Rotor formulation of 3D U(1) gauge theory and quantum simulation with ultra cold atoms in an optical lattice

Judah Unmuth-Yockey ¹, Alexei Bazavov ⁴, Yannick Meurice ⁵, Shan-Wen Tsai ², Johannes Zeiher ³, Jin Zhang ²

¹Syracuse University

²University of California Riverside

³University of California Berkeley

⁴Michigan State University

⁵University of Iowa

arXiv:1803.11166, 1807.09186, 1811.05884

Jud

	High energy ph	ysics at ultra cold temperatures:	June 13 th , 2019≣	▶ < ≣ > _ ≣	$\mathcal{O} \mathcal{Q} \mathcal{O}$
ah et al.	(Syracuse U)	3D $U(1)$ and QS		HEP @ UCT	1 / 23

Motivation

The situation:

- quantum computing (QC) will solve many issues with classical computing for lattice gauge theory.
- The scaling for digital QC is **slow** right now for number of qubits.
- Other quantum simulation techniques could give answers faster.
- I'll focus on **optical lattice** simulations.

ludah et a	I (Svracuse	- U)

3D U(1) and QS

Plan

- 3D U(1) is what I'm excited about
- 2D Abelian Higgs model as a step
- Tensor & continuous-time limit
- Optical lattice set-up
- back to 3D U(1)

Judah et al. (Syracuse U)

3D U(1) and QS

ē. 500

HEP @ UCT

the Abelian Higgs model

Judah et al. (Syracuse U)

3D U(1) and QS

HEP @ UCT 4 / 23

The Abelian Higgs model

• The original partition function is a sum over the **compact** fields

$$Z = \int \mathcal{D}[A_{x,\mu}] \mathcal{D}[\theta_x] e^{-S}$$

• The Boltzmann weights can be **Fourier** expanded

$$e^{eta_{
m pl}\cos(F_{x,\mu
u})} = \sum_{m=-\infty}^{\infty} I_m(eta_{
m pl})e^{imF_{x,\mu
u}}$$

$$e^{2\kappa\cos(\theta_{x+\nu}-\theta_x+A_{x,\nu})} = \sum_{n=-\infty}^{\infty} I_n(2\kappa) e^{in(\theta_{x+\nu}-\theta_x+A_{x,\nu})} \bullet \mathbf{N}$$

• Integrating over θ s gives $\delta_{\Delta_{\mu}n_{\mu},0}$ which is solved by $n_{\mu} = \epsilon_{\mu\nu}\Delta_{\nu}m$.

• But $\delta_{n_{\mu}-\epsilon_{\mu\nu}\Delta_{\nu}m,0}$ is the constraint from A integration, giving

$$Z = \sum_{\{m\}} \left(\prod_{x,\mu\nu} I_m(\beta_{pl}) \right) \left(\prod_{x,\mu} I_{m-m'}(2\kappa) \right)$$

The *m*s are associated with the **plaquettes** (dual sites).

No residual gauge freedom.

		▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필	<i>१९</i>
Judah et al. (Syracuse U)	3D $U(1)$ and QS	HEP @ UCT	5 / 23

The Abelian Higgs model

The Abelian Higgs model

The tensors

The Polyakov loop

We looked at the **Polyakov loop**: A Wilson loop wrapped around the temporal direction of the lattice. This operator

- is a product of gauge fields in the time direction.
- is an order parameter for confinement in gauge theories.

$$P=\prod_{n=1}^{N_{\tau}}U_{x^*+n\hat{\tau},\tau}.$$

$$\langle P \rangle = \frac{1}{Z} \int \mathcal{D}[A_{x,\mu}] \mathcal{D}[\theta_x] e^{-S} P$$

$$= \frac{1}{Z} \sum_{\{m\}} \left(\prod_{x,\mu\nu} I_m(\beta_{pl}) \right) \left(\prod_{x,\mu} I_{m-m'}(2\kappa) \right) \left(\prod_{n=1}^{N_\tau} \frac{I_{m-m'-1}(2\kappa)}{I_{m-m'}(2\kappa)} \right)$$

Judah et al. (Syracuse U)

3D U(1) and QS

< ≣ > ৗ ় ৩ ৫ ে HEP @ UCT 8 / 23

TRG & MC comparison

Comparison between MC and TRG.

3D U(1) and QS

(□) ◆ (=) \bullet (=)

Continuous time limit

original lattice \rightarrow

 $\begin{array}{l} \textbf{a}, \kappa_{s} \text{ smaller } \& \\ \beta_{\textit{pl}}, \kappa_{\tau} \text{ larger} \end{array}$

 $\begin{array}{l} \textbf{a}, \kappa_{s} \text{ smaller } \& \\ \beta_{\textit{pl}}, \kappa_{\tau} \text{ larger} \end{array}$

 $\begin{array}{l} \textbf{a}, \kappa_{s} \text{ smaller } \& \\ \beta_{\textit{pl}}, \kappa_{\tau} \text{ larger} \end{array}$

		▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필	うくで
Judah et al. (Syracuse U)	3D $U(1)$ and QS	HEP @ UCT	10 / 23

The quantum Hamiltonian

- This model has a **continuous-time limit** which has **no residual gauge freedom**.
- The continuous-time limit: taking $\beta_{pl}, \kappa_{\tau} \to \infty$, and $\kappa_s, a \to 0$, such that

$$U \equiv \frac{1}{\beta_{pl}a} = \frac{g^2}{a}, \quad Y \equiv \frac{1}{2\kappa_{\tau}a}, \quad X \equiv \frac{2\kappa_s}{a}$$

are held constant.

$$H = \frac{U}{2} \sum_{i=1}^{N_s} (L_i^z)^2 + \frac{Y}{2} \sum_i^{\prime} (L_{i+1}^z - L_i^z)^2 - X \sum_{i=1}^{N_s} U_i^x$$

Ð,

▶ ∢ ≣ HEP @

@ UCT

590

$$L^{z}|m\rangle = m|m\rangle, \quad U^{x} = \frac{1}{2}(U^{+} + U^{-}), \quad U^{\pm}|m\rangle = |m \pm 1\rangle.$$

udah et al. (Syracuse U)

3D U(1) and QS

The Polaykov loop

• The Polyakov loop has a continuous-time limit:

$$P = \prod_{n=1}^{N_{\tau}} U_{x^* + n\hat{\tau}, \tau} \to \prod_{n=1}^{N_{\tau}} \frac{I_{m-m'-1}(2\kappa)}{I_{m-m'}(2\kappa)} \mapsto -\frac{Y}{2} (2(L_{i^*+1}^z - L_{i^*}^z) - 1)$$

This gets put into the quantum Hamiltonian.

• The Hamiltonian with the Polyakov loop inserted:

$$\tilde{H} = H - \frac{Y}{2} (2(L_{i^*+1}^z - L_{i^*}^z) - 1)$$

• In this form ΔE comes from the difference in the ground states of the two Hamiltonians.

Judah et al. (Syracuse U)

3D U(1) and QS

ъ.

E 990

Collapse across limits

• The energy gap between a system with a Polyakov loop, and one without:

$$\Delta E = E_{\rm PL}^{(0)} - E^{(0)},$$

and a system with an external field, and one without:

$$\Delta E = E_{01BC}^{(0)} - E^{(0)}.$$

• We found for sufficiently small $(gN_s)^2$

$$N_s \Delta E = f(g^2 N_s^2)$$

Judah et al. (Syracuse U)

Furthermore, this collapse survives the continuous time limit!

Ladder system Hamiltonian

A 5-state truncation

Hamiltonian mapping

$$H_{\rm rotor} \rightarrow H_{\rm boson}$$
 (1)

$$-\frac{X}{2}\sum_{i=1}^{N_s} (U_i^+ + U_i^-) \quad \to \quad -\frac{J}{2}\sum_{i=1}^{N_s}\sum_{m=-s}^{s-1} (\hat{a}_{i,m+1}^{\dagger}\hat{a}_{i,m} + \hat{a}_{i,m}^{\dagger}\hat{a}_{i,m+1})$$
(2)

$$\frac{U}{2}\sum_{i=1}^{N_s} (L_i^z)^2 \quad \rightarrow \quad \sum_{i=1}^{N_s} \sum_{\substack{m=-s\\s}}^{s} \epsilon_{m,i} \hat{n}_{m,i} \tag{3}$$

$$\frac{Y}{2} \sum_{\langle ij \rangle} (L_i^z - L_j^z)^2 \quad \rightarrow \quad \sum_{\langle ij \rangle} \sum_{m,m'=-s}^s V_{m,m',i,j} \hat{n}_{m,i}, \hat{n}_{m',j}$$
(4)

		▲□▶ ▲圖▶ ▲臺▶ ▲臺▶ — 臺	৩৫৫
Judah et al. (Syracuse U)	3D $U(1)$ and QS	HEP @ UCT	15 / 23

The quadratic potential

Judah et al. (Syracuse U)

3D U(1) and QS

HEP @ UCT 16 / 23

3D U(1) gauge theory

• Free electrodynamics in 3D (2+1D):

$$S = -\beta \sum_{x,\mu
u} \cos(F_{x,\mu
u})$$

 $ightarrow Z = \int \mathcal{D}[A_{x,\mu}] e^{-S}$

• One can expand just as before:

$$e^{\beta \cos(F_{x,\mu\nu})} = \sum_{m=-\infty}^{\infty} I_m(\beta_{pl}) e^{imF_{x,\mu\nu}}$$

$$\int_{0}^{2\pi} \frac{dA_{x,\mu}}{2\pi} e^{iA_{x,\mu}(n_1+n_2-n_3-n_4)} = \delta_{n_1+n_2,n_3+n_4}$$

associated with each link. The *n*s are **associated with the plaquettes**.

• The Kronecker delta is solved by a curl

$$\Delta_{\mu}n_{x,\mu\nu}=0$$

$$\implies n_{x,\mu\nu} = \epsilon_{\mu\nu\rho} \Delta_{\rho} m_{x^*}$$

		▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ — 喜	うくで
Judah et al. (Syracuse U)	3D $U(1)$ and QS	HEP @ UCT	17 / 23

۲

3D U(1) gauge theory

• Z can now be written as

$$Z = \sum_{\{m\}} \left(\prod_{i^*,\mu} I_{\Delta_\mu m_{i^*}}(eta)
ight)$$

• Separating space and time in anticipation

$$Z = \sum_{\{m\}} \left(\prod_{i^*,\tau} I_{\Delta_{\tau} m_{i^*}}(\beta_s) \right) \times \left(\prod_{i^*,a} I_{\Delta_a m_{i^*}}(\beta_{\tau}) \right)$$

3D U(1) and QS

τ

▲ ■ ▶ ▲ ■ ▶ ■ ∽ ९ ↔
HEP @ UCT 18 / 23

 $m_{i+\hat{y}}$

 m_i

▶*m_i _*[≁]τ̂

I.

The quantum Hamiltonian

• Separating the temporal and spatial (dual) links and taking the continuous-time limit: $\beta_{\tau} \rightarrow \infty$, β_{s} , $a \rightarrow 0$ and keep these ratios finite

$$U \equiv rac{1}{eta_{ au} a}, \quad X \equiv rac{eta_s}{a}$$

$$H = \frac{U}{2} \sum_{\langle ij \rangle}^{\prime} (L_i^z - L_j^z)^2 - X \sum_i U_i^x$$

with

$$L^{z}|m
angle=m|m
angle, \ U^{x}=rac{1}{2}(U^{+}+U^{-}), \ U^{\pm}|m
angle=|m\pm1
angle$$

Judah et al. (Syracuse U)

3D U(1) and QS

- The *L^z* variables are **unconstrained**.
- Local (nearest neighbor)
- Similar to Abelian Higgs model
- **Discrete spectrum** amiable to simulation

.⊒ . . .

HEP @ UCT

▲ E → E → Q @

19 / 23

MC check

Average action computed compared between the tensor renormalization group (TRG) and Monte Carlo methods. $16 \times 16 \times 16$

Ground state energy of the Hamiltonian computed using perturbation theory and compared with TRG calculations. 4×4

Judah	et a	I. (Syracuse	U))

3D U(1) and QS

HEP @ UCT 20 / 23

Sar

Hamiltonian mapping

$$H_{\rm rotor} \rightarrow H_{\rm boson}$$
 (5)

$$-\frac{X}{2}\sum_{i=1}^{N_s} (U_i^+ + U_i^-) \quad \to \quad -\frac{J}{2}\sum_{i=1}^{N_s}\sum_{m=-s}^{s-1} (\hat{a}_{i,m+1}^\dagger \hat{a}_{i,m} + \hat{a}_{i,m}^\dagger \hat{a}_{i,m+1}) \tag{6}$$

$$\frac{U}{2}\sum_{\partial}(L_i^z)^2 \quad \rightarrow \quad \sum_{i=1}^{N_s}\sum_{m=-s}^s \epsilon_{m,i}\hat{n}_{m,i} \tag{7}$$

$$\frac{U}{2} \sum_{\langle ij \rangle} (L_i^z - L_j^z)^2 \quad \rightarrow \quad \sum_{\langle ij \rangle} \sum_{m,m'=-s}^s V_{m,m',i,j} \hat{n}_{m,i}, \hat{n}_{m',j}$$
(8)

		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖	~ ~ ~
Judah et al. (Syracuse U)	3D $U(1)$ and QS	HEP @ UCT	21 / 23

Ladder system Hamiltonian

s here indicates the state truncation. Pro:

• ϵ , and V are very similar to before.

Con:

• Next-nearest neighbors are now $\sqrt{2}a_I$ away (diagonal) instead of $2a_I$.

In conclusion

- The Abelian Higgs model has local continuous-time limit with no residual gauge freedom.
- We propose a physical, multi-leg, optical-lattice ladder to quantum simulate the Abelian Higgs model in 2D.
- We can achieve the desired interactions for the lattice model using an asymmetric lattice and a Rydberg-dressed potential.
- arXiv:1803.11166, 1807.09186
- U(1) gauge theory has a similar, continuous-time, rotor limit.
- Can be mapped to a similar boson Hamiltonian.
- 1811.05884
- Looking for simulation.

Thank you!

Judah et al. (Syracuse U)

3D U(1) and QS

HEP @ UCT 23 / 23

Ξ.