamiltonian

- Separating the temporal and spatial (dual) links and taking the continuous-time limit: $\beta_{\tau} \rightarrow \infty, \beta_{s}$, $a \rightarrow 0$ and keep these ratios finite

$$
U \equiv \frac{1}{\beta_{\tau} a}, \quad X \equiv \frac{\beta_{s}}{a}
$$

-

$H=\frac{U}{2} \sum_{\langle i j\rangle}^{\prime}\left(L_{i}^{Z}-L_{j}^{z}\right)^{2}-X \sum_{i} U_{i}^{X}$

- The L^{z} variables are unconstrained.
- Local (nearest neighbor)
- Similar to Abelian Higgs model
- Discrete spectrum amiable to simulation
with
$L^{z}|m\rangle=m|m\rangle, U^{x}=\frac{1}{2}\left(U^{+}+U^{-}\right), U^{ \pm}|m\rangle=|m \pm 1\rangle$

MC check

Average action computed compared between the tensor renormalization group (TRG) and Monte Carlo methods. $16 \times 16 \times 16$

Ground state energy of the Hamiltonian computed using perturbation theory and compared with TRG calculations. 4×4

Hamiltonian mapping

$$
\begin{align*}
H_{\text {rotor }} & \rightarrow H_{\text {boson }} \tag{5}\\
-\frac{X}{2} \sum_{i=1}^{N_{s}}\left(U_{i}^{+}+U_{i}^{-}\right) & \rightarrow-\frac{J}{2} \sum_{i=1}^{N_{s}} \sum_{m=-s}^{s-1}\left(\hat{a}_{i, m+1}^{\dagger} \hat{a}_{i, m}+\hat{a}_{i, m}^{\dagger} \hat{a}_{i, m+1}\right) \tag{6}\\
\frac{U}{2} \sum_{\partial}\left(L_{i}^{Z}\right)^{2} & \rightarrow \sum_{i=1}^{N_{s}} \sum_{m=-s}^{s} \epsilon_{m, i} \hat{i}_{m, i} \tag{7}\\
\frac{U}{2} \sum_{\langle i j\rangle}\left(L_{i}^{Z}-L_{j}^{Z}\right)^{2} & \rightarrow \sum_{\langle j j\rangle} \sum_{m, m^{\prime}=-s}^{s} V_{m, m^{\prime}, i, j} \hat{n}_{m, i}, \hat{n}_{m^{\prime}, j} \tag{8}
\end{align*}
$$

Ladder system Hamiltonian

s here indicates the state truncation.
Pro:

- ϵ, and V are very similar to before.

Con:

- Next-nearest neighbors are now $\sqrt{2} a_{\jmath}$ away (diagonal) instead of $2 a_{\rho}$.

In conclusion

- The Abelian Higgs model has local continuous-time limit with no residual gauge freedom.
- We propose a physical, multi-leg, optical-lattice ladder to quantum simulate the Abelian Higgs model in 2D.
- We can achieve the desired interactions for the lattice model using an asymmetric lattice and a Rydberg-dressed potential.
- arXiv:1803.11166, 1807.09186
- $U(1)$ gauge theory has a similar, continuous-time, rotor limit.
- Can be mapped to a similar boson Hamiltonian.
- 1811.05884
- Looking for simulation.

Thank you!

