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shock
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m Requires careful multi-flavor e
neutrino transport
m Neutrino flavors interact differently:

e 1, - strongest interactions - lower mean energy
e vy - weakest interactions - higher mean energy

m Mixing the flavors could affect the heating

m There is a need for self-consistent neutrino
flavor oscillations in supernova simulations

ESA/Hubble
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NC STATE UNIVERSITY Introduction

Neutrino Oscillations

m Oscillations occur because the v mass e — ()’
states are not the same as v flavor
states —— ()’

m Neutrinos keep the same energy &

_ ——— () )’
momentum, only changing flavor '

HE N B
Voo v, Vv
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m Conditions exist for possible flavor mixing behind the shock
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NC STATE UNIVERSITY Introduction

The Effects of Oscillations

m Some approximate treatment of CrO has been done to examine
the effects on heating

e Manual spectral swap was found to produce explosions if some
critical heating rate was reached Suwar (2011)

e Numerical post-processing found that the C»O mostly occurs
beyond the shock where it can not aid heating Dasgupta+ (2012)

e Assuming maximal flavor mixing found that CO most effective for
small Mpys, M and large R, Pejchar+ (2012)

m We wish to improve upon these findings by dynamically coupling
full oscillation calculations directly to the neutrino transport

C. Stapleford (cjstaple@ncsu.edu) SNXroads, ECT*, Trento, IT May 16, 2019 (4)



NC STATE UNIVERSITY Adding Oscillations

Our Codes
— Agile-BOLTZTRAN
m 1-D Lagrangian GR Hydrodynamics
N o m O (%) Boltzmann Equation (ve, e, vx, Ux)
Time Step m Lattimer-Swesty EOS

m Implicit time evolution
BOLTZTRAN
m Adaptive Grid

m Transport Processes

Ve+N=¢€ +p
ve+N(Z,A)=e + N(Z+1,A)
Vet+ € —vet e~

“Isoenergetic” Scattering
Pair-production & Annihilation

m Mezzacappa+ (1993) Liebendérfer+ (2001)
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—>

Sqa
Begin
Time Step L . .
m Solves Schrédinger Equation for evolution

NC STATE UNIVERSITY Adding Oscillations
m Multi-energy, single-angle, free-streaming,
oscillation code for 6 flavors
operator in a quasi-adiabatic basis:
0S i
= HS  p(x)=Sp(0)S!

Our Codes
Codes
(V67 De,l//“ D,Uny‘l'v 777')
ox he

m H = Hypc + Vusw + Vs with GR corrections
m Limit how often Sqa is called:
e Only run after bounce & behind shock
m e Run only as required, not every time step
Galais+ (2011) Yang+ (2017)
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NC STATE UNIVERSITY Adding Oscillations

Integrating Oscillations

m Oscillations are introduced as a source term in the transport
m Transition probabilities converted into an effective opacity:

m Link absorption in one flavor to emis-
sion in the other: Ve Ve

S )
o, o s
ot = cr/,k(fﬁ—fa) 7? = O‘i7k(fa_f5) n}ge;;ll;lg

i
m 0, constant between calls to Sqa
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NC STATE UNIVERSITY

Preliminary Results

Our Simulation
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NC STATE UNIVERSITY Preliminary Results
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NC STATE UNIVERSITY Preliminary Results

Just after Bounce

t=19.78+0.411 ms
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Just after Bounce

Electron Neutrino Heating Rate @ t~19.78+0.411 ms
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Stalled Shock

t=113.38+0.069 ms
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Stalled Shock

Electron Neutrino Heating Rate @ t~113.38+0.069 ms
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NC STATE UNIVERSITY Preliminary Results

Mass Integrated Heating Rate
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NC STATE UNIVERSITY Conclusions

Conclusions & Outlook

m Neutrinos are very important in supernovae, but self-consistent
effects of oscillations had not previously been studied

m We have developed a code that self-consistently couples neutrino
oscillation calculations with neutrino transport and supernova
hydrodynamics for the first time

m Neutrino oscillations do impact the dynamics of the simulations,
but do not cause the explosion to occur

m In the future we wish to include additional effects such as
fast-flavor conversion and nonstandard interactions

Thank You
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