Sensitivity of SNO+ to Supernova Neutrinos

Mark Stringer

SN at the Crossroads : ECT* Workshop

The SNO+ Detector

- General Purpose neutrino experiment.
- Main focus on the search for $0\nu\beta\beta$.
- Water phase currently wrapping up.
- Scintillator filling taking place now.
 - Scintillator fill scheduled to complete in September.
 - Te loading to start in December.
 - Te loading complete (0.5%) in 2020.

6 m radius acrylic vessel loading material depends on phase of experiment

Detector submerged in ultra pure water to control 2 radioactive backgrounds

2 km flat overburden

~9300 PMTs arranged in geodesic sphere 8.3 m radius

Interaction channels (Water Phase)

- Water phase
 - v-e scattering
 - Inverse beta decay¹ (Tagging efficiency ranges from 30 – 45 % depending on position within the detector.)
 - Interactions with ¹⁶O nuclei²

1 arxiv:astro-ph/0302055 2 Phys. Rev., D66:013007

Neutron capture efficiency (In water)

- AmBe source deployed in water:
 - $\alpha + {}^{9}Be \rightarrow {}^{12}C^* + n$
 - ${}^{12}C^* \rightarrow {}^{12}C + \gamma$ (4.4 MeV prompt)
 - $n + p \rightarrow d + \gamma$ (2.2 MeV delayed)
- Measured capture time is:
 208.2 ± 2.1 μs
- Measured neutron detection efficiency

46.5 ± 0.4 %

Event Counts in Water Phase

Model	IBD	ν-е	$ u_{\rm e}$ + ¹⁶ O (CC)	$\overline{ u}_{ m e}$ + ¹⁶ O (CC)	ν + ¹⁶ Ο (NC)
$11.2~M_{\odot}$	24.0	3.9	0.1	0.2	0.4
$17.6~M_{\odot}$	41.2	5.7	0.3	0.6	1.1
$20.0~M_{\odot}$	36.3	5.2	0.2	0.5	0.9
$27.0~M_{\odot}$	48.1	6.5	0.3	0.8	1.4
Analytical	133.1	15.9	0.9	1.3	7.6

- Results from 1D Garching models (arxiv:1111.4483)
- Simulated between -0.015 and 0.45 seconds
- Analytical fluence reflects neutrino emission from entire burst. (arxiv:1103.2768)
- SN at a distance of 10 kpc.
- Assumes a 5 m fiducial volume corresponding to a fiducial mass of 0.51 kT.
 - It is likely we can extend the fiducial volume beyond the AV for higher energy events which would more than double our fiducial mass.

Interaction channels (Scintillator Phase)

- Scintillator and Scintillator + Te phases
 - v-p scattering¹
 - Inverse beta decay
 - Interactions with ¹²C nuclei²

1 Phys. Rev., D66:033001 2 arxiv:nucl-th-9903022

Interaction energy spectra

- In scintillator phase SNO+ will have a threshold of ~0.2 MeV
- LAB ex-situ measurement of Birks' parameter made k_B=0.0096±0.0003 cm/MeV¹

Event Counts in Scintillator Phase

Model	IBD	<i>ν</i> -p	ν-е	$ u_{\rm e}$ + ¹² C (CC)	$\overline{\nu}_{ m e}$ + ¹² C (CC)	ν + ¹² C (NC)
11.2 M_{\odot}	21.6	38.0 (5.7)	3.1	0.2	0.5	1.3
$17.6~M_{\odot}$	37.1	58.7 (11.7)	4.6	0.6	1.1	2.5
$20.0~M_{\odot}$	32.7	52.4 (9.8)	4.2	0.5	0.9	2.1
$27.0~M_{\odot}$	43.2	67.5 (14.4)	5.2	0.8	1.3	3.1
Analytical	119.7	262.9 (74.0)	12.5	1.1	3.5	15.4

- Results from 1D Garching models (arxiv:1111.4483)
- Simulated between -0.015 and 0.45 seconds
- Analytical fluence reflects neutrino emission from entire burst (arxiv:1103.2768).
- SN at a distance of 10 kpc.
- Assumes a 5 m fiducial volume corresponding to a fiducial mass of 0.45 kT.
- Terms in brackets for v-p scattering represent the number of events above a 0.2 MeV threshold after quenching.

Predicted Backgrounds in Scintillator

- Backgrounds above ~1 MeV in a 5 m fiducial volume are negligible
 - The only channel that will be significantly effected by backgrounds is v-p scattering.
 - IBD events will essentially be background free due to neutron tagging.
- Two dominant backgrounds for a 5 m fiducial volume
 - ¹⁴C and ²²²Rn daughters.

• 14C
$$\rightarrow^{14}$$
 N + $e^- + \bar{\nu}_e(Q = 0.16 \text{ MeV})$

- Naturally present in liquid scintillator.
 - ${}^{14}C/{}^{12}C = O(10^{-18})$
- Predicted raw rate of O(100 Hz) in 0.78 kT scintillator volume.
- External backgrounds (PMTs/Ropes/external water) negligible for a 5 m fiducial volume.

Radon daughter background

- During construction of SNO and commissioning of SNO+ radon daughters became embedded in surface of acrylic vessel.
- Long half life of ²¹⁰Pb means throughout lifetime of SNO+ decays of ²¹⁰Pb daughters will form a background in the experiment.
- Decay rate of O(1 KHz) on inner AV surface.
- A small fraction of the daughters are expected to leach into the scintillator volume throughout the lifetime of SNO+
 - Leaching rate will be measured during the scintillator phase of the experiment.

The Supernova Calibration Source

- Dedicated hardware designed to test the response of the detector to a supernova, and the ability to test the DAQ resilience to a nearby supernova.
- 406 nm peak wavelength laser diode
- Can produce light pulses with intensities up to the equivalent of 60 MeV deposited in liquid scintillator.
- Attaches to an existing optical calibration source.

The Supernova Calibration Source

- Calibration source contains programable FPGA.
- Simulations can be used as input
 - Currently using Garching 1D models in NH and IH (MSW only)
- Pulse intensity and frequency will match the input energy spectrum and event rate.

Reconstruction of high energy events.

- Standard energy reconstruction routines based on the number of PMTs which are triggered in an event (NHit).
- For higher energy events counting the number of triggered PMTs to reconstruct the energies is no longer optimal.
- Triggered PMTs also record the charge deposited (Proportional to the number of photons observed by the PMT).
- The total charge can be used to reconstruct events at higher energies.

SN Trigger for SNO+

Conclusions

- SNO+ is sensitive to neutrinos from a supernova in all phases of the experiment.
- A calibration source has been developed to specifically test the response of the detector in the case of a supernova.
 - Both the response of the detector to high energy events and the DAQ systems ability to handle the data rate.
- Reconstruction routines have been developed to handle higher energy events which would be relevant to a supernova.
- Burst trigger development currently underway
 - Aim to be incorporated with SNEWS

Backup Slides

Analytical SN spectra

Flavour	L ₀ (10 ⁵¹ ergs)	$\langle E angle$ (MeV)	β
v _e	50	12.0	3.0
v_{μ}	50	15.0	3.0
V _x	50	18.0	3.0

Average energies obtained from arxiv:1103.2768.

$$\frac{dL}{dE} = L_0 \frac{1.0}{\langle E \rangle^2} \frac{(1+\beta)^{1+\beta}}{\Gamma(1+\beta)} \frac{E}{\langle E \rangle}^{\beta} e^{\frac{-(1+\beta)E}{\langle E \rangle}}$$

