From static to dynamical gauge fields with ultracold atoms

Monika Aidelsburger

Ludwig-Maximilians-Universität Munich Max-Planck Institute of Quantum Optics

Ultracold Quantum Gases

Laser cooling:

Quantum mechanics:

$$\lambda/d\gtrsim 1$$

Bose-Einstein Condensate for T<T_c:

1997: S. Chu, C. Cohen-Tannoudji, B. Phillips 2001: C. Wiemann, W. Ketterle, E. Cornell

Optical lattices

Ultracold Quantum Matter

- **Densities:** 10¹⁴/cm³ (real materials: 10²⁴-10²⁵/cm³)
- Temperatures: few nK (real materials: mK - 300K)

R. Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95-170 (2000)

Quantum simulation

Ultracold atoms in optical lattices:

» Controlled simulation of interacting bosonic and fermionic atoms

$$\hat{H} = -\sum_{\langle i,j \rangle} J_{ij} \left(\hat{a}_i^{\dagger} \hat{a}_j + \hat{a}_j^{\dagger} \hat{a}_i \right) + \frac{U}{2} \sum_i \hat{n}_i \left(\hat{n}_i - 1 \right)$$

» Well-isolated from environment

- Synthetic magnetic fields
- Topology
- Gauge theories

•

D. Jaksch and P. Zoller, Ann. Phys. 315, 52 (2005); I. Bloch et al. Rev. Mod. Phys. 80, 885 (2008)

Floquet engineering

Floquet engineering as a tool to engineer non-trivial Hamiltonians

Basic idea:

» Time-periodic driven Hamiltonian

$$\hat{H}(t) = \hat{H}(t+T)$$
 T: driving cycle

» Stroboscopic time evolution reproduced by time-independent Floquet Hamiltonian \hat{H}^F

$$\hat{U}(T,0) = \exp\left(-\frac{i}{\hbar}T\hat{H}^F\right)$$

 \Rightarrow Possibility to engineer Floquet Hamiltonian with desired properties!

N. Goldman et al. PRX (2014); M. Bukov et al. Adv. in Phys. (2015); A. Eckardt, Rev. Mod. Phys. (2017);

Outline

I) Z_2 lattice gauge theories

C. Schweizer et al., arXiv:1901.07103 (2019)

2) Anomalous Floquet phases

K.Wintersperger (in preparation)

Laser-assisted tunneling

Minimal lattice with two sites:

• Tilted double-well potential

$$\hat{H} = -J\left(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a}\right) + \Delta \ \hat{b}^{\dagger}\hat{b}$$

 \rightarrow tunneling inhibited for $~\Delta \gg J$

• Resonant modulation at $\hbar\omega = \Delta$ restores tunneling

 $\hat{V}(t) = V_0 \, \cos(\omega t + \phi) \hat{a}^{\dagger} \hat{a}$

• Time-independent Floquet Hamiltonian (high-freq. limit $\hbar \omega \gg J$)

$$\hat{H}^F = -J\mathcal{J}_1\left(\frac{V_0}{\hbar\omega}\right)e^{i\phi}\hat{a}^{\dagger}\hat{b} + \text{h.c.}$$

I. Bloch, Munich; W. Ketterle, MIT; M. Greiner, Harvard

Topological lattice models

Hofstadter model

Harper, Proc. Phys. Soc., Sect.A **68**, 874 (1955); Azbel, Zh. Eksp. Teor. Fiz. **46**, 929 (1964); Hofstadter, PRB **14**, 2239 (1976)

$$\hat{H} = -J \sum_{m,n} \left(e^{in\Phi} \hat{a}_{m+1,n}^{\dagger} \hat{a}_{m,n} + \hat{a}_{m,n+1}^{\dagger} \hat{a}_{m,n} + \text{h.c.} \right)$$

Cold atoms: Bloch Munich, Ketterle MIT, Fallani LENS, Spielman NIST, Greiner Harvard,

Haldane model

Haldane, PRL 61, 2015 (1988)

$$\hat{H} = \sum_{\langle ij \rangle} t_{ij} \hat{c}_i^{\dagger} \hat{c}_j + \sum_{\langle \langle ij \rangle \rangle} e^{i\Phi_{ij}} t'_{ij} \hat{c}_i^{\dagger} \hat{c}_j + \Delta_{AB} \sum_{i \in A} \hat{c}_i^{\dagger} \hat{c}_i$$

Cold atoms: Esslinger ETH, Weitenberg/Sengstock Hamburg

Experimental realizations

Ultracold atoms

G. Jotzu et al., Nature (2014)

Superconducting circuits

P. Roushan et al., Nat. Phys. (2017)

Coupled waveguide arrays

M. C. Rechtsman et al., Nature (2013)

Review: Aidelsburger, Nascimbène, Goldman, Comptes Rendus Phys. (2018)

Dynamical gauge fields

Synthetic gauge fields:

Typically static, i.e. no backaction of motion of particles onto fields

Towards lattice gauge theories:

U.-J. Wiese, Nucl. Phys. (2014); E. Zohar Rep. Prog. Phys. (2015);....

- Density-dependent gauge fields with atoms
 - Clark et al., PRL (2018) Görg et al., arXiv (2019)

• Schwinger model with ions

Martinez et al., Nature (2016)

Challenge: Local gauge constraints

Z₂ lattice gauge theory coupled to matter

Elementary ingredients of the model:

$$\hat{H}_{\mathbb{Z}_2} = +\sum_j J_a \left(\hat{\tau}^z_{\langle j,j+1 \rangle} \hat{a}^{\dagger}_j \hat{a}_{j+1} + \text{h.c.} \right) - \sum_j J_f \hat{\tau}^x_{\langle j,j+1 \rangle}$$

- matter-gauge field coupling with strength J_a
- energy of electric field J_f

Symmetries and Gauss's law

Z₂ symmetry:

$$\hat{G}_{j} = \hat{Q}_{j} \prod_{i:\langle i,j \rangle} \hat{\tau}^{x}_{\langle i,j \rangle}, \qquad \left[\hat{H}, \hat{G}_{j}\right] = 0 \quad \forall j$$

eigenvalues: $g_j = \pm 1$

• g_j=-1 interpreted as static local background charges

Z₂ Gauss's law:

$$\hat{G}_j |\psi\rangle = g_j |\psi\rangle$$

 g_j : local conserved quantities

• subsectors characterized by set of conserved quantities {g_j}

Dynamics 1D model

Initial state:

• Single charge on site *j*=0 • Eigenstate of electric field operator

Dynamics 1D model

Initial state:

• Single charge on site *j*=0 • Eigenstate of electric field operator

Floquet engineering

Z₂ lattice gauge theories using Floquet techniques

L. Barbiero et al., arXiv:1810.02777

• Mixture of *two components* (*a* and *f*-particles) to implement matter- and gauge-fields

• Resonant periodic driving at the value of the on-site Hubbard interaction strength U

 \rightarrow Implement building block of Z_2 lattice gauge theories in double well

see also: A. Bermudez & D. Porras, New J. Phys. 17, 103021 (2015); E. Zohar et al., PRL 118, 070501 (2017)

Floquet scheme

Double-well realization:

• Bosonic ⁸⁷Rb, two states with opposite magnetic moment

matter field
$$\ F=1, m_F=-1$$

f gauge field $F = 1, m_F = +1$

- State-dependent offset $\Delta_f = U \rightarrow$ break symmetry between a and f-particles!
- State-independent modulation $\hbar\omega = U$

$$\hat{H}(t) = -J\left(\hat{a}_2^{\dagger}\hat{a}_1 + \hat{f}_2^{\dagger}\hat{f}_1 + \text{h.c.}\right) + U\sum_j \hat{n}_j^a \hat{n}_j^f +\Delta_f \hat{n}_1^f + A\cos\left(\omega t + \phi\right)\left(\hat{n}_1^a + \hat{n}_1^f\right)$$

see also: A. Bermudez & D. Porras, New J. Phys. 17, 103021 (2015)

Laser-assisted tunneling

Multi-photon processes:

• Tilted double-well potential

$$\hat{H} = -J\left(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a}\right) + \Delta \ \hat{b}^{\dagger}\hat{b}$$

• Resonant modulation at $\Delta_{\nu} = \nu \hbar \omega$

$$\hat{V}(t) = V_0 \, \cos(\omega t + \phi) \hat{a}^{\dagger} \hat{a}$$

• Restored tunneling

$$J_{\text{eff}} = J \mathcal{J}_{\nu}(\chi) e^{i\nu\phi} \qquad \chi = \frac{V_0}{\hbar\omega}$$

Laser-assisted tunneling

Multi-photon processes:

• Tilted double-well potential

$$\hat{H} = -J\left(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a}\right) + \Delta \ \hat{b}^{\dagger}\hat{b}$$

• Resonant modulation at $\Delta_{\nu} = \nu \hbar \omega$

$$\hat{V}(t) = V_0 \, \cos(\omega t + \phi) \hat{a}^{\dagger} \hat{a}$$

• Restored tunneling

$$J_{\text{eff}} = J \mathcal{J}_{\nu}(\chi) e^{i\nu\phi} \quad \chi = \frac{V_0}{\hbar\omega}$$

• Reflection properties of Bessel function: $\mathcal{J}_{-\nu}(\chi) = (-1)^{\nu} \mathcal{J}_{\nu}(\chi)$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0,\pi\}$$

Tunneling of matter particle:

Reflection properties of Bessel function:

$$\mathcal{J}_{-\nu}(\chi) = (-1)^{\nu} \mathcal{J}_{\nu}(\chi)$$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

Tunneling of matter particle:

Link variable: $\hat{ au}^z\!=\!\hat{n}_1^f-\hat{n}_2^f$

Reflection properties of Bessel function:

$$\mathcal{J}_{-\nu}(\chi) = (-1)^{\nu} \mathcal{J}_{\nu}(\chi)$$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

 $J\mathcal{J}_1(\chi)e^{\mathrm{i}\pi}$

Tunneling of matter particle:

Link variable: $\hat{ au}^z = \hat{n}_1^f - \hat{n}_2^f$

$$\hat{H}_{\text{eff}} = J_a \,\hat{\tau}^z \left(\hat{a}_2^{\dagger} \hat{a}_1 + \hat{a}_1^{\dagger} \hat{a}_2 \right) \quad J_a = J \mathcal{J}_1(\chi)$$

Reflection properties of Bessel function:

$$\mathcal{J}_{-\nu}(\chi) = (-1)^{\nu} \mathcal{J}_{\nu}(\chi)$$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

Tunneling of gauge-field particle:

Needs to be real: $\hat{ au}^x = \hat{f}_1^\dagger \hat{f}_2 + \hat{f}_2^\dagger \hat{f}_1$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

Tunneling of gauge-field particle:

Needs to be real: $\hat{\tau}^x = \hat{f}_1^\dagger \hat{f}_2 + \hat{f}_2^\dagger \hat{f}_1$

Depend weakly on position of a-particle:

$$\hat{J}_f = J \mathcal{J}_0(\chi) \, \hat{n}_1^a + J \mathcal{J}_2(\chi) \, \hat{n}_2^a$$

Resonant driving $\hbar\omega = U$ & high-frequency limit $\hbar\omega \gg J$

$$\phi = \{0, \pi\}$$

 $J\mathcal{J}_2(\chi)$

Tunneling of gauge-field particle:

Needs to be real: $\hat{ au}^x = \hat{f}_1^\dagger \hat{f}_2 + \hat{f}_2^\dagger \hat{f}_1$

Depend weakly on position of a-particle:

$$\hat{J}_f = J \mathcal{J}_0(\chi) \,\hat{n}_1^a + J \mathcal{J}_2(\chi) \,\hat{n}_2^a$$

Can be avoided for:

$$\chi = 1.84: \quad \mathcal{J}_0(\chi) = \mathcal{J}_2(\chi)$$

Initial state I:

eigenstate of electric-field operator $\hat{ au}^x$

$|\psi_0^x\rangle \!=\! |a,0\rangle \otimes \left(|f,0\rangle + |0,f\rangle\right)/\sqrt{2}$

Initial state I:

eigenstate of electric-field operator $\hat{ au}^x$

$$|\psi_0^x\rangle = |a,0\rangle \otimes (|f,0\rangle + |0,f\rangle)/\sqrt{2}$$

eigenvalues $g_1 = -1$ and $g_2 = +1$

Initial state I:

eigenstate of electric-field operator $\hat{ au}^x$

$$|\psi_0^x\rangle = |a,0\rangle \otimes (|f,0\rangle + |0,f\rangle)/\sqrt{2}$$

eigenvalues $g_1 = -1$ and $g_2 = +1$

Initial state I:

eigenstate of electric-field operator $\hat{ au}^x$

 $|\psi_0^x\rangle = |a,0\rangle \otimes (|f,0\rangle + |0,f\rangle)/\sqrt{2}$

eigenvalues $g_1 = -1$ and $g_2 = +1$

 \Rightarrow oscillation amplitude / frequency depends on ratio J_f / J_a !

Observed dynamics:

Observable: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Observed dynamics:

Observable: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Observed dynamics:

Observable: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

Observed dynamics:

Observable: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Initial state II:

eigenstate of gauge-field operator $\hat{\tau}^z$

Initial state II:

```
eigenstate of gauge-field operator \hat{	au}^z
```


coherent superposition of two subsectors with $g_1=-g_2\!=\!\pm 1$

$$\Rightarrow \langle \hat{G}_1 \rangle \!=\! \langle \hat{G}_2 \rangle \!=\! 0$$

Initial state II:

eigenstate of gauge-field operator $\hat{\tau}^z$

 $|\psi_0^z\rangle = |a,0\rangle \otimes |0,f\rangle$

coherent superposition of two subsectors with $g_1=-g_2=\pm 1$

$$\Rightarrow \langle \hat{G}_1 \rangle \!=\! \langle \hat{G}_2 \rangle \!=\! 0$$

- Note, subsectors are not coupled
- Dynamics of charge unchanged

Observed dynamics:

<u>Observable</u>: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Observed dynamics:

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Observable: site occupations

Observed dynamics:

<u>Observable</u>: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

Parameters: $J_f/J_a \approx 0.54$

Observed dynamics:

Observable: site occupations

 \Rightarrow Z₂ charge + Z₂ gauge field

<u>Parameters:</u> $J_f/J_a \approx 0.54$

Symmetry-breaking terms

• tilt distribution \rightarrow create homogeneous potential

Corrections

Symmetry-breaking terms

• tilt distribution → create homogeneous potential

• correlated tunneling processes due to higher-order Floquet corrections & extended Bose-Hubbard terms (deeper lattices)

Corrections

Symmetry-breaking terms

• tilt distribution → create homogeneous potential

• correlated tunneling processes due to higher-order Floquet corrections & extended Bose-Hubbard terms (deeper lattices)

Summary & Outlook

Double-well realization

- Good understanding of the *full timedependent dynamics*
- Observed *non-trivial dynamics* due to gauge constraints
- Detailed analysis of symmetry breaking terms + routes to suppress them

Summary & Outlook

Double-well realization

- Good understanding of the *full timedependent dynamics*
- Observed *non-trivial dynamics* due to gauge constraints
- Detailed analysis of symmetry breaking terms + routes to suppress them

Summary & Outlook

Double-well realization

- Good understanding of the *full timedependent dynamics*
- Observed *non-trivial dynamics* due to gauge constraints
- Detailed analysis of symmetry breaking terms + routes to suppress them

Floquet-scheme / phase diagram of extended ID models

The team

Experiment:

Immanuel Bloch

MA

Christian Schweizer

Moritz Berngruber

Karen r Wintersperger

Christoph Braun

Fabian Grusdt (TU Munich) Luca Barbiero (ULB Bruxelles) Eugene Demler (Harvard Univ.) Marco Di Liberto (ULB Bruxelles) Nathan Goldman (ULB Bruxelles)