Full-flavor reconstruction of supernova neutrino energy spectra

Huiling Li Institute of High Energy Physics, CAS 16 May, 2019, ECT*

arXiv:1712.06985 arXiv:1903.04781

16 May, 2019, ECT*

Huiling Li (IHEP)

Motivation

Detection of SN neutrinos in JUNO

- Low energy threshold ~0.2MeV in JUNO LS and full flavor information recorded
- IBD events dominate the high energy range, the golden channel
- v-p ES events dominate the low energy range

Outline

The separated approach

- Beacom, Farr, Vogel (2003),
- Dasgupta and Beacom (2011),
- Li, Li, Wang, Wen, Zhou (2017)

The combined approach

• Li, Huang, Li, Wen, Zhou (2019)

Summary

The separated approach

Detected spectra->Unfolded spectra of each channel->Separated flavor spectra

Detection channels in LS

For IBD channel $N_p \cdot \boldsymbol{D}_{IBD} \cdot \boldsymbol{\sigma}_{\overline{\nu}_e}^{IBD} \cdot \boldsymbol{F}_{\overline{\nu}_e} = \boldsymbol{S}_{IBD}$

8

For ES channel

$$N_{p(e)} \cdot \boldsymbol{D}_{p(e)ES} \cdot \sum \boldsymbol{\sigma}_{\alpha}^{p(e)ES} \cdot \boldsymbol{F}_{\alpha} = \boldsymbol{S}_{p(e)ES}$$

For ES channel

$$N_{p(e)} \cdot \boldsymbol{D}_{p(e)ES} \cdot \sum \boldsymbol{\sigma}_{\alpha}^{p(e)ES} \cdot \boldsymbol{F}_{\alpha} = \boldsymbol{S}_{p(e)ES}$$

Unfolded results

SN@10kpc 3% energy resolution 0.2MeV detected energy threshold

$$\begin{split} n_{IBD}(E_{\nu}^{i}) &= N_{p}\sigma_{IBD}(E_{\nu}^{i})F_{\overline{\nu}_{e}}(E_{\nu}^{i})\\ n_{pES}(E_{\nu}^{i}) &= N_{p}\left[\sigma_{\nu_{e}p}(E_{\nu}^{i})F_{\nu_{e}}(E_{\nu}^{i})+\sigma_{\overline{\nu}_{e}p}(E_{\nu}^{i})F_{\overline{\nu}_{e}}(E_{\nu}^{i})+4\sigma_{\nu_{x}p}(E_{\nu}^{i})F_{\nu_{x}}(E_{\nu}^{i})\right]\\ n_{eES}(E_{\nu}^{i}) &= N_{e}\left[\sigma_{\nu_{e}e}(E_{\nu}^{i})F_{\nu_{e}}(E_{\nu}^{i})+\sigma_{\overline{\nu}_{e}e}(E_{\nu}^{i})F_{\overline{\nu}_{e}}(E_{\nu}^{i})+4\sigma_{\nu_{x}e}(E_{\nu}^{i})F_{\nu_{x}}(E_{\nu}^{i})\right] \end{split}$$

Separation of different flavor spectra

It is possible to reconstruct energy spectra for each flavor of SN neutrinos in JUNO LS detector.

- More accurately treatment with eES?
- Combine with other experiment data?
- SN neutrinos with flavor conversions?

The combined approach

The combined approach

Directly extract spectra for each flavor of SN neutrinos

The combined approach

Response Matrix flat model

Flat model, 0.2 billion events 0.2MeV energy threshold, 3% energy resolution 16 May, 2019, ECT*

Reconstructed spectra

0.2MeV, 3% energy resolution , analytical model

The impact of energy threshold

- A lower energy threshold can give more information about v_x and v_e spectra.
- There is a strategy in progress in JUNO to record all the information even the hits information below
 0.2MeV, reserving space for new physics in the future.

Check of Model independence

12 Japan models, SN@1kpc

Nakazato et.al, http://asphwww.ph.noda.tus.ac.jp/snn/

Flavor conversion from MSW effects

 F_{ν_x} , $F_{\nu_x}^0$ is the flux for one flavor neutrino of μ , τ neutrinos and their antiparticles

Normal hierarchy

$$\begin{bmatrix} F_{\nu_e} \\ F_{\overline{\nu}_e} \\ F_{\nu_x} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & \cos^2\theta_{12} & \sin^2\theta_{12} \\ \frac{1}{4} & \frac{1}{4}\sin^2\theta_{12} & \frac{1}{4}(2+\cos^2\theta_{12}) \end{bmatrix} \begin{bmatrix} F_{\nu_e}^0 \\ F_{\overline{\nu}_e}^0 \\ F_{\nu_x}^0 \end{bmatrix}$$

Inverted hierarchy

$$\begin{bmatrix} F_{\nu_e} \\ F_{\overline{\nu}_e} \\ F_{\nu_\chi} \end{bmatrix} = \begin{bmatrix} \sin^2 \theta_{12} & 0 & \cos^2 \theta_{12} \\ 0 & 0 & 1 \\ \frac{1}{4} \cos^2 \theta_{12} & \frac{1}{4} & \frac{1}{4} (2 + \sin^2 \theta_{12}) \end{bmatrix} \begin{bmatrix} F_{\nu_e}^0 \\ F_{\overline{\nu}_e}^0 \\ F_{\nu_\chi}^0 \end{bmatrix}$$

With flavor conversion

Normal hierarchy

Inverted hierarchy

Response matrix && flavor conversion

16 May, 2019, ECT*

The original fluence SN@1kpc

Normal hierarchy

Inverted hierarchy

The original fluence from the core of the SN can be partially extracted. This method is useful to check the models of neutrino oscillation.

16 May, 2019, ECT*

Summary

- The combined approach is model independent and robust. It is possible to reconstruct full flavor energy spectra of SN neutrinos in one large LS detector.
- For more complicated scenarios with neutrino oscillations, the combined method is still useful to test models of neutrinos oscillations.
- The combined approach can easily include other type of detectors, e.g. WC (Super-K) and LAr-TPC (DUNE), to do a global analysis. It can also be used to reconstruct the spectra of solar neutrinos and ultrahigh-energy cosmic neutrinos when a large statistics in the multi-avor detection is accumulated.

Backup

Reconstruction of SN neutrino spectra

SN@10kpc, v_x for non-electron neutrinos

Channel	Туре	Events for different $\langle E_{\nu} \rangle$ values		
		12 MeV	14 MeV	16 MeV
$\overline{\nu}_{\rm e} + p \rightarrow e^+ + n$	CC	4.3×10^{3}	5.0×10^{3}	5.7×10^{3}
$\nu + p \rightarrow \nu + p$	NC	0.6×10^{3}	1.2×10^{3}	2.0×10^{3}
$\nu + e \rightarrow \nu + e$	ES	3.6×10^{2}	3.6×10^{2}	3.6×10^{2}
$\nu + {}^{12}C \rightarrow \nu + {}^{12}C^*$	NC	1.7×10^{2}	3.2×10^{2}	5.2×10^{2}
$\nu_{\rm e}$ + ${}^{12}\text{C} \rightarrow e^-$ + ${}^{12}\text{N}$	CC	0.5×10^{2}	0.9×10^2	1.6×10^{2}
$\overline{\nu}_{\rm e}$ + ${}^{12}{\rm C}$ \rightarrow e^+ + ${}^{12}{\rm B}$	CC	0.6×10^2	1.1×10^2	1.6×10^{2}

Li, Li, Wang, Wen, Zhou (2017)

Parameterization fluence

•
$$\frac{dF_{\alpha}}{dE_{\alpha}} = \frac{3.5 \times 10^{13}}{cm^2 MeV} \cdot \frac{1}{4\pi D^2} \frac{\varepsilon_{\alpha}}{\langle E_{\alpha} \rangle} \frac{E_{\alpha}^{\gamma \alpha}}{\Gamma(1+\gamma_{\alpha})} \left(\frac{1+\gamma_{\alpha}}{\langle E_{\alpha} \rangle}\right)^{1+\gamma_{\alpha}} exp\left[-(1+\gamma_{\alpha})\frac{E_{\alpha}}{\langle E_{\alpha} \rangle}\right]$$

Japan models, neutrinos before detector

SVD unfolding method

SVD unfolding method is to minimize the following chi-square equation to extract the true distribution:

SVD is used to calculate the inverse of a matrix. Without the penalty term, the intrinsic operation of the unfolding procedure is still a linear inverse problem.

Regularization parameters

