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Shape coexistence in A=100 region

• Region characterised by sudden onset of deformation at N = 60.
• Well investigated by laser spectroscopy for charge radii (left) and 

penning trap measurements for 2-n separation energies (right)

T. J. Procter et. al, Eur.Phys.J. A 51, 23 (2015)



• Large deformations of nuclei within this region (around N=60) allow for isomerism due to 
K hindrance.

• Recent work on the levels of 98Sr populated by decay from 98Rb shows the presence of 
these isomers that appear in the nanosecond range.

J. Park et al. Phys.Rev. C 93, 014315 (2016)
K. Becker et al. Zeitschrift für Physik A Atoms and Nuclei, 319(2):193–203, (1984)
H. Mach et al. Physics Letters B, 230(12):21 – 26, (1989)

• A = 100 region characterised by strong E0 transitions between low lying 0+ states.

• Large interest in 98Sr due to display of different nuclear shapes coexisting at similar 
energies.

8pi spectra and schematic of  
low lying nuclear states in Sr

Shape coexistence in A=100 region



In the r-process
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In literature



Conventional decay spectroscopy (b-g)

G.  Lhersonneau et al. Phys. Rev. C 65 024318 (2002)

Two states 
populate Sr levels



Mass measurement of 98Rb - TITAN

V. V. Simon et. al, Phys. Rev. C 85, 064308 2012



98Rb – hyperfine structure 

T. J. Procter et. al, Eur.Phys.J. A 51, 23 (2015)



Mass measurement of 98Rb - TITAN

V. V. Simon et. al, Phys. Rev. C 85, 064308 2012

R. Klawitter et. al. Phys. Rev. C 93, 045807 2016



Conventional decay spectroscopy (b-g)
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Memory refreshers
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• β- decay (Z+1, N-1)
14C → 14N + e + ν

Rules for beta decayRules for gamma emission
Radiation type Name l = ΔI Δπ
E1 Electric dipole 1 Yes
M1 Magnetic dipole 1 No
E2 Electric quadrupole 2 No
M2 Magnetic quadrupole 2 Yes
E3 Electric Octupole 3 Yes
M3 Magnetic Octupole 3 No
E4 Electric hexadecapole 4 No
M4 Magnetic hexadecapole 4 Yes

beta decay and gamma de-excitation
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Quantum numbers to describe atomic levels:

Principal quantisation n = 1, 2, 3, 
Angular momentum          l = 0, . . . , n − 1                           
Magnetic substate m = −l, . . . , 0, . . . , l
Total angular momentum j = l ± ½ ; j > 0.

Realistic potential:
V (r) = VCoulomb

(r−1) + VDipole
(r−3) + VQuadrupole

(r−5) + . . .

Atomic structure
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perturbation results in the breaking the degeneracy 
of  electronic states into hyperfine levels



Hyperfine interactions



The experimental equipment
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Low-energy beam transport
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Fast, in-vacuum tape system removes 
long lived activity

10+10 plastic scintillators
Detects beta decays and 

determines branching ratios 2 

16 HPGe detectors

Experimental setup: Suite of auxiliary detectors
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Resonant Ionization with a high 
resolution at the first step of 

selectivity
For decay-spectroscopy



Description of Experiment

Ionization schemes:
I Frequency doubled light from Ti:Sa to access 420 nm. Frequency 
doubled light from Nd:YAG at 532 nm.
II Fundamental light from Ti:Sa at 780 nm.  Frequency tripled light from 
Nd:YAG at 355 nm.

Selectively ionize states using hyperfine 
structure already measured on D2 transition 
(780 nm) by laser spectroscopy group.



Description of Experiment

Resonant ionization in 
CFBS beam-line:
Isomeric/ ground state 
selectively ionized and then 
delivered to decay setup at 
end of OSAKA line.



Proved separation of stable 85,87Rb



Pros and cons

• What do we gain?
• Beam purification
• Detailed feeding from ground and isomeric states

OR
• Detailed feeding from a particular isotope
• Hyperfine structure 

• Spin of ground state (and possible excited isomeric states)
• Magnetic moments and maybe static quadrupole moment 

• What’s the catch?
• Case by case experiment with different atomic structure 
• Laser for transitions needed

• May need multiple steps to ionization
• Cater for the different types and powers of the lasers (can lead to loss in resolution 

of the first selection step)
• Beam to ion efficiency can vary from 1% to 10% so hard to do with very 

low intensity exotic beams
• Need very good vacuum (10-8 torr) to reduce collisional ionization



Use of polarized beams for decay 
spectroscopy
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Hyperfine structure

…showing magnetic substates

§ Electro-optic modulator (EOM) puts 381 MHz sidebands on laser 
frequency, and so both ground state hyperfine levels are pumped.
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Decay spectroscopy (b-g) of polarized nuclei

W 𝜃 ≅ 1 + 𝐴𝑃cos𝜃
A : asymmetry parameter of b-decay
P : spin polarization of parent nucleus
𝜃 : emission angle of b with 

respect to polarization axis

angular distribution of b from 
polarized nucleus

allowed transition

The asymmetry parameter A is a constant 
depending on the daughter state spin value.

Spin polarization is measured by counting
the beta decay along the orientation axis
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T. Shimoda, et al. Hyperfine 
Interact., 225 (2014), p 183
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Beamline layout in ISAC-I

§ Collinear polarized light interacts with atom/ion beam to produce nuclear-spin polarized beams 
(longitudinal or transverse) 

§ Magnetic coils (light blue) provide ~10 gauss field along Polarizer axis

§ Coils (red) downstream of Polarizer preserve polarization in case of paramagnetic ions whose 
electronic and magnetic moment strongly couples nuclear spin to outside world.   
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Join the polarizer beam line to GRIFFIN

26M. M. Rajabali – TRIUMF Science week 2017

POLARIZER

GRIFFIN



Future of the detailed decay spectroscopy
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• Neutron detectors – for the newly accessible 
neutron rich nuclei at FRIB, ARIEL (RIKEN)
• NeXT detector – TOF energy
• ORNL neutron counter – branching ratios

• High efficiency arrays
• GRIFFIN – TRIUMF – ISAC I
• FRIB decay station 

• Total decay heat
• MTAS –ORNL
• SUN - MSU

Needs for decay-spectroscopy
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Decay Station will measure new data (lifetimes, branching ratios)
for most exotic isotopes
●Essential for astrophysical r-process simulations
●Critical to develop  nuclear structure models relevant for astrophysics

r-process 
path

pps
0.1 to 10-4

1 to 0.01
100-1
1000-100
106 – 104



Beta-delayed neutron emission
Composite decay mode of neutron-rich nuclei

30M. M. Rajabali – CAARI 2018

Far from stability decay energy Qβ increases and neutron  separation energy Sn decreases. 
l Delayed neutron emission becomes dominant decay mode 
l Neutron energy carries the information about excited states in the emitter. 
Experimental challenge:  reconstruct complete decay pattern with best possible resolution.

Neutron spectroscopy – relatively unexplored field 
Neutron array  will be an essential part of FRIB Decay Station  

Role of structure/statistical model,
1n emission from 2n unbound states ?



Decay of r-process nucleus 124Nb:  from N=82 to Z=50

Qβ ~ 21 MeV
T1/2 ~2 ms
Decay modes:
βγ, βn, β2n, β3n…

T1/2<1s

Decay of 124Nb:

~30 isotopes in 1s

Releases ~100 MeV 



77Ni l N<50Sn

l 1+

Effects of the shell gap on the decay of isotopes with N>50

l Excitation energy(MeV)

B(GT) in MeV-1

Gamow-Teller operator connects spin-orbit partner orbitals.

Single particle energies,
effective interactions determine
location and fragmentation of GT strength.

shell gap

l N=50

l N>50

l This mechanism drives beta  
delayed neutron emission across 
the N=50 shell-gap.

d5/2 78Ni

79Ni



NeXT detector – TOF detection for unbound states
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• Better Localization and ToF resolution → Energy 
Resolution increases without loss of efficiency.

Improved Energy Resolution

34M. M. Rajabali – CAARI 2018

85As(βn) 84Se



Neutron dEtector with Tracking
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NEXT concept: tiled thin scintillator with the side light readout.
Neutron time-of-flight  detector with good timing  
(~0.5 ns ) and neutron/gamma discrimination 
capabilities for decay and reactions studies

Image credit: S. Munoz and T. King

• Silicon Photomultiplier (SiPM) or flat panel 
PMT (H12) readout → ∆t≈600 ps or better

• Neutron/Gamma discrimination plastic
• Improvement in energy resolution by 

interaction localization
• Sensitivity from 100 keV to 10 MeV 

neutrons
• Flexible geometry for decay and reactions 

studies
• Multi-layered modules with ∆L=5 mm
• Efficiencies: ~50% intrinsic / ~25% 

geometric



NEXT prototype 
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Hamamatsu Multi-anode PMT
with Anger Logic Readout

Custom Modular SiPM
arrays being designed at 
UTK.



Decay station at FRIB – beta detaction
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Silicon strip  detector array

Array of large clover detectors

New array for neutron spectroscopy

Early funding needed:

Ion,β,p,α

Gammas

Neutrons  



Decay spectroscopy groups and existing equipment

• An ensemble of 
equipment 
currently exists 
amongst  several 
US research 
groups and are 
currently used.
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Thank you!
Questions?

Collaborators
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