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Vision: simulation of “nuclear” physics 
and dense “quark” matter
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Goals: Development of quantum technologies toolbox for the 
implementation of systems with (non-)abelian gauge symmetry

Nuclear physics in a 
quantum simulator



Quantum Chromodynamics: 
Confinement under normal conditions

Quarks and gluons carry a color charge

Quarks interact by exchanging gluons

ψ̂α
⃗r α =

ψ̂α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β
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Quantum Chromodynamics: 
Confinement under normal conditions

Quarks and gluons carry a color charge

Quarks interact by exchanging gluons

ψ̂α
⃗r α =

ψ̂α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌

Quarks are confined into color-neutral (color singlet) 
bound states (hadrons)

qqq baryons: proton, neutron, ... qq mesons: pions (lightest), 
kaon, rho, ...

-



QCD under extreme conditions
Compress or 
heat baryons

Hadrons 
overlap

Confinement 
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Expect interesting/unusual behaviour
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of pions
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Accessible to quantum simulations: 

•
at non-zero baryon density 

•
non-equilibrium dynamics



QCD under extreme conditions
Compress or 
heat baryons

Hadrons 
overlap

Confinement 
is “lost”

A vast world to explore  
QCD critical point: a challenge for experiment and theory

Early 
universe

Heavy-ion 
collisions

Neutron 
stars



First experimental realisations 
in trapped ions platform 
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Quantum Technologies

for Lattice Gauge Theories

Toolbox for Abelian lattice gauge theories with synthetic matter 
O. Dutta, L. Tagliacozzo, M. Lewenstein, J. Zakrzewski 

arXiv:1601.03303 (2016) 

Lattice gauge theories simulations in the quantum information era 
M. Dalmonte, S. Montangero 

Contemporary Physics 57, 388 (2016) 

Quantum Simulations of Lattice Gauge Theories using Ultracold Atoms in Optical 
Lattices 

E. Zohar, J.I. Cirac, B. Reznik 
Rep. Prog. Phys. 79, 014401 (2016) 

Towards Quantum Simulating QCD  
U.-J. Wiese 

Nucl.Phys. A931, 246-256 (2014)



Quantum Technologies

for Lattice Gauge Theories

Volume 94B, number 2 PHYSICS LETTERS 28 July 1980 

DYNAMICAL STABILITY OF LOCAL GAUGE SYMMETRY 

Creation of Light From Chaos 

D. FOERSTER 
Service de Physique Thdorique, CEN Sac&y, [:-91190 Gif-sur-Yvette, France 

H.B. NIELSEN 
The Niels Bohr Institute, University of  Copenhagen, and NORDITA, 
DK-2100 Copenhagen ~, Denmark 

and 

M. NINOMIYA 
The Niels Bohr Institute, University of  Copenhagen, DK-21 O0 Copenhagen ~, Denmark 

Received 14 May 1980 

And God said "Let  there be light",  and there was light - Genesis 1 - 3  

We show that the large distance behavior of gauge theories is stable, within certain limits, with respect to addition of 
gauge noninvariant interactions at small distances. 

1. One of  us (H.B.N.) has suggested [1 ] earlier that 
symmetries and physical laws should arise naturally 
from some essentially random dynamics rather than 
being postulated to be exact or adjusted by hand +1. 
The idea of  postulating dynamical  stability ,2 in the 
sense that coupling parameters shall not be contrived 
has though been spread for a long time. In earlier 
papers some of  the present authors (H.B.N. and M.N.) 
[5],  and Chadha, have obtained Lorentz invariance 
in non-Lorentz covariant Yang-Mil ls  theories and elec- 
t rodynamics in the infrared limit as compared to a 
fundamental scale, e.g. the Planck length. In these deri- 
vations we put in gauge invariance ,3 as an assump- 
t i on .  It would also be nice to show that gauge invari- 

+1 See also ref. [2] for a review by Iliopoulos and a support- 
ing philosophy by Woo [3]. 

t~ See e.g. Thome [4]. 
+3 For a review of gauge theories, see ref. [6]. 

ance has a high chance of  arising spontaneously even 
if  nature is not gauge invariant at the fundamental 
scale. 

Iliopoulos and Nanopoulos [7] have informed us 
that they are calculating the renormalization group/3- 
function for various gauge breaking terms and hope for 
approximate gauge invariance to appear towards the 
infrared. 

This at tempt is similar to what Br6zin and Zinn- 
Justin [8] did for an asymmetric ~.i/kl~iq)/(Pk~l theory. 
They noticed that this theory becomes automatically 
O(n) invariant in the infrared under suitable condi- 
tions. 

These are the same type of  arguments as the 
Lorentz invariance derivation by two of  us (H.B.N. 
and M.N.) [3] and Chadha. 

Instead we shall introduce an exact gauge &variance 
in a formal way and then deduce the real one from it in 
the infrared. We shall show that a gauge theory arises 
automatically at large distances from a theory that 
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• Implementing the gauge invariance condition

energy

U
color singlet 

hopping

b)

encoding

•Tool-box from superconducting circuits



Quantum link formalism
Gauge fields span a finite dimensional Hilbert space



Quantum link formalism
Gauge fields span a finite dimensional Hilbert space

U(1) quantum link model

Local degrees of freedom

Quantum link carries an electric flux 
in a finite-dimensional Hilbert space

Two conjugate 
variables Û ⃗r, ⃗r+μ̌

̂E ⃗r, ⃗r+μ̌

Gauge field Electric field
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Gauge field Electric field
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⃗r ⃗r + μ̌

≡ ̂S+
⃗r, ⃗r+μ̌

≡ ̂S(3)
⃗r, ⃗r+μ̌

[ ̂S(3)
⃗r, ⃗r+μ̌

, ̂S+
⃗r, ⃗r+μ̌] = ̂S+

⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌

̂S+
⃗r, ⃗r+μ̌

electric flux as a quantum spin



U(1) quantum link model
Local degrees of freedom

Û ⃗r, ⃗r+μ̌
̂E ⃗r, ⃗r+μ̌

Gauge field Electric field

≡ ̂S+
⃗r, ⃗r+μ̌

≡ ̂S(3)
⃗r, ⃗r+μ̌

Electric flux as a quantum spin Electric field is the generator 
of gauge transformations

̂V( ⃗r, μ̌) = eiϵ( ⃗r) ̂E ⃗r, ⃗r+μ̌



U(1) quantum link model
Local degrees of freedom

Û ⃗r, ⃗r+μ̌
̂E ⃗r, ⃗r+μ̌

Gauge field Electric field

≡ ̂S+
⃗r, ⃗r+μ̌

≡ ̂S(3)
⃗r, ⃗r+μ̌

Electric flux as a quantum spin Electric field is the generator 
of gauge transformations

̂V( ⃗r, μ̌) = eiϵ( ⃗r) ̂E ⃗r, ⃗r+μ̌

and (first) Gauge constraint

∏
μ

̂V( ⃗r, μ̌) |phys⟩ = |phys⟩

Not all configuration are allowed 
Zero net electric flux around every vertex 

6-vertex model (2 in 2 out)
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Schwinger representation
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Û ⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌ ⃗r ⃗r + μ̌

̂S+
⃗r, ⃗r+μ̌

[b̂α, b̂†
β]± = δα,β

+fermion 
-boson
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U(1) quantum link model

2 Spin = occupation Number
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Û ⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌ ⃗r ⃗r + μ̌

̂S+
⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌

b̂ ⃗r,μ̌b̂†
⃗r+μ̌,−μ̌



U(1) quantum link model

2 Spin = occupation Number

(second) Gauge constraint

S ⃗r, ⃗r+μ̌ ≡
̂n ⃗r+μ̌,−μ̌ + ̂n ⃗r,μ̌

2
spin-1/2

E = −
1
2

E =
1
2
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Non-abelian quantum link
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Non-abelian quantum link

Ûαβ
⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌
⃗r ⃗r + μ̌

b̂α
⃗r,μ̌b̂β†

⃗r+μ̌,−μ̌

Schwinger representation with internal indexes

αβ = {
1 : U(1)

↑ ↓ : U(2)
brg : U(3)

U(1) group U(2) group U(3) group

For orthogonal groups:
Ôαβ

⃗r, ⃗r+μ̌
= ̂cα

⃗r,μ̌ ̂cβ
⃗r+μ̌,−μ̌

⃗r ⃗r + μ̌
̂cα
⃗r,μ̌ = ̂cα†

⃗r,μ̌

from complex to real representations



Non-abelian quantum link

Ûαβ
⃗r, ⃗r+μ̌

⃗r ⃗r + μ̌
⃗r ⃗r + μ̌

b̂α
⃗r,μ̌b̂β†

⃗r+μ̌,−μ̌

Schwinger representation with internal indexes

αβ = {
1 : U(1)

↑ ↓ : U(2)
brg : U(3)

U(1) group U(2) group U(3) group

For orthogonal groups:
Ôαβ

⃗r, ⃗r+μ̌
= ̂cα

⃗r,μ̌ ̂cβ
⃗r+μ̌,−μ̌

⃗r ⃗r + μ̌
̂cα
⃗r,μ̌ = ̂cα†

⃗r,μ̌

from complex to real representations
O(3) group

̂cα
⃗r,μ̌ = ̂σα

⃗r,μ̌



U(1) quantum link model 
with matter field

Gauge invariant quantum Hamiltonian
ψ̂†

⃗r Û ⃗r, ⃗r+μ̌
fermion

gauge boson

ψ̂ ⃗r+μ̌

Ĥ =
g2

2 ∑⃗
r,μ̌

[E ⃗r, ⃗r+μ̌]2 +
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + m∑⃗

r

(−1) ⃗rψ̂†
⃗r
ψ̂ ⃗r + h . c .



U(1) quantum link model 
with matter field

Gauge invariant quantum Hamiltonian
ψ̂†

⃗r Û ⃗r, ⃗r+μ̌
fermion

gauge boson

ψ̂ ⃗r+μ̌

Ĥ =
g2

2 ∑⃗
r,μ̌

[E ⃗r, ⃗r+μ̌]2 +
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + m∑⃗

r

(−1) ⃗rψ̂†
⃗r
ψ̂ ⃗r + h . c .

electric term 
(on-site interaction)

staggered mass 
(lattice potential)

matter-gauge interaction 
(…?…)



U(1) quantum link model 
with matter field

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌ Local (gauge) symmetry

[Ĥ, Ĝ ⃗r] = 0 ∀ ⃗r Ĝ ⃗r = ψ̂†
⃗r
ψ̂ ⃗r − ∑̌

μ
( ̂E ⃗r, ⃗r+μ̌ − ̂E ⃗r−μ̌, ⃗r)

gauge generator

Ĥ =
g2

2 ∑⃗
r,μ̌

[E ⃗r, ⃗r+μ̌]2 +
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + m∑⃗

r

(−1) ⃗rψ̂†
⃗r
ψ̂ ⃗r + h . c .



U(1) quantum link model 
with matter field

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌ Local (gauge) symmetry

[Ĥ, Ĝ ⃗r] = 0 ∀ ⃗r Ĝ ⃗r = ψ̂†
⃗r
ψ̂ ⃗r − ∑̌

μ
( ̂E ⃗r, ⃗r+μ̌ − ̂E ⃗r−μ̌, ⃗r)

gauge generator

+1−1physical Hilbert space Ĝ ⃗r |phys⟩ = 0 ∀ ⃗r

̂ρ = ⃗∇ ⋅ ̂ ⃗Ein the continuum
charge is the source 

of electric field

Ĥ =
g2

2 ∑⃗
r,μ̌

[E ⃗r, ⃗r+μ̌]2 +
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + m∑⃗

r

(−1) ⃗rψ̂†
⃗r
ψ̂ ⃗r + h . c .



• Implementing the gauge invariance condition

energy

U
color singlet 

hopping

b)

encoding



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + h . c . =

1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
b̂ ⃗r,μ̌b̂†

⃗r+μ̌,−μ̌
ψ̂ ⃗r+μ̌ + h . c .

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + h . c . =

1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
b̂ ⃗r,μ̌b̂†

⃗r+μ̌,−μ̌
ψ̂ ⃗r+μ̌ + h . c .

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌

ψ̂†
⃗r ψ̂ ⃗r+μ̌

⃗r ⃗r + μ̌

b̂ ⃗r,μ̌b̂†
⃗r+μ̌,−μ̌

hopping fermion

hopping boson

Ĥmicro = JF ∑⃗
r

ψ̂†
⃗r
ψ̂ ⃗r+μ̌ + JB ∑⃗

r

b̂ ⃗r,μ̌b̂†
⃗r,μ̌

+ h . c .



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗r+μ̌ψ̂ ⃗r+μ̌ + h . c . =

1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
b̂ ⃗r,μ̌b̂†

⃗r+μ̌,−μ̌
ψ̂ ⃗r+μ̌ + h . c .

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌

ψ̂†
⃗r ψ̂ ⃗r+μ̌

⃗r ⃗r + μ̌

b̂ ⃗r,μ̌b̂†
⃗r+μ̌,−μ̌

hopping fermion

hopping boson

Ĥmicro = JF ∑⃗
r

ψ̂†
⃗r
ψ̂ ⃗r+μ̌ + JB ∑⃗

r

b̂ ⃗r,μ̌b̂†
⃗r,μ̌

+ h . c .

fermi-boson 
interaction

+U∑⃗
r

(Ĝ ⃗r)
2

Fermi-Boson  
Hubbard model



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗rψ̂ ⃗r+μ̌ + h . c . =

1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
b̂ ⃗r,μ̌b̂†

⃗r+μ̌,−μ̌
ψ̂ ⃗r+μ̌ + h . c .

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌

ψ̂†
⃗r ψ̂ ⃗r+μ̌

⃗r ⃗r + μ̌

b̂ ⃗r,μ̌b̂†
⃗r+μ̌,−μ̌

hopping fermion

hopping boson

Ĥmicro = JF ∑⃗
r

ψ̂†
⃗r
ψ̂ ⃗r+μ̌ + JB ∑⃗

r

b̂ ⃗r,μ̌b̂†
⃗r,μ̌

+ h . c .

fermi-boson 
interaction

energy

U (large)

Ĝ ⃗r |phys⟩ = 0 ∀ ⃗r

+U∑⃗
r

(Ĝ ⃗r)
2

Fermi-Boson  
Hubbard model

Emergent lattice gauge theory



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
Û ⃗r, ⃗rψ̂ ⃗r+μ̌ + h . c . =

1
2 ∑⃗

r,μ̌

ψ̂†
⃗r
b̂ ⃗r,μ̌b̂†

⃗r+μ̌,−μ̌
ψ̂ ⃗r+μ̌ + h . c .

ψ̂†
⃗r Û ⃗r, ⃗r+μ̌ ψ̂ ⃗r+μ̌

ψ̂†
⃗r ψ̂ ⃗r+μ̌

⃗r ⃗r + μ̌

b̂ ⃗r,μ̌b̂†
⃗r+μ̌,−μ̌

hopping fermion

hopping boson

Ĥmicro = JF ∑⃗
r

ψ̂†
⃗r
ψ̂ ⃗r+μ̌ + JB ∑⃗

r

b̂ ⃗r,μ̌b̂†
⃗r,μ̌

+ h . c .

fermi-boson 
interaction

energy

U (large)

Ĝ ⃗r |phys⟩ = 0 ∀ ⃗r

+U∑⃗
r

(Ĝ ⃗r)
2

Fermi-Boson  
Hubbard model

Emergent lattice gauge theory

Features of  the model: 

Real time evolution of  string breaking 
CP-phase transition in QED in (1+1)-dimensions



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
2 ∑⃗

r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
2 ∑⃗

r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Ĥmicro = J∑⃗
r,μ̌

ψ̂ α†
⃗r
b̂α

⃗r,μ̌ + h . c .

color singlet 
hopping
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1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
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r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Ĥmicro = J∑⃗
r,μ̌

ψ̂ α†
⃗r
b̂α

⃗r,μ̌ + h . c .

color singlet 
hopping



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
2 ∑⃗

r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Ĥmicro = J∑⃗
r,μ̌

ψ̂ α†
⃗r
b̂α

⃗r,μ̌ + h . c .

color singlet 
hopping

+U∑⃗
r,μ̌

N̂2
⃗r,μ̌

color singlet (density-density) interaction 
conservation number of excitation

N̂ ⃗r,μ̌ = b̂α†
⃗r,μ̌

b̂α
⃗r,μ̌ + b̂α†

⃗r+μ̌,−μ̌
b̂α

⃗r+μ̌,−μ̌

ψ̂ α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
2 ∑⃗

r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Ĥmicro = J∑⃗
r,μ̌

ψ̂ α†
⃗r
b̂α

⃗r,μ̌ + h . c .

color singlet 
hopping

+U∑⃗
r,μ̌

N̂2
⃗r,μ̌

color singlet (density-density) interaction 
conservation number of excitation

N̂ ⃗r,μ̌ = b̂α†
⃗r,μ̌

b̂α
⃗r,μ̌ + b̂α†

⃗r+μ̌,−μ̌
b̂α

⃗r+μ̌,−μ̌

ψ̂ α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌



Ĥ =
1
2 ∑⃗

r,μ̌

ψ̂ α†
⃗r
Ûαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌
+ h . c . =

1
2 ∑⃗

r,μ̌

(ψ̂α†
⃗r
b̂α

⃗r,μ̌)(b̂β†
⃗r+μ̌,−μ̌

ψ̂ β
⃗r+μ̌

) + h . c .

ψ̂α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Ĥmicro = J∑⃗
r,μ̌

ψ̂ α†
⃗r
b̂α

⃗r,μ̌ + h . c .

color singlet 
hopping

+U∑⃗
r,μ̌

N̂2
⃗r,μ̌

color singlet (density-density) interaction 
conservation number of excitation

N̂ ⃗r,μ̌ = b̂α†
⃗r,μ̌

b̂α
⃗r,μ̌ + b̂α†

⃗r+μ̌,−μ̌
b̂α

⃗r+μ̌,−μ̌

ψ̂ α†
⃗r

Ûαβ
⃗r, ⃗r+μ̌

ψ̂ β
⃗r+μ̌

Features of  the model: 

Chiral dynamics in real time 
Chiral SB and restoration at non-zero fermion density
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Bound states 
of baryons
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ψ̂α†
⃗r
Ôαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌

Tensor product 
(no extra constraint)

Ôαβ
⃗r, ⃗r+μ̌

= ̂σα
⃗r,μ̌ ⊗ ̂σβ

⃗r+μ̌,−μ̌



ψ̂α†
⃗r
Ôαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌

Tensor product 
(no extra constraint)

Ôαβ
⃗r, ⃗r+μ̌

= ̂σα
⃗r,μ̌ ⊗ ̂σβ

⃗r+μ̌,−μ̌

b)



ψ̂α†
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Tensor product 
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Gauge invariant Hilbert space 

Singlet among the matter and gauge fields



ψ̂α†
⃗r
Ôαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌

Tensor product 
(no extra constraint)

Ôαβ
⃗r, ⃗r+μ̌

= ̂σα
⃗r,μ̌ ⊗ ̂σβ

⃗r+μ̌,−μ̌

b)

b)
Gauge invariant Hilbert space 

Singlet among the matter and gauge fields

ψ̂α†
⃗r

̂σα
⃗r,μ̌ ↦ ̂S+
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ψ̂α†
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ψ̂α

⃗r ↦ ̂S(3)
⃗r

Exact encoding to a spin-3/2 model 
Matter content maps to z spin component



ψ̂α†
⃗r
Ôαβ

⃗r, ⃗r+μ̌
ψ̂ β

⃗r+μ̌

Tensor product 
(no extra constraint)

Ôαβ
⃗r, ⃗r+μ̌

= ̂σα
⃗r,μ̌ ⊗ ̂σβ

⃗r+μ̌,−μ̌

b)

b)
Gauge invariant Hilbert space 

Singlet among the matter and gauge fields

ψ̂α†
⃗r

̂σα
⃗r,μ̌ ↦ ̂S+

⃗r

ψ̂α†
⃗r
ψ̂α

⃗r ↦ ̂S(3)
⃗r

Exact encoding to a spin-3/2 model 
Matter content maps to z spin component

Features of  the model: 

SB of  chiral symmetry and its restoration at finite baryon density 
Existence of  stable bound states (binding energy)



•Tool-box from superconducting circuits
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Local degrees of  freedom.-
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Implementation with 
superconducting circuits

Local degrees of  freedom.-

We need: 

Tuneable (spectrum) device 

two-level atom (anharmonic) 
cavity (harmonic) 

Coherent dynamics (low dissipation)



Implementation with 
superconducting circuits

Local degrees of  freedom.-

We need: 

Tuneable (spectrum) device 

two-level atom (anharmonic) 
cavity (harmonic) 

Coherent dynamics (low dissipation)

Chris Wilson



Ingredients from 
superconducting circuits

AlAl AlOx

- couple two superconductors via oxide layer 
- oxide layer acts as tunnelling barrier 
- superconducting gap inhibits electron tunnelling

Josephson tunnelling:
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Ingredients from 
superconducting circuits

Al

Josephson Hamiltonian:

HJ = −EJ

2

∑

n

[|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|]

Al AlOx

- couple two superconductors via oxide layer 
- oxide layer acts as tunnelling barrier 
- superconducting gap inhibits electron tunnelling

Josephson tunnelling:

= −EJ cosφ
written in terms of  the conjugate variable 

(Fourier transform) 
Physically: difference of  the SC phases

[φ, n] = i
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Non-linear oscillator - anharmonic cavity - Josephson junction:

φ
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EJ H = 4ECn

2 − EJ cosφ
2 (ω − Ω) } ω}

Energy
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φext

EC → Fixed by the geometry of  the circuit

EJ →

EJ (φext) = EK�t
J cos (φext)

Introduction of  a SQUID makes the 
junction tuneable with an external flux

Transmon regime, maximum anharmonicityEJ/EC ∼ 20
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A quantum simulator of U(1) lattice gauge theories can be imple-
mented with superconducting circuits. This allows the investiga-
tion of confined and deconfined phases in quantum link models,
and of valence bond solid and spin liquid phases in quantum dimer
models. Fractionalized confining strings and the real-time dynam-
ics of quantum phase transitions are accessible as well. Here we
show how state-of-the-art superconducting technology allows us
to simulate these phenomena in relatively small circuit lattices.
By exploiting the strong non-linear couplings between quantized
excitations emerging when superconducting qubits are coupled,
we show how to engineer gauge invariant Hamiltonians, including
ring-exchange and four-body Ising interactions. We demonstrate
that, despite decoherence and disorder effects, minimal circuit in-
stances allow us to investigate properties such as the dynamics of
electric flux strings, signaling confinement in gauge invariant field
theories. The experimental realization of thesemodels in larger su-
perconducting circuits could address open questions beyond cur-
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Loops and Strings in a Superconducting Lattice Gauge Simulator
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We propose an architecture for an analog quantum simulator of electromagnetism in 2þ 1 dimensions,
based on an array of superconducting fluxoniumdevices. The encoding is in the integer (spin-1) representation
of thequantum linkmodel formulation of compactUð1Þ lattice gauge theory.We showhow to engineerGauss’
law via an ancilla mediated gadget construction, and how to tune between the strongly coupled and
intermediately coupled regimes. The witnesses to the existence of the predicted confining phase of the model
are provided by nonlocal order parameters fromWilson loops and disorder parameters from ’t Hooft strings.
We show how to construct such operators in this model and how to measure them nondestructively via
dispersive coupling of the fluxonium islands to amicrowave cavitymode.Numerical evidence is found for the
existence of the confined phase in the ground state of the simulation Hamiltonian on a ladder geometry.

DOI: 10.1103/PhysRevLett.117.240504

Gauge theories play a fundamental role in modern
physics, including quantum electrodynamics and quantum
chromodynamics. The discretized version of gauge theory,
lattice gauge theory (LGT), is key to understanding physics
ranging from quantum spin liquids to quark-gluon plasmas
[1–3]. A fundamental phenomenon in gauge theories is the
notion of confinement, which manifests in the absence of
isolated, color-charged particles in nature; i.e., the only
“physical” states are those that transform “trivially” under a
gauge transformation. Yet, quantum phases of gauge field
theories cannot be characterized by local order parameters.
Instead, nonlocal order parameters such as Wilson loops [1]
and ’t Hooft strings [4] have been introduced to indicate the
presence or absence of a confined phase.
Quantum link models (QLMs) provide a formulation of

LGTs, in which finite-dimensional subsystems associated
with edges of the lattice encode the gauge field [5–7].
Related Uð1Þ gauge models are important for understand-
ing various condensed matter systems, including quantum
spin ice models or quantum dimer models, which may
exhibit deconfined critical points at T ¼ 0 [8]. In principle,
QLMs break Lorentz invariance while relativistic Uð1Þ
gauge theories in 2þ 1 dimensions are always in a
confinement phase at T ¼ 0 but may undergo a phase
transition at Tc > 0 to a deconfined phase [9]. In either
case, confinement physics is a key to understanding the
phenomenology.
Numerical simulation of LGTs can be computationally

costly due to the size of the Hilbert space or the sign problem
with quantum Monte Carlo techniques [10] (for recent
proposals using tensor networks see Refs. [11–23]). An
alternative approach is to build analog quantum simulators

to replicate the equilibrium and dynamical properties of a
system of interest. Indeed, this is one of the motivations for
quantum technologies based on atomic [24–40] and super-
conducting platforms [41–44]. Away to measure space-time
Wilson loops in atomic lattice gauge simulators (assuming
localized excitations) was given in Ref. [32] but a critical
outstanding problem has been the reliable measurement of
nonlocal, space-like Wilson loops and ’t Hooft strings.
Here, we propose an analog simulator of a pure compact

Uð1Þ QLM in 2þ 1 dimensions [45], based on super-
conducting fluxonium [46] devices placed on a square
lattice. The devices operate in a finite-dimensional mani-
fold of low-lying eigenstates, to represent “discrete”
electric fluxes on the lattice. By engineering local couplings
between devices, we show how to replicate the local
interactions and constraints of the QLM. The couplings
can be tuned to access different phases of the quantum
phase diagram of the model. We demonstrate how to
measure nonlocal, space-like Wilson loops and ’t Hooft
strings in the proposed architecture. Moreover, we report
density-matrix renormalization group (DMRG) calcula-
tions of a ’t Hooft disorder parameter in a QLM, and
show that the QLM indeed captures confinement physics.
Quantum link model.—In the pure gauge Uð1Þ QLM,

electric fluxes Êα;β are defined on the links hα; βi of a square
latticewith local link state spaceCNþ1 [circles inFig. 1(a)]. In
the electric basis, the Hilbert space is labeled by the electric
fluxes on the links, Êα;βjEα;βi ¼ Eα;βjEα;βi. For a compact
Uð1Þ gauge group, fluxes take integer or half integer values,
−ðN=2Þ ≤ Eα;β ≤ ðN=2Þ, N ∈ Zþ. The local link electric-

displacement operator Ûα;β satisfies the commutation
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Instead, nonlocal order parameters such as Wilson loops [1]
and ’t Hooft strings [4] have been introduced to indicate the
presence or absence of a confined phase.
Quantum link models (QLMs) provide a formulation of

LGTs, in which finite-dimensional subsystems associated
with edges of the lattice encode the gauge field [5–7].
Related Uð1Þ gauge models are important for understand-
ing various condensed matter systems, including quantum
spin ice models or quantum dimer models, which may
exhibit deconfined critical points at T ¼ 0 [8]. In principle,
QLMs break Lorentz invariance while relativistic Uð1Þ
gauge theories in 2þ 1 dimensions are always in a
confinement phase at T ¼ 0 but may undergo a phase
transition at Tc > 0 to a deconfined phase [9]. In either
case, confinement physics is a key to understanding the
phenomenology.
Numerical simulation of LGTs can be computationally

costly due to the size of the Hilbert space or the sign problem
with quantum Monte Carlo techniques [10] (for recent
proposals using tensor networks see Refs. [11–23]). An
alternative approach is to build analog quantum simulators

to replicate the equilibrium and dynamical properties of a
system of interest. Indeed, this is one of the motivations for
quantum technologies based on atomic [24–40] and super-
conducting platforms [41–44]. Away to measure space-time
Wilson loops in atomic lattice gauge simulators (assuming
localized excitations) was given in Ref. [32] but a critical
outstanding problem has been the reliable measurement of
nonlocal, space-like Wilson loops and ’t Hooft strings.
Here, we propose an analog simulator of a pure compact

Uð1Þ QLM in 2þ 1 dimensions [45], based on super-
conducting fluxonium [46] devices placed on a square
lattice. The devices operate in a finite-dimensional mani-
fold of low-lying eigenstates, to represent “discrete”
electric fluxes on the lattice. By engineering local couplings
between devices, we show how to replicate the local
interactions and constraints of the QLM. The couplings
can be tuned to access different phases of the quantum
phase diagram of the model. We demonstrate how to
measure nonlocal, space-like Wilson loops and ’t Hooft
strings in the proposed architecture. Moreover, we report
density-matrix renormalization group (DMRG) calcula-
tions of a ’t Hooft disorder parameter in a QLM, and
show that the QLM indeed captures confinement physics.
Quantum link model.—In the pure gauge Uð1Þ QLM,

electric fluxes Êα;β are defined on the links hα; βi of a square
latticewith local link state spaceCNþ1 [circles inFig. 1(a)]. In
the electric basis, the Hilbert space is labeled by the electric
fluxes on the links, Êα;βjEα;βi ¼ Eα;βjEα;βi. For a compact
Uð1Þ gauge group, fluxes take integer or half integer values,
−ðN=2Þ ≤ Eα;β ≤ ðN=2Þ, N ∈ Zþ. The local link electric-

displacement operator Ûα;β satisfies the commutation
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Û↵,�
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Ê↵,�
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Û�,�
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Êµ,↵ Ê↵,�
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Û�,↵

a)

EC

�̂↵,��̂µ,↵

b)

EL EJ (�o↵)

EJa (⇡)ECa

ELa

�̂↵

E
c
C

E
c
L E

c
L

↵ �

� �
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Ê↵,�
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Ê↵,�
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We show a protocol to measure string operators:
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Gauge invariance is a central concept in modern physics,
being at the core of the standard model of elementary
particle physics. In particular, invariances with respect to
SU(2) and SU(3) gauge symmetries characterize the weak
interaction and quantum chromodynamics [1,2]. In this
sense, gauge theories represent a cornerstone in our under-
standing of the physical world and lie at the heart of diverse
phenomena, such as the quark-gluon plasma or quantum
spin liquids. In condensed matter physics, SU(2) gauge
fields can also emerge dynamically in relation to exotic
many-body phenomena, like quantum Hall systems, frus-
trated magnets, or superconductors [3–5].
Lattice gauge theories (LGT) are nonperturbative dis-

crete formulations that contribute to the analysis of key
features of these models, such as color confinement or
chiral symmetry breaking. Starting from the seminal work
by Wilson in 1974 [6,7], LGT have attracted a significant
attention across several branches of theoretical physics. In
the last decades [8], quantum Monte Carlo simulations
have achieved unprecedented accuracies in determining the
whole hadronic spectrum of the standard model. However,
understanding its full phase diagram from first principles,
or simulating dynamical processes, remains out of reach of
current numerical computations.
Quantum simulators [9] provide a new approach to solve

complex long-standing problems in quantum physics. In a
quantum simulator, a proper encoding of LGT can allow for
the retrieval of information about ground state and dynam-
ics, in a wide range of regimes. Previous works have
considered Abelian [10–22] and non-Abelian LGT in
optical lattices [23–25] (see also Refs. [26,27] and refer-
ences therein), both as analog and digital simulations [28].
In these implementations, matter-gauge interactions are
modeled as a second-order process from Hubbard-like

interactions, while the simulation of pure-gauge dynamics
remains more demanding.
In the last years, superconducting circuits have proven to

be reliable devices that can host quantum information and
simulation processes [29]. The possibility to perform
quantum gates with high fidelities, together with high
coherence times, makes them ideal devices for the reali-
zation of digital quantum simulations [30–34], previously
considered in ion-trap systems [35–37].
In this Letter, we propose a digital quantum simulation of

a non-Abelian dynamical SU(2) gauge theory in a super-
conducting device. We start by building a minimal setup,
based on a triangular lattice, that can encode pure-gauge
dynamics. The degrees of freedom of a single triangular
plaquette of this lattice are encoded into qubits. We propose
two implementations of this quantum simulator, using two
different superconducting circuit architectures, as depicted
in Fig. 1. We consider a setup in which six tunable-coupling
transmon qubits are coupled to a single microwave reso-
nator, and a device where six capacitively coupled Xmon
qubits stand on a triangular geometry, coupled to a central
auxiliary one. We compute experimental requirements
necessary to perform the simulation on one plaquette,
and provide arguments for scaling to large lattices.
Lattice gauge theories.—LGTare discretized versions of a

gauge theory. In a conventional approach of lattice gauge
theories, space-time is discretized while ensuring a covariant
formulation of the theory. In quantum simulations, there is no
direct access to the time direction, which is fixed and
continuous. Hence, the equivalent Hamiltonian formulation
of lattice models is used. In this case, the space is discretized
and the action of a local gauge invariant Hamiltonian
characterizes a continuous dynamical evolution. This ficti-
tious asymmetry of the time direction forces us to define a
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attention across several branches of theoretical physics. In
the last decades [8], quantum Monte Carlo simulations
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current numerical computations.
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simulation processes [29]. The possibility to perform
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coherence times, makes them ideal devices for the reali-
zation of digital quantum simulations [30–34], previously
considered in ion-trap systems [35–37].
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conducting device. We start by building a minimal setup,
based on a triangular lattice, that can encode pure-gauge
dynamics. The degrees of freedom of a single triangular
plaquette of this lattice are encoded into qubits. We propose
two implementations of this quantum simulator, using two
different superconducting circuit architectures, as depicted
in Fig. 1. We consider a setup in which six tunable-coupling
transmon qubits are coupled to a single microwave reso-
nator, and a device where six capacitively coupled Xmon
qubits stand on a triangular geometry, coupled to a central
auxiliary one. We compute experimental requirements
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and provide arguments for scaling to large lattices.
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gauge theory. In a conventional approach of lattice gauge
theories, space-time is discretized while ensuring a covariant
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