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The situation:

@ quantum computing (QC) will solve many
issues with classical computing for lattice
gauge theory.

@ The scaling for digital QC is slow right
now for number of qubits.

@ Other quantum simulation techniques
could give answers faster.

o I'll focus on optical lattice simulations.
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@ 3D U(1) is what I'm excited about
@ 2D Abelian Higgs model as a step
@ Tensor & continuous-time limit

@ Optical lattice set-up

@ back to 3D U(1)
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the Abelian Higgs model

The Abelian Higgs model in two Euclidean space-time

dimensions: This model
@ is the Schwinger model with the fermion replaced
by a complex scalar field.
@ is believed to be confining, in the sense that there is
a linear potential.
@ has topological solutions.
@ Here the Higgs mode is taken infinitely massive.
.
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The Abelian Higgs model

@ The original partition function is a sum @ Integrating over fs gives 5Au”ua0 which is
over the compact fields solved by n, = €, A, m.
@ But d,,—¢,,A,mo0 is the constraint from A
Z = /D[AXM]D[QX]e_S integralfciorl;, 7
giving

@ The Boltzmann weights can be Fourier

expanded 7 = Z <H Im(ﬁp/)> (H Imm’(2’%)>

o0 . {m} N\
eﬂp/cos(FX,W): Z /m(ﬁp/)elmFX”W

M—— oo The ms are associated with the

plaquettes (dual sites).

o0

eZKCOS(9X+y—9X+AX7V) _ Z In(2&)ein(0X+V—QX+AX,,,)

ne— oo @ No residual gauge freedom.
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The Abelian Higgs model
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The Abelian Higgs model

The tensors

Z= Z (H Im(ﬁpl)> (H Im—m’(2’f)> = A7 =

{m} \x,uv
AL Al)
Amm/ = Im—m/(2/i)
(1)
/m(ﬁ) ifm1:m2:m3:m4:m B A B
Bm1m2m3m4 = _
0 otherwise.
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The Polyakov loop

We looked at the Polyakov loop: A Wilson loop wrapped
around the temporal direction of the lattice. This operator

@ is a product of gauge fields in the time direction. 0 1 1 0 0

@ is an order parameter for confinement in gauge theories.
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TRG & MC comparison
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Continuous time limit

original lattice — a, ks smaller & a, ks smaller & a, ks smaller &
Bpl, kir larger Bpl, kr larger Bpl, kr larger
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The quantum Hamiltonian

@ This model has a continuous-time limit which has no residual
gauge freedom.

@ The continuous-time limit: taking 8/, x; — 00, and

ks,a — 0, such that Aim
) Mo «——» 62
1 2 1 2
U= — = g—, Y = , X = s
Bpia a 2Kra a
Am <
are held constant. E
° m@® ®n
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H= > Z(Lf)z Ty Z( - L) =X) Uur
i=1 i i=1

LZ|m) = m|m), U*= %(w LU, UE|m) = [m 1),
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The Polaykov loop

@ The Polyakov loop has a continuous-time limit:

P = ﬁ U = ﬁ In-m1(26) Y oz yzy )
N n:1 X*+nT’T n:1 Im—m’(zK“) 2 I*+1 a

This gets put into the quantum Hamiltonian.

@ The Hamiltonian with the Polyakov loop inserted:
w Y z z
H — H - E(Q(Li*+1 - L,*) - ].)

@ In this form AE comes from the difference in the ground states of the two Hamiltonians.
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Collapse across limits

Furthermore, this collapse survives the continuous

@ The energy gap between a time limit!
system with a Polyakov loop,
and one without: 4.50 ' ' ' ' . g ]
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Ladder system Hamiltonian

A b-state truncation
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Hamiltonian mapping

Hrotor — Hboson (1)
X Ns Ns s—1
D N (VRS S D DEC I e 2)
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U Ns Ns s
Ez:(Lf)2 — Z Z €m,ifim,j (3)
i=1 i=1 m=—s

Y
E Z(le o L_]Z)2 — Z Z Vm,m’,i,jﬁm,ia ﬁm',j (4)
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The quadratic potential

. . 0 BT (Sl
@ The local potentials and hopping — T A,'&fz
map straightforwardly. > e
ia /
@ The nearest-neighbor rung > ®
interactions: £ al=19
2 1t g = 1
o - Y
Verm' iit = Vin,m0ir i41 = P
o) /
Y , 5 ;g
2 Q , =
I= Mo /! o 1 2 3 4
can be accomplished using an oboo.o® Distance Am/a, ]
asymmetric ladder and a 0 5 10 15 20
Rydberg-dressed potential. Distance R/a,
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3D U(1) gauge theory

o Free electrodynamics in 3D (2+1D): ° 2 4A
/ X, U eiAx,u(n1+n2—n3—n4)
S=-p Z cos(Fx ) 0 21
X, [V = 5n1+n2,n3+n4
N7 = /D[AX u]e_s associated with each link. The ns are
associated with the plaquettes.
@ One can expand just as before: @ The Kronecker delta is solved by a curl
> : A,ny ., =0
B cos(Fuuv) — Z Im(ﬁp/)elmFX’“” pwlx, pv
m=-090 = v = EuupDpMye
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3D U(1) gauge theory

@ /Z can now be written as

Z=>"|11'a.m-(8)

{m} \/*,n

@ Separating space and time in
anticipation

Z=> | I]/arm-(Bs) ] x

{m} \J*,7

11 /2.m. (8-)
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The quantum Hamiltonian

@ Separating the temporal and spatial (dual) links and
taking the continuous-time limit: 5, — 0o, fs,
a — 0 and keep these ratios finite

1 Bs @ The L? variables are
Bra’ a unconstrained.

o @ Local (nearest neighbor)
@ Similar to Abelian Higgs model

U . .
H = > Z(LIZ _ LJ?)2 _ X Z Ux ° [I)lscret.e spectrum amiable to
() i simulation

with

1
L*|m) = m|m), U* = §(U+ +U7), UIm) = m*1)
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MC check
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Average action computed compared between
the tensor renormalization group (TRG) and
Monte Carlo methods. 16 x 16 x 16
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Hamiltonian mapping

Hrotor — Hboson (5)
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Ladder system Hamiltonian

Ns s—1
I:I _% Z(T am+1l+hC)—ZZCm,nm,+Z Z me/nmhnm’_]
i=1 m=—s i=1 m=— ) mm'=—

s here indicates the state truncation.
Pro:

@ ¢, and V are very similar to before.

Con:

o Next-nearest neighbors are now \/2a; away (diagonal) instead of 2a;.
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In conclusion

The Abelian Higgs model has local continuous-time limit with no residual gauge freedom.

We propose a physical, multi-leg, optical-lattice ladder to quantum simulate the Abelian
Higgs model in 2D.

We can achieve the desired interactions for the lattice model using an asymmetric lattice
and a Rydberg-dressed potential.

arXiv:1803.11166, 1807.09186
U(1) gauge theory has a similar, continuous-time, rotor limit.

Can be mapped to a similar boson Hamiltonian.
1811.05884

Looking for simulation.

Thank you!
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