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HNYV pion production model for one pion production in one slide
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V7 o, Phys. Rev. D87, 113009 (2013)

Phys. Rev. D76, 033005(2007)

Partial unitarization through Olsson’s method: Tg + Tap — T + eV TX p + e0ATL,
Phys. Rev. D93, 014016 (2016)

Modified Delta propagator:
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We get better results for v,,n — pu~nx™ by fitting ¢ [ Phys. Rev. D95, 053007 (2017) ]
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A contribution to one pion production
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A contribution to one pion production II
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For the axial form factors we use Adler’s, model [Ann. Phys. 50, 189 (1968)] in which

A/ 2
CA(g?) = -5 iq ). C2(¢%) = 0, and we further take
CZ'(0) A A M?
Cig®) = 5 , C3Mg%) = C () ——— (PCAC

From our latest fit we obtain C£*(0) = 1.18 4 0.07, Maa = 950 & 60 MeV.
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Nonresonant production

Interaction Lagrangian

We use a SU(2) nonlinear sigma model. Up to O(1/f3) the interaction Lagrangian reads

- T - 1
LS, = iC—A\Iny“'yg,%(augb)\I! if2 —— Uy, 7 (qu 8“¢)
1
~ 572 (8704603 — (30,9)(50"9))
m2 oy ga S S
+24f7% (62)° - 63 —5 Uy [¢2§8M¢— (¢a/x¢)§¢} v

where ¥ = ( P ) is the nucleon field, ¢ is the isovector pion field.

n

To evaluate the different contributions we also need the coupling to the W boson,
i.e. we need the vector and axial currents.
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Nonresonant production

Vector and axial currents |

To the corresponding order the vector and axial currents are
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G o iz 1
—ﬂ(ﬁb X 8M¢)+O(f_§)
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The normalization is such that —v/2 cos 0 (V{, — A%} ;) provides the Wn — p vertex
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Nonresonant production

Vector and axial currents Il

The pure nucleonic part of the vector and axial currents are further modified by the inclusion
of form factors. For the neutron to proton transition which fixes our normalization we have

(6 (6 : FV q2 (62 %
VE@ =2 x [ EY (@n® +iny 2\ govg, )
2M
(6% (8 é (6%
AR (@) = Gal(q®) x (v Bt 51 )

The magnetic part in V.%(q) is not provided by the sigma model neither the ¢ dependence
of the form factors.

Vector current conservation requires that all other terms in the vector current are multiplied
by the F}) (¢?) form factor.
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Nonresonant production

Vector and axial currents Ill

For the vector form factors we use the parametrization of S. Galster et al in NPB 32, 221
(1971)

FlN:GngGAf\g HNFévzaﬁ—Gg
1+ k& ’ 14+k
2
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G =M ="M= _(1+I\r)—E = VS
Hp Hn Hn K 1_Q/MD

with & = —q?/4M?, Mp = 0.843 GeV, up, = 2.792847, up = —1.913043 and \,, = 5.6.
Besides,

1

Y (¢*) = 5 (FP(d®) — F1'(d®),  wvFyY (d%) = = (kpFY(d®) — unF3 (d?)) .

N | =

The axial form factor we take from the book of Ericson & Weise (The International Series of
Monographs on Physics 74)

gA

Ga(q?) = : —=1.26, M4 = 1.05 GeV
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One-pion nonresonant production
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One-pion nonresonant production 11
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D13 contribution to one pion production
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D13 contribution to one pion production 11

G5 pu,  s.u\, Ci [ su B Y, A4 pu, C6 B ou
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The axial form factors are taken from O. Lalakulich et al., PRD74, 014009 (2006)

. N . —2.1 . . 2
A A A A, 2 A, 2
Cy =C, =0, C:" = , Co(q°) =C: (q°)———, My = 1GeV,
o P T a—eany /ey 8 T
while for the vector ones we fitted the form factor results in the Thesis of T. Leitner, from where we got
~ —2.98 ~ 4.21/D ~ —-3.13/D ~
av avo_ /Dv av _ /Dv &Y o,

3 T M= g2/(raM2))2’ T T 1S g2/3.7M2) P T 1 - ¢2/(0.42M2)

with My = 0.84GeVand Dy = (1 — ¢%/MZ)?

A copy of T. LeitnerThesis can be retrieved from
"https://www.uni-giessen.de/fbz/fb07/fachgebiete/physik/einrichtungen/theorie/inst/theses/dissertation/neutrino-nucleus-
interactions-in-acoupled-channel-hadronic-transport-model"
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A propagator modification

Thevyn — pu— nm T channel gets a large contribution from the crossed Delta term being very sensitive to the spin 1/2
components in the A propagator. In the zero width limit, the A propagator is given by

P;U/(pA)
p2 — M2 + je
A A

G,uu (pA) =

1 2 phkp'A 1 phyY — pAYH
P¥(pa) = —(a + Ma) |g"" — AT — - AQ r
3 3 M3 3 MAa

3 2 PuPv 1 pPpuy PP Y pu
= P2, (p)+ (p> — MX + Ma)2EPY wo | PTPupv ) |

A 7
Ve

spin—1/2

with the true spin-3/2 projection operator being

3 1 1
P/Eu(p) = —(p+ Ma) [Q,uu - E'YM’YV - Q (Zb’Yupy ‘|‘p,u")’1/75):| .

Due to the (p2 — Mi) factor that cancels the corresponding factor in the propagator denominator, the spin-1/2
component do not propagate giving rise to contact interactions. Its contribution is small for the direct-A term while it is large
for the crossed-A term.

For some authors [See for instance V. Pascalutsa, Phys. Lett. B 503, 85 (2001) ] the use of this spin-1/2 part should be
avoided. One way of achieving this goal is by the use of “consistent couplings”
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A propagator modification. Consistent A couplings

Consistent couplings are the ones that respect the gauge symmetry
v, — ¥, +9,¢

present in the free-massless Rarita-Schwinger lagrangian. This symmetry requires that in any linear interaction term the A
field couples only to conserved currents

Eint:g\i’ﬁjﬁ—l—H.c., 85JB=0.

Couplings not respecting that symmetry are called inconsistent.

As shown in V. Pascalutsa, Phys. Lett. B 503, 85 (2001), inconsistent couplings can be transformed into consistent ones by
a redefinition of the A field resulting in a new consistent interaction lagrangian

£’i/nt = g‘ifﬁjﬁ + H.c.,

plus an additional contact interaction lagrangian. Thus, as far as all relevant contact interactions are taken into account,
descriptions using consistent or inconsistent couplings are equivalent. Is is only the coupling constants of the contact terms
that differ. But those constants have to be fitted to experimental data.
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A propagator modification. Consistent A couplings 11

For process mediated by an intermediate A
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A

the 6T contributions amount to a contact (nonpropagating) interaction.
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A propagator modification. Consistent A couplings 111

Aiming at improving the description of the v\, n — pu ™ nn T channel we supplement the model with additional contact
terms by modifying

2 3
Puv(pa) + ¢ (Puv(pA> - =4 P2, (PA))

2
Puv(pa) MA Puv(pa)
92 % A%
2 2 . — D) D) ) — ) ) - + CéPuV(pA)
PA — MR + ie PA — MR + ie PA — MR + ie
Puv(pa)
— 5 S + c5Puv(pa)
2 5 2 2
_ PA P2, (pa) n (1+c)(pA — MX) +icMaAT A 5Py (pA)
_ . . jya%
M2 p2 — M2 +iMATA pA — M2 +iMaT A
Due to the presence of I" o, a value of ¢ = —1 does not corresponds exactly to the use of a consistent w N A coupling.

Our final valueisc=1.11 £ 0.21
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Partial unitarization

Writing the .S matrix as
S=1-—iT
the unitarity condition ST.S = I that guarantees the conservation of probability implies
(T —TH =TT
For a given transition between asymptotic states |I), |F') one has

J((FITID) = (FITID) = (FITVTID) = SUFITINYNITID) = S UNITIE) (N IT)
N N
For the case of |I) = |F') one has
t(1|T11) = —2 S |(NITID P
N

which constitutes the optical theorem
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Partial unitariztion 11

Time reversal invariance states that (Time reversal operator 7 is antilinear)

(F|S|T) = (IT|S|Fr) = (Fr|ST|I7)* = (F|TTSTT|F)

from where
TISIT =S = T'T'T =T
and then
%3<N|T|F>*<N|T|I> = i((FITI) = (FITY 1)) = i((FIT|I) = (1|T]F)*)

_ i((F\T\D _ <I‘7-TTT7'|F>*) — z‘((F\T\I) - <IT|TT|FT>)
= i((FITI1) = (PrIT|I)")

For the case in which (F'|T'|I) = (Fr|T|I7) and there is only one intermediate state
|N) = |F) contributing to the sum one arrives at

(N|T|NY*(N|T|I) = —2Im(F|T|I) € R

so that the phases of (N|T'|I) and (N|T'|N) coincide. This result constitutes Watson
theorem.
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Partial unitarization II

We partially implement Watson theorem. We follow the procedure suggested by M.G. Olsson in
NPB78,55 (1974) and change

Ts +Tap — Tp + "?VTX + ' PATL,

The idea was to choose ¢y, ¢ 4 in such a way that each multipole contributing to the total amplitude had
the right = IV strong phase.

In practice, we were only able to recover Watson theorem for the dominant vector and the dominant axial
multipoles with the A quatum numbers.
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Total cross section results

vp — pprnt, Wy < 1.4 GeV
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Data from P. Rodrigues, C. Wilkinson, and K. McFarland, Eur. Phys. J. C76, 474 (2016) and C. Wilkinson, P. Rodrigues, S.
Cartwright, L. Thompson, and K. McFarland, Phys. Rev. D90, 112017 (2014).

DCC stands for the dynamical coupled channel model of described in A. Matsuyama, T. Sato, and T. S. H. Lee, Phys. Rep.
439, 193 (2007) and H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato, Phys. Rev. C 88, 035209 (2013).
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Total cross section results I1
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Data from M. Derrick et al., Phys. Lett. 92B, 363 (1980).
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Pion angular distribution

Y

/z,
Y

Using Lorentz covariance one can write

docc GZW.
+ S T_F,N A*'1—|—B*'COSQb;kT—FC*-COSQ¢;—|—D*-Sin¢;k_r—|—E*-Sin2¢::_

dQ2dW  ndQE  AmM|k|2

kX)2d| kX 1
/' nl® ' [LOOW()—|—2LO3W()—|—L33W3E§)—|—5(L11—|—L22)(Wl(f)+W2(§))+2iL Wi 1px o

k dk? s a . a
/' ® l 2Lt W) + LB w402 w e 40w )]¢*:0,

kX E 1 11 22 s s
= [<L - 2% (wiy) - wip)]
/|k 12d|kx o[ 1,01 ng) 713 W( )_|_ ;71,02 W(a) 145028 W(a)]d)*_o’

« |E;|2d|E;| 22 11y t1,(5)
:/T (222 - Ly wis

s and a stand for symmetric and antisymmetric.

Y

b5 =0

Y

J s =0

Besides, B*, D* have a multiplicative sin 6 factor and E* a sin?2 6> one.
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Parity violation

a,
k
P K,
[ 7o

Under parity all three-momenta get reversed but so do the Z™ and X * axes. As a result the components of

VS

B

*
Zp
R k 21 —
- e,-[ ’,'
. *
. XP
¥
T

k%, kS, a5, pp inthe new system remain unchanged. Only k* 5 is modified

0F — 0*

T T )

¢;—>27r—¢*.

v
Thus, the terms in sing ., sin2¢.. change sign.

Parity violation reflects itself in the fact that the pion distributions measured above and below the scattering plane are
different.

It originates from the interference between multipoles that have different phases. Below the two pion threshold, all
multipoles with given total angular momentum, parity and pion orbital angular momentum quantum numbers have the same
phase fixed by Watson theorem. Thus, a proper unitarization is essential to get a good reproduction of the parity violation
observables.
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Pion angular distribution III

C'C processes
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Pion angular distribution IV

Same as before for NC processes

HNV v,p — v p HNV v,n — v, nr° HNV v,p — v nrt HNV v n — v pr—
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0.1 0.1
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Pion angular distributions V

HNV v,p — e prt HNV v,n — e nr't HNV v,n — etnr HNV v,p — v pr’
180 0.018 0.012
0.065 0.022
.01
%0 0.055 0-014 0.018 0.0
o0 0.045 0.01 0.014 0.008
—90 0.035 0.006 0.01 0.006
—180 0.025 0.002 0.006 0.004
-1 =05 0 0.5 1 -1 =05 0 0.5 1 -1 =05 0 0.5 1 -1 =05 0 0.5 1
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180 0.012
0.065 0.011 0.022
0.01
%0 0.055 0.009 0.018
* K
0 0.045 0.007 0.014 0.008
—90 0.035 0.005 0.01 0.006
—180 0.025 0.003 0.006 0.004
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cos 0" cos 6" cos 0"

do /d2%[10738cm?], evaluated at E, = 1 GeV and witha W,y < 1.4GeV cut.

A clear anisotropy is still seen and the distribution is channel dependent
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" [10~38cm?]

do/dcosb

[10~38cm?)
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Pion angular distribution VI
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1GeV and with W,y < 1.4GeV
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Pion angular distribution VII
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Unnormalized, flux-averaged do/d cos 8% and do/d¢k. Wrn < 1.4GeV.
ANL data: G. M. Radecky et al, Phys. Rev. D 25, 1161 (1982).

BNL data:T. Kitagaki, Phys. Rev. D 34, 2554 (1986).
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Incoherent pion production inside the nucleus I

PRD 87,113009 (2013)

We assume the nucleus can be described by its density and we shall use the local density approximation

The cross section at the nucleus level for initial pion production (prior to any FSI) is then

dcoscé JE. /C“’ > / pN L O(EN (r) — Ex)0(En + ¢° — Ex — EN (1))

N=n,p
do(vN — 1~ N'm)
dcosO,.dE

X

To compare with experiment, we have to convolute it with the neutrino flux ®(|k|)

do - ~ d3pN /
- /d|k:| <I>(|k|)47r/drr2 S 2/ 0(EN (r) — En)0(En + ¢° — Ex — EX (r))
dcosOr dE Nen.p (27)3

do(vN — 1~ N'nx)
dcosO,.dE

X
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Incoherent pion production inside the nucleus II

From there we obtain

do - d3pN N v
— = O(|k 2/ O(Ew (r) — En HEN+qO—E7r—E r
A dmridr deostn b, T D 2 2 [ (g OER ()~ EN) 6 N )

do(vN — I~ N'm)
dcosO0,dFE

Apart from modifications discussed in what follows, the above differential cross section is
used in our simulation code to generate, in a given point inside the nucleus and by neutrinos
of a given energy, pions with a certain charge, energy and momentum direction.

Defining P = q — k« (the four momentum transferred to the nucleus) and writing
d3pn = dcosVIn don |Pn|EndE N, Where the angles are referred to a system in which the

Z axis is along P, we can integrate in the ¥ variable using the energy delta function
do(vN—1" N'x)
dcosO,dE

present in
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Incoherent pion production inside the nucleus 111

The final result is

do ) ) 6% Il n 2o
4 = ®(|k /dQ’dE’ k' FE_ T _9Em(r)—&)6(—P?)o(P®) Lok, k")
d|k|4rr2 dr dcos O dEy (&) Fy 2 s12xT Bk T ne

N=n
}7
cos ¥ py =cos 90

N

27 E%(’r‘) o
/O d¢N/5 dENW" (pns 4, )

o P242ENPY o —PO + |P|\/1—4M?/P?

= : EzmaX{M,Eg/—PO,S’}.
2|lpN || P 2

To speed up the computational time, we approximate the last two integrals by

N
27 En (r) o N o~
/O dé /5 dENW" (b, q, k) ~ 2n(EN (1) — E)WHT (B, 4, ki)

cos Y \y =cos 19(])\7

cos Y \y =cos 199\]

where p is evaluated at the value Ey = (EY (r) 4+ £)/2, (middle of the integration
interval), with the corresponding cos 9%, value, and ¢ is set to zero.

Similar approximations were done, in the works of Carrasco et al. and Gil et al. to study pion
photo- and electroproduction in nuclei.
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Medium corrections I

A properties are strongly modified in the nuclear medium.

lts imaginary part changes due to

® Pauli blocking of the final nucleon which reduces the free width.

®» In medium modification of the pionic decay width other than Pauli blocking
® Absorption processes AN —- NN and ANN — NNN.

We thus modify the A propagator of the direct A contribution approximating
1 1 1

Yy

pA — MZ +iMala VPA + Ma \/PA — Ma +ila/2

and substituting

FA FZauh

—ImY
5 T2 fHh&a

while keeping Ma in the propagator unchanged.
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Medium corrections 11

Delta width in a nuclear medium

Y Y 2
\/ \J \
l"d-lr " .r'_'r;__
_7',;1.’.' ._"'r'-rr.

/

/N /M

\ L

A Nl
i d @

The double dashed line represents the effective spin-isospin interaction originated by = and
p exchange in the presence of short range correlations.

The wavy line includes an RPA sum with particle-hole and Delta-hole excitations.

The evaluation of Im X o was done by E. Oset and L.L. Salcedo [Nuc. Phys. A468 (1987)
631 ].
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Medium corrections 111

The imaginary part can be parameterized as

«@ B Y
~Im$a = Cg <ﬁ> + Ca <ﬁ> + Cas (ﬁ)
P0 P0 P0

with pp = 0.17fm—3.

® The Cg term corrects the pionic decay in the medium.

® The C 4, term corresponds to the process AN — NN

® The C 43 term corresponds to the ANN — NN N process

The Cq, a, Ca2, 8 and C 43,y coefficients are parametrized as a function of the kinetic
energy of a pion that would excite a A of the corresponding invariant mass and are valid in
the range 85 MeV < T < 315 MeV.

Below 85 MeV the contributions from C'q and C 43 are rather small and we take them from
Nieves et al. [Nuc. Phys. A 554 (1993) 554], where the model was extended to lower
energies. The term with C' 45 shows a very mild energy dependence and we still use the
original parameterization even at low energies.

For T above 315 MeV, we have kept these self-energy terms constant and equal to their
values at the bound. The uncertainties in these pieces are not very relevant there because
the A — N decay becomes very large and dominant.
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Incoherent pion production inside the nucleus IV

The Cg term not only modifies the A propagator but it also gives rise to a
new source of pion production in the nuclear medium that has to be taken
Into account.

This new contribution has to be added incoherently and we implement it in
a approximate way by taking as amplitude square for this process the
amplitude square of the AP contribution multiplied by

Co(p/po)®
[Eree /2

lts effect increases the total pion production cross section by less that 10%
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Final state interaction

Once the pions are produced, we follow their path on its way out of the nucleus.

We use, with slight modifications, the model of L.L. Salcedo et al. [Nuc. Phys. A484 (1988)
557]

® P and S-wave pion absorption.

® P and S-wave quasielastic scattering on a nucleon.
#® Pions change energy and direction.

#® Pions could change charge.
® Pion propagate on straight lines in between collisions.

The P- wave interaction is mediated by the A resonance excitation where the different
contributions to the imaginary part of its self-energy give rise to pion two- and three-nucleon
absorption and quasielastic processes.

The intrinsic probabilities for each of the above mentioned reactions are evaluated
microscopically as a function of the density and we use the local density approximation to
evaluate them in finite nuclei.
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(preliminary) Results for MiniBooNE (C' H, target) I

VN - LN’
150 ‘ —
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(&)
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=
2 50
o

= N W
o o o

o (10%cm?/CH,)

o

= N
a1 a1
T T T

a1

- — C(old)
- MiniBooNE

05

We get a better agreement at higher energies than before.
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do/dp,_ (10°cm®/(GeV/c)/CH,)
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o

(preliminary) Results for MiniBooNE (C' H, target) 11
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(preliminary) Results for MiniBooNE (C' H, target) 11

(A
VN S vTN
u Hu

— "C+2H+Coh

--- Coh

— "C+2H+Coh (old)
---- Coh (old)
MiniBooNE

On s
VN S vTN
M M

—15

(o]

[e2)

10

- — 2c+2H+Coh

- -~ Coh

| — C+2H+Coh (old)
— ---- Coh (old)

.- MiniBooNE

- - 0, ,,
v N> viN
\u \u\

e [«2) (o8]
L e I A e B

do/dp_ (10'4ocm2/(GeV/c)/nucIeon)
N

____ 12+2H+Coh

— "C+2H+Coh (old) :
---- Coh (old) -
MiniBooNE ]

(@)
O

(631

2
cm’ /nucleon)
N

10
w

Tt
N

do/d cosB
[

" — 2c42H+Coh
- -~ Coh

- — C+2H+Coh (old)
. --- Coh (old)

MiniBooNE
.
1 -05

ECT*. Trento, May-2019 — p. 39/57



(preliminary) Results for MiniBooNE (C' H, target)I1I

Comparison with GiBUU [PRC96 (2017) 0155083]
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Our results for high energy pions are in better agreement with experiment.
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[10 *cm?/MeV/nucleon]

Tt

do/dT

(preliminary) Results for MINERvVA (C'H target)

We integrate the MINERvVA flux up to E, = 5 GeV.
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We produce too many pions in the backward direction while GiBUU underestimates the
production of forward pions.

GiBUU gives a good reproduction of the do /dT differential cross section
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(preliminary) Results for T2K (H,0 target)

We integrate the T2K flux up to £, = 2GeV.
We implement the cuts on the muon momentum on production (neglecting FSI for the muon)
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Two-pion production close to threshold. Nonresonant production

PRD 77, 053009 (2008)

We have in total 16 different contributions corresponding to the Feynman diagrams

) m) n)
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Two-pion production close to threshold. Resonant production

Since the A does not couple to two pions in s-wave, A excitation contributions are expected
to be small when only slow pions are produced (close to threshold).

The Roper resonance N*(1440) on the other hand has a sizeable decay into a scalar pion
pair and it is very wide so that its contribution could be large. In fact, the N*(1440) plays a
major role in 7N — ww N and NN — ww N N reactions for certain channels and close to
threshold.

Our work was the first attempt to include the N*(1440) in two pion production in weak

processes, the study of which could serve to study electroweak nucleon to Roper transition
form factors.
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Two-pion production close to threshold.

N*(1440) contribution

In this case we have two contributions coming form direct an crossed Roper excitation

. P . o Z .
> > > >

For the s-wave N* — Nz decay we use the Lagrangian

m
f2

Assuming a branching ratio of 7.5% for the N (7 m)%Z% decay mode and a total decay width
of I'tot = 350 MeV, the best agreement with NN — 7r7rNN and the tN — N data was
obtained by L. Alvarez-Ruso et al. [NPA633, 519 (1998)] using

£N*N7’l’7‘(’ — wN ¢ \Ij+02 f2¢N*(_‘80¢)(T80¢)\P+hC

ct=-727GeV™! 5 =0GevV!

Since in the above Lagrangian the pions are coupled to isospin 0 the Roper excitation
contributes only for final 7+ 7~ and 7%#° channels
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Two-pion production close to threshold.

N — N*(1440) weak current

The Wtn — N*T(1440) weak transition current is given by

cos Ot (Px ) Jeesu(P) s
with
o FV* o o FV* av GP o GT
Jcc* — ( )(q é_ C] Y )+Z#J GA’Y Y5 — —(q 4’75 — —0“ QV’75
2 T T T
with u = M + M,.

The vector part is the most general compatible with current conservation.

Although the G term is in principle allowed by G-parity invariance, we shall assume it is
zero.
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Two-pion production close to threshold

N — N*(1440) axial form factors

Assuming the pseudoscalar coupling G p is dominated by the pion pole contribution, and
imposing partial conservation of the axial current (PCAC) hypothesis

G 4 (0) can be related with the N* N coupling constant at ¢ = 0 using the corresponding
non-diagonal Goldberger—Treiman relation

~

Ga(0) = 2f7ri — 0.63

mo

with f/mﬂ the N* N strong coupling determined from the I" y« _, nr decay width.

For the g2 dependence of G 4 (¢?) we assumed a dipole form

B G 4(0)
C (1—¢?/M3 )2’

Ga(q®)

with an axial mass M4, = 1 GeV
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Two-pion production close to threshold

N — N*(1440) vector form factors |

The vector-isovector form factors FV'* /u? and Fy * /u can be related to the isovector part of
the electromagnetic form factors, FV'* = FF* — F"*. The experimental information is given
in terms of helicity amplitudes

2
Ai\;2: %(N*T\Ze-je.m.(o)u\fwg
R pol
2T |67|

511\;2 -

N*T '.e.m.O NTfa
P ';” (O)IN 1)

a=1/137, kg = (W? — M?)/2W with W the energy of the Roper in its center of mass and
e stands for the polarization vectors.

¢ is the relative sign between the N N7 and N* N« couplings which we have taken to be
positive (I shall come back to this later).
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Two-pion production close to threshold

N — N*(1440) vector form factors |l

Following quark models predictions [L.A. Copley et al., PLB29, 117 (1969)] we assume

?/2 - _2/3A11?/27 SIL/Q =0
We fit the vp — N™* electromagnetic form factors to experiment [|.G. Aznauryan et al.,
PRC71, 015201 (2005); L. Tiator et al., EPJA19, 55 (2004)] using a parametrization from Q.
Lalakulich et al. [PRD74, 014009 (2006)]

() = — A0
! 1—q2/X1 M2

2 gp q2
FP*(¢®) = D—i/ (1—X21n (1— 1GeV2>>

where Dy = (1 — ¢2/M2)? with My, = 0.84 GeV.
The best fit parameters are:

g =—57£09, g5=-0644+0.04, X;=14405, Xp=24740.12,

This defines our FF1 set of vector form factors.
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Two-pion production close to threshold

N — N*(1440) vector form factors I

The vp — N* data have large uncertainties so that other fits are possible.
We shall consider three more sets of vector form factors:

® Set FF2. Quark model calculation of U. Meyer et al., PRC 64, 035203
(2001)

® Set FF3. This we take from O. Lalakulich et al., PRD74, 014009
(2005)

® Set FF4. MAID analysis from D. Drechsel et al., EPJA34, 69 (2007)
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Two-pion production close to threshold

N — N*(1440) and background relative sign

® All relative phases in the background terms are fixed by the nonlinear sigma model
Lagrangian.

® We have assumed the sign of the N* N7 coupling to be the same as the N N« coupling.
This fixes the vector part of the N — N* weak current. The axial part is also fixed
through the nondiagonal Goldberger-Treiman relation.
Besides, it also fixes the sign of the ¢}, c5 N* Nwx coupling constants.

Taking the opposite sign for the N* N7 coupling does not affect the results since both the

N — N* weak current and the c7, c5 coupling would change sign leaving the Roper
contribution unaltered.

ECT*. Trento, May-2019 —p. 51/57



Two-pion production close to threshold. Results I
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Two-pion production close to threshold. Results 11

107 F
C | —— Full model (FF4)
. | — - Background terms

-—-- Full modd (FF3)

m BNL data by T. Kitagaki et al., PRD34, 2554 (1986)

Better results for this channel are obtained within the DCC model, PRD92, 074024 (2015)

For other channels there is no data in the region of validity of our model determined by 77w N

invariant masses less than 1.4 GeV and thus E,, <0.75 GeV.
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Two-pion production close to threshold. Results 111

In order to keep data close to threshold, S.A. Adjei et al. [PRD23,672 (1981)]
suggested to implement the following phase space kinematical cuts

(1) @ < ((L+n/2)mx)*,
(2) 2 qr < (M ~+ (1+n)mx)* = M> —m?
(3) 20 qn < (M + (1 +n)ms)° — M —mZ,

with ¢ = (kxy + kry)/2. n =1/4, 2/4, 3/4 were proposed.

(1)— keeps individual pion momenta close to average pion momentum.
(2) and (38)— pole terms should dominate.

ECT™*. Trento, May-2019 — p. 54/57



Two-pion production close to threshold. Results IV
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Dashed line: Background terms alone

Solid line: Full calculation with FF1 set Solid fine: Background terms alone

e BNL data by T. Kitagaki et al., PRD34, 2554 (1986)
[J ANL data by D. Day et al., PRD28, 2714 (1983)

ECT™*. Trento, May-2019 — p. 55/57



Two-pion production close to threshold. Results V
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7%7%: Full model with FF1 set.
Other channels: Background contribution.
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°

Summary

| have shown our models for one- and two-pion production by neutrinos.

For the one-pion production case we get good agreement with data at the
nucleon level.

In good qualitative agreement with the DCC model, we predict anisotropic
pion distributions (measured in the final 7N center of mass).

For the case of one-pion production in nuclei the situation is not so clear. We
get a resonable reproduction of MiniBooNE data but we overestimate the
production in the case of Minerva data.

In the case of two-pion production close to threshold, our results are below the
data by one order of magnitude. Better agreement is found by the DCC model
with the exception of the 7™ 7+ channel.
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