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Content of the talk

Quantum computations/simulations for high energy physics?
Strategy:

big goals with enough intermediate steps
explore as many paths as possible
leave room for serendipity

Tensor tools: QC friends and competitors (RG)
Symmetry preserving truncations (YM, arxiv:1903.01918)
Entanglement entropy and central charge from twin atomic tubes
(Phys.Rev. A96)
Quantum Joule experiments (arXiv:1903.01414, with Jin Zhang
and Shan-Wen Tsai)
Abelian Higgs model with cold atoms (PRL 121, see Judah
Unmuth-Yockey’s talk)
Quantum computations (digital): IBM, IonQ, Rigetti, ...
Benchmark for real time scattering (arXiv:1901.05944, PRD 99
094503 with Erik Gustafson and Judah Unmuth-Yockey)
Conclusions
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Quantum computations/simulations for high energy
physics?

Problems where perturbation theory and classical sampling fail:
Real-time evolution for QCD
Jet Physics (crucial for the LHC program)
Finite density QCD (sign problem)
Near conformal systems (BSM, needs very large lattices)
Early cosmology
Strong gravity
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Strategy: many intermediate steps towards big goals

High expectations for quantum computing (QC): new materials,
fast optimization, security, ...
Risk management: theoretical physics is a multifaceted landscape
Lattice gauge theory lesson: big goals can be achieved with small
steps
Example of a big goal: ab-initio jet physics
Examples of small steps: real-time evolution in 1+1 Ising model,
1+1 Abelian Higgs model, Schwinger model, 2+1 U(1) gauge
theory ,....
Many possible paths: quantum simulations (trapped ions, cold
atoms,...), quantum computations (IBM, Rigetti,...)
Small systems are interesting: use Finite Size Scaling (data
collapse, Luscher’s formula,....)
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Jet Physics ab initio: a realistic long term goal?

Pythia, Herwig, and other jet simulation models encapsulate QCD
ideas, empirical observations and experimental data. It is crucial for
the interpretation of collider physics experiments. Could we recover
this understanding from scratch (ab-initio lattice QCD)?
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Lessons from lattice gauge theory

We need to start with something simple!

Figure: Mike Creutz’s calculator used for a Z2 gauge theory on a 34 lattice
(circa 1979).
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Following the “Kogut sequence"

Figure: Cover page of J. Kogut RMP 51 (1979).
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Discretization of problems intractable with classical
computing

Quantum computing (QC) requires a complete discretization of QFT
Discretization of space: lattice gauge theory formulation
Discretization of field integration: tensor methods for compact
fields (as in Wilson lattice gauge theory and nonlinear sigma
models, the option followed here)
QC methods for scattering in φ4 (non-compact) theories are
discussed by JLP (Jordan Lee Preskill)
JLP argue that QC is necessary because of the asymptotic nature
of perturbation theory (PT) in λ for φ4 and propose to introduce a
field cut (but this makes PT convergent! YM PRL 88 (2002))
Non compact fields methods (λφ4) see: Macridin, Spentzouris,
Amundson, Harnik, PRA 98 042312 (2018) (fermions+bosons)
and Klco and Savage arXiv:1808.10378 and 1904.10440.
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Important ideas of the tensor reformulation

In most lattice simulations, the variables of integration are
compact and character expansions (such as Fourier series) can
be used to rewrite the partition function and average observables
as discrete sums of contracted tensors.
The “hard" integrals are done exactly and then field integrations
provide Kronecker deltas. Example: the O(2) model (In : Bessel)

eβ cos(θi−θj ) =
+∞∑

nij =−∞
einij (θi−θj )Inij (β)

This reformulations have been used for RG blocking but they are
also suitable for quantum computations/simulations when
combined with truncations.
Important features:

Truncations do not break global symmetries
Standard boundary conditions can be implemented
Matrix Product State ansatzs are exact
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From compact to discrete
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Tensor Renormalization Group (TRG)

TRG: first implementation of Wilson program for lattice models
with controllable approximations; no sign problems; truncation
methods need to be optimized
Models we considered: Ising model, O(2), O(3), principal chiral
models, gauge models (Ising, U(1) and SU(2)))
Used for quantum simulators, measurements of entanglement
entropy, central charge, Polyakov’s loop ...
Our group: PRB 87 064422 (2013), PRD 88 056005 (2013), PRD
89 016008 (2014), PRA90 063603 (2014), PRD 92 076003
(2015), PRE 93 012138 (2016) , PRA 96 023603 (2017), PRD 96
034514 (2017), PRL 121 223201 (2018), PRD 98 094511 (2018)
Basic references for tensor methods for Lagrangian models: Levin
and Nave, PRL 99 120601 (2007), Z.C. Gu et al. PRB 79 085118
(2009), Z. Y. Xie et al., PRB 86 045139 (2012)
Schwinger model/fermions/CP(N): Yuya Shimizu, Yoshinobu
Kuramashi; Ryo Sakai, Shinji Takeda; Hikaru Kawauchi.

Yannick Meurice (U. of Iowa) QFT with cold atoms? ECT, June 11, 2019



TRG blocking: simple and exact!

For each link:

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′
which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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TRG blocking (graphically)

Exact form of the partition function: Z = (cosh(β))2V Tr
∏

i T (i)
xx ′yy ′ .

Tr mean contractions (sums over 0 and 1) over the links.
Reproduces the closed paths (“worms") of the HT expansion.
TRG blocking separates the degrees of freedom inside the block which
are integrated over, from those kept to communicate with the
neighboring blocks. Graphically :

xU

xD

yL yR

x1

x2

x1'

x2'

y1 y2

y1' y2'

X X'

Y

Y'
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TRG Blocking (formulas)

Blocking defines a new rank-4 tensor T ′XX ′YY ′ where each index now
takes four values.

T ′X(x1,x2)X ′(x ′1,x
′
2)Y (y1,y2)Y ′(y ′1,y

′
2) =∑

xU ,xD ,xR ,xL

Tx1xUy1yLTxUx ′1y2yR
TxDx ′2yRy ′2

Tx2xDyLy ′1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4. The partition
function can be written exactly as

Z = (cosh(β))2V Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice. Using a truncation in the number of
“states" carried by the indices, we can write a fixed point equation.
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TRG is a competitor for QC: CPU time ∝ log(V ) with
no sign problems (both sides will benefit!)
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FAQ: Do truncations break global symmetries? No
(Y.M. arXiv 1903.01918)

Truncations of the tensorial sums are necessary, but do they break
the symmetries of the model?
arXiv 1903.01918: non-linear O(2) sigma model and its gauged
version (the compact Abelian Higgs model), on a D-dimensional
cubic lattice: truncations are compatible with symmetry identities.
This selection rule is due to the quantum number selection rules
at the sites and is independent of the particular values taken by
the tensors (e. g. 0, discrete form of a vector calculus theorem).
Extends to global O(3) symmetries (you need to keep all the m’s
for a given `, similar to 〈g|`mm′〉 ∝ Dj

mm′(g) by Burello and Zohar,
PRD 91) and pure gauge U(1).
The universal properties of these models can be reproduced with
highly simplified formulations desirable for implementations with
quantum computers or for quantum simulations experiments.
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Basic identity for symmetries in lattice models

• Generic lattice model with action S[Φ]

• Φ denotes a field configuration of fields φ` attached to locations `
which can be sites, links, plaquettes or higher dimensional objects

• Partition function: Z =
∫
DΦe−S[Φ],

• Expectation values: 〈f (Φ)〉 =
∫
DΦf (Φ)e−S[Φ]/Z

• Symmetry: field transformations φ` → φ′` = φ` − δφ`[Φ] such that:

DΦ′ = DΦ and S[Φ′] = S[Φ].

• This implies: 〈f (Φ)〉 = 〈f (Φ + δΦ)〉.
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The O(2) model (Ising model with spin on a circle)

The integration measure
∫
DΦ =

∏
x
∫ π
−π

dϕx
2π

and the action S[Φ] = −β
∑
x ,i

cos(ϕx+î − ϕx )are both invariant under

the global shift
ϕ′x = ϕx + α

This implies that for a function f of N variables

〈f (ϕx1 , . . . , ϕxN )〉 = 〈f (ϕx1 + α, . . . , ϕxN + α)〉

Since f is 2π-periodic and can be expressed in terms Fourier modes

〈e(i(n1ϕx1 +...nNϕxN ))〉 = e((n1+...nN )α)〈e(i(n1ϕx1 +...nNϕxN ))〉

This implies that if
∑N

n=1 ni 6= 0, then 〈e(i(n1ϕx1 +···+nNϕxN ))〉 = 0. In
arXiv 1903.01918, we show that local tensor selection rules imply
these identities.
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The tensor formulation

At each link, we use the Fourier expansion

eβ cos(ϕx+î−ϕx ) =
+∞∑

nx,i =−∞
einx,i (ϕx+î−ϕx )Inx,i (β)

where the In are the modified Bessel functions of the first kind. After
inegrating over the ϕ:

Z = IV
0 (β)Tr

∏
x

T x
(nx−1̂,1,nx,1,...,nx,D).

The local tensor T x has 2D indices. The explicit form is

T x
(nx−1̂,1,nx,1,...,nx−D̂,D ,nx,D) =

√
tnx−1̂,1

tnx,1 , . . . , tnx−D̂,D
tnx,D × δnx,out ,nx,in

with tn ≡ In(β)/I0(β) and

nx ,in =
∑

i

nx−î,i and nx ,out =
∑

i

nx ,i
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Current conservation from δnx,out ,nx,in

If we interpret the tensor indices nx ,i with i < D as spatial current
densities and nx ,D as a charge density, the Kronecker delta δnx,out ,nx,in in
the tensor is a discrete version of Noether current conservation∑

i

(nx ,i − nx−î,i) = 0,

If we enclose a site x in a small D-dimensional cube, the sum of
indices corresponding to positive directions (nx ,out ) is the same as the
sum of indices corresponding to negative directions (nx ,in).

We can “assemble" such elementary objects by tracing over indices
corresponding to their interface and construct an arbitrary domain.
Each tracing automatically cancels an in index with an out index and
consequently, at the boundary of the domain, the sum of the in indices
remains the same as the sum of the out indices.
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Boundary conditions

Periodic boundary conditions (PBC) allow us to keep a discrete
translational invariance. As a consequence the tensors
themselves are translation invariant and assembled in the same
way at every site, link etc.
Open boundary conditions (OBC) can be implemented by
introducing new tensors that can be placed at the boundary. The
only difference is that there are missing links at sites or missing
plaquettes a links (zero index on “missing" links").
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Explanation of the selection rule (YM 1903.01918)

If
N∑

n=1

ni 6= 0, then 〈e(i(n1ϕx1 +···+nNϕxN ))〉 = 0.

The insertion of various einQϕx is required in order to calculate the averages function 〈e(i(n1ϕx1 +···+nNϕxN ))〉 This can be
done by inserting an “impure" tensor which differs from the “pure" tensor by the Kronecker symbol replacement
δnx,out ,nx,in → δnx,out ,nx,in+nQ .

In absence of insertions of einQϕx , the Kronecker delta at the sites leads to a global conservation (sum in = sum out).

We can now repeat this procedure with insertions of einQϕx . Each insertion adds nQ , which can be positive or negative, to the
sum of the out indices. We can apply this bookkeeping on an existing tensor configuration until we have gathered all the
insertions and we reach the boundary of the system.

For PBC, this means that all the in and out indices get traced in pairs at the boundary. This is only possible if the sum of the
inserted charges is zero which is the content of Eq. (22). For OBC, all the boundary indices are zero and the same conclusion
apply.

In summary we have shown that the selection rule is a consequence of
the Kronecker delta appearing in the tensor and is independent of the
particular values taken by the tensors. So if we set some of the tensor
elements to zero as we do in a truncation, this does not affect the
selection rule.
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TRG Formulation of 3D Z2 Gauge Theory

Z =
∑
{σ}

exp

(
β
∑

P

σ12σ23σ34σ41

)
,

For each plaquette the weight is∑
n=0,1

(tanh(β)σ12σ23σ34σ41)n.

Regrouping the factors with a given σl and summing over ±1 we obtain
a tensor attached to this link

A(l)
n1n2n3n4

= δ (mod[n1 + n2 + n3 + n4,2]) .
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A and B tensors

The four links attached to a given plaquette p must carry the same
index 0 or 1. For this purpose we introduce a new tensor

B(p)
m1m2m3m4

= tanh(β)m1δ(m1,m2,m3,m4)

= tanh(β)m1

{
1, all mi are the same
0, otherwise.

The partition function can now be written as

Z = (2 coshβ)3V Tr
∏

l

A(l)
n1n2n3n4

∏
p

B(p)
m1m2m3m4

,

The procedure is manifestly gauge invariant. For U(1) gauge theories,
replace tanh(β)m by Im(β).
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A and B tensors graphically

A

B

n1

n2

n3

n4

m1

m2

m3

m4
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〈eiAx,i〉 = 0 for pure gauge U(1) (arXiv 1903.01918)

We assign “in” and “out" qualities to the legs of the A-tensors.
For a given pair of directions i and j , there are 8 types of legs for
the A-tensors that we label [(x , i),±ĵ], [(x − î , i),±ĵ], [(x , j),±î],
and [(x − ĵ , j),±î].
The [(x , i), ĵ] with i < j are given an out assignment.
There are three operations that swap in and out: changing (x , i)
into (x − î , i), changing ĵ into −ĵ and interchanging i and j .
A detailed inspection shows that this assignment gives consistent
in-out assignments at the B tensors and that the assignment is
compatible with our sign partition.
The Kronecker delta appearing at any link is independently
enforced by the Kronecker deltas on the 2D − 1 other links
attached to x and if we insert eiAx,i the conditions become
incompatible which implies 〈eiAx,i 〉 = 0.
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Pure gauge D= 2 and 3
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TRG approach of the transfer matrix

The partition function can be expressed in terms of a transfer matrix:

Z = TrTLt .

The matrix elements of T can be expressed as a product of tensors
associated with the sites of a time slice (fixed t) and traced over the
space indices (PhysRevA.90.063603)

T(n1,n2,...nLx )(n′1,n
′
2...n

′
Lx

) =
∑

ñ1ñ2...ñLx

T (1,t)
ñLx ñ1n1n′1

T (2,t)
ñ1ñ2n2n′2...

. . .T (Lx ,t)
ñLx−1

ñLx nLx n′Lx

with (for the O(2) model with chemical potential)

T (x ,t)
ñx−1ñx nx n′x

=
√

Inx (βτ )In′x (βτ )Iñx−1
(βs)Iñx (βs)e(µ(nx +n′x ))δñx−1+nx ,ñx +n′x

The Kronecker delta function reflects the existence of a conserved
current, a good quantum number (“particle number" ). In the limit
βτ →∞ we get the Hamiltonian (T ' 1− (1/βτ )Ĥ).
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Transfer matrix with TRG

Figure: Graphical representation of the transfer matrix (left) and its
successive coarse graining (right). See PRD 88 056005 and PRA 90, 063603
for explicit formulas.
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Algebraic aspects (in one dimension)

In the Hamiltonian formalism, we introduce the angular momentum
eigenstates which are also energy eigenstates

L̂|n〉 = n|n〉, Ĥ|n〉 =
n2

2
|n〉

We assume that n can take any integer value from −∞ to +∞. As
Ĥ = (1/2)L̂2, it is obvious that [L̂, Ĥ] = 0.

The insertion of eiϕx in the path integral, translates into as operator êiϕ

which raises the charge êiϕ|n〉 = |n + 1〉, while its Hermitean conjugate
lowers it (êiϕ)†|n〉 = |n − 1〉.
This implies the commutation relations

[L, êiϕ] = êiϕ, [L, êiϕ
†
] = −êiϕ

†
, [êiϕ, êiϕ

†
] = 0.
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Truncation effects on algebra

By truncation we mean that there exists some nmax for which

êiϕ|nmax〉 = 0, and (êiϕ)†| − nmax〉 = 0.

The only changes the commutation relations are

〈nmax |[êiϕ, êiϕ
†
]|nmax〉 = 1, (1)

〈−nmax |[êiϕ, êiϕ
†
]| − nmax〉 = −1,

instead of 0. The truncation only affects matrix elements involving the
êiϕ operators but does not contradict that: If

∑N
n=1 ni 6= 0,

then 〈0|(êiϕ)n1 . . . (êiϕ)nN |0〉 = 0 (with (êiϕ)−n ≡ (êiϕ
†
)n for n > 0))

Note: similar questions appear in quantum links formulations (see R.
Brower, The QCD Abacus, hep-lat/9711027)
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Rényi entanglement entropy

The n -th order Rényi entanglement entropy is defined as:

Sn(A) ≡ 1
1− n

ln(Tr ((ρ̂A)n)) .

limn→1+ Sn=von Neumann entanglement entropy.

The approximately linear behavior in ln(Ns) is consistent with the
logarithmic scaling which predicts

Sn(Ns) = K +
c(n + 1)

6n
ln(Ns)

for periodic boundary conditions and half the slope (c(n+1)
12n ) for open

boundary conditions. c is the central charge. The constant K is
non-universal and different in the four situations considered (n=1, 2
with PBC and OBC).
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References for the logarithmic formula

C. Holzhey, F. Larsen and F. Wilczek, Nucl. Phys. B 424, 443,
(1994)
G. Vidal, J.I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90 ,
227902-1 (2003)
V.E. Korepin, Physical Review Letters, vol 92, issue 9, electronic
identifier 096402, 05 March 2004, arXiv:cond-mat/0311056
B.-Q.Jin, V.E.Korepin, Journal of Statistical Physics , vol 116, Nos.
1-4, page 79, 2004
P. Calabrese and J. Cardy, Journal of Statistical Mechaics: Theory
and Experiment 2004, P06002 (2004).
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Entanglement entropy SE (PRE 93, 012138 (2016))

We consider the subdivision of AB into A and B (two halves in our
calculation) as a subdivision of the spatial indices.

ρ̂A ≡ TrB ρ̂AB; SEvonNeumann = −
∑

i

ρAi ln(ρAi ).

We use blocking methods until A and B are each reduced to a single
site.

Figure: The horizontal lines represent the traces on the space indices. There
are Lt of them, the missing ones being represented by dots. The two vertical
lines represent the traces over the blocked time indices in A and B.
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Bose-Hubbard & O(2) Phase Diagram PRA 96
023603 (2017), PRD 96 034514 (2017)

0.1 0.2 0.3 0.4 0.5
J/U

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

µ̃
/U

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Ns = 16 lattice
Color is S2 for time-continuum
O(2).
The light lobes are Mott
insulator regions
The stripes are jumps in
particle number
In black are the particle
number boundaries for BH
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Numerical results
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Figure: The first order and second order Rényi entropy scaling with system
size for βsβτ = 0.01, µβτ = 0.5 in the time continuum limit calculated using
DMRG. (a), (b) The first order Rényi entropy with OBC and PBC respectively.
(c), (d) The second order Rényi entropy with OBC and PBC respectively.
Oscillations are understood in CFT (Cardy and Calabrese).

Yannick Meurice (U. of Iowa) QFT with cold atoms? ECT, June 11, 2019



Experimental Proposal (PRA 96 023603 (2017))
A way to set-up half-filling in the ground state

Left
Two identical copies are made
A beamsplitter operation is
applied across the copies
The resulting parities at each
site in a copy give the
quantum purity ( exp(−S2) =
Trρ2

A =< (−1)
∑

x∈A nx (1copy) >)
Right (preparation)

A Mott state is prepared.
Harmonic confinement.
J/U is tuned.
Confinement is removed.

copy 2

copy 1

I. State preparation 

III. Parity readout

II. Interference 

a) b)
Preparation sequence
initialization

homogeneous system

reduce lattice

walls + harmonic confinement

beamsplitter

++++ --- -

--++ -++ -
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Quantum Joule expansions (arXiv:1903.01414)
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Temperature before and after expansion
(arXiv:1903.01414)

Yannick Meurice (U. of Iowa) QFT with cold atoms? ECT, June 11, 2019



Momentum distribution functions (arXiv:1903.01414)
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The compact Abelian Higgs model

This is a gauged O(2) model with gauge fields on the links Ax ,̂i .∫
DΦ =

∏
x

∫ π

−π

dϕx

2π

∏
x ,i

∫ π

−π

dAx ,i

2π
.

S = −β
∑
x ,i

cos(ϕx+î−ϕx +Ax ,i)−βp
∑
x ,i<j

cos(Ax ,i+Ax+î,j−Ax+î+ĵ,i−Ax ,j).

The symmetry of the O(2) model becomes local

ϕ′x = ϕx + αx and A′x ,i = Ax ,i − (αx+î − αx ),

Truncations do not break these symmetries (Y. M. arXiv 1901.01918).
For Hamiltonian and optical lattice implementations see: Phys. Rev. D
92, 076003 (2015), Phys. Rev. Lett. 121, 223201 (2018)
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Optical lattice implementation of the compact Abelian
Higgs Model with a physical ladder (see Judah
Unmuth-Yockey ’s talk and PRL 121, 223201)

After taking the time continuum limit:

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i)

Figure: Ladder with one atom per rung: tunneling along the vertical direction,
no tunneling in the the horizontal direction but short range attractive
interactions. A parabolic potential is applied in the spin (vertical) direction.
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Gauge-invariant tensor form: Z = Tr [
∏

T ]

(see PRD.88.056005 and PRD.92.076003)

Z =∝ Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4

 .
The traces are performed by contracting the indices as shown
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Polyakov loop: definition

Polyakov loop, a Wilson line wrapping around the Euclidean time
direction: 〈Pi〉 = 〈

∏
j U(i,j),τ 〉 =exp(−F (single charge)/kT ); the order

parameter for deconfinement.

With periodic boundary condition, the insertion of the Polyakov loop
(red) forces the presence of a scalar current (green) in the opposite
direction (left) or another Polyakov loop (right).
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0 01

0 01

0 01

1

1

1

1

1

0

0

0

0

0

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

0 0 01 1

In the Hamiltonian formulation, we add − Ỹ
2 (2(L̄z

i? − L̄z
(i?+1))− 1) to H.
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Universal functions (FSS): the Polyakov loop

arXiv:1803.11166 (Phys. Rev. Lett. 121, 223201) and
arXiv:1807.09186 (Phys. Rev. D 98, 094511)
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= 3
= 4

Figure: Data collapse of Ns∆E defined from the insertion of the Polyakov
loop, as a function of N2

s U, or (Nsg)2 (collapse of 24 datasets). Numerical
work by Judah Unmuth-Yockey and Jin Zhang.
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A first quantum simulator for the abelian Higgs model?

Figure: Left: Johannes Zeiher, a recent graduate from Immanuel Bloch’s
group can design ladder shaped optical lattices with nearest neighbor
interactions. Right: an optical lattice experiment of Bloch’s group.
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Concrete Proposal (PRL 121, 223201)

J

j

i

al

ar

Rc

V

S
p

in
La

tt
ic

e

Figure: Multi-leg ladder implementation for spin-2. The upper part shows the
possible mz-projections. Below, we show the corresponding realization in a
ladder within an optical lattice. The atoms (green disks) are allowed to hop
within a rung with a strength J, while no hopping is allowed along the legs.
The lattice constants along rung and legs are ar and al respectively. Coupling
between atoms in different rungs is implemented via an isotropic
Rydberg-dressed interaction V with a cutoff distance Rc (marked by blue
shading).
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Quantum Ising model (2 legs): Looking at the vacuum
wavefunction: σz meas. (N qubits!, at LMU or MPQ?)
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The quantum Ising model

It is possible to take the time continuum limit for the classical model in
1+1 dimensions and keep the spatial lattice. This result into the
quantum hamiltonian in one space dimension.

Ĥ = −J
∑

i

σ̂z
i σ̂

z
i+1 − hT

∑
i

σ̂x
i − hL

∑
i

σ̂z
i

Often the energies are expressed in units of the transverse magnetic
field hT . λ ≡ J/ht with λc = 1. In the ladder realization, hT is
proportional to the inverse tunneling time along the rungs. The zero
temperature magnetic susceptibility is

χquant . =
1
L

∑
<i,j>

< (σi− < σi >)(σj− < σj >) >∝ ξ1−η ∝ |λ− 1|−ν(1−η)

where < ... > are short notations for 〈Ω|...|Ω〉 with |Ω〉 the lowest
energy state of Ĥ.
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Data collapse for the quantum magnetic susceptibility:
χquant .′ = χquant .L−(1−η) versus λ′ = L1/ν(λ− 1)
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The Schwinger model (in progress with N. Butt, S.
Catterall and J. Unmuth-Yockey)

No sign issue (to be confirmed)
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Schwinger model with trapped ions

Figure: From Guido Pagano talk at Fermilab.

Figure: From Guido Pagano talk at Fermilab.
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March Meeting 2019
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Time evolution with QC: IBM and Rigetti

Figure: Schwinger model and quantum Ising model
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From tensors to circuits
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Quantum circuit for the quantum Ising model

Quantum circuit with 3 Trotter steps ( arXiv:1901.05944 E. Gustafson,
YM and J. Unmuth-Yockey, PRD 99 094503)

Figure: Quantum circuit corresponding to the Trotter steps (in the σx basis).
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Trotter Fidelity

Figure: fidelity of Trotter operator at multiple different Trotter steps for (left to
right) expansion and scattering with open boundary conditions (E. Gustafson,
YM and J. Unmuth-Yockey arXiv:1901.05944, PRD 99 094503)
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Systematic and statistical errors
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Figure: Evolution of two-particle initial states with OBC (Left) and PBC
(Right). Simulations with QISKIT and numpy for current trapped ions or near
future superconducting qubits (arXiv:1901.05944, PRD 99 094503).
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Conclusions

QC/QIS in HEP and NP: we need big goals with many
intermediate steps
Tensor Field Theory is a generic tool to discretize path integral
formulations of lattice model with compact variables
TRG: exact blocking, a friendly competitor to QC
Truncations respect symmetries
TRG: gauge-invariant approach for the quantum simulation of
gauge models.
Finite size scaling: small systems are interesting
Real time scattering can be calculated with digital or analog
methods (comparison is possible)
Need for quantum simulations and computations facilities
dedicated to theoretical physics
Thanks!
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