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Formalism
For Nf flavours NfxNf density matrices are defined as (Wigner 
distributions) 

and analogously for anti-neutrinos. The equations of motion are Liouville 
equations with vacuum terms and refractive terms from a background 
medium and from self-interactions: 

where Ωp0 is the vacuum term, Ωm is the matter term, and  

where in general GS=diag(1,…,1) for active neutrinos.

ρij(r, p) ≡ ∫ d3r′�e−ip⋅r′ �⟨a†
j (r − r′�/2)ai(r + r′�/2)⟩ = ∫

d3Δ
(2π)3

eiΔ⋅r ⟨a†
j (p − Δ/2)ai(p + Δ/2)⟩ ,

∂tρ(r, p) + v(r, p) ⋅ ∇r ρ(r, p) = − i [Ω0
p + Ωm(r) + ΩS(r, p), ρp] ,

ΩS(r, p) = μ(r)∑
q≠p

(1 − vp ⋅ vq){GS[ρ(r, q) − ρ̄(r, q)]GS + GSTr [(ρ(r, q) − ρ̄(r, q))GS]} ,
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In general the Liouville term is 

Charged current source terms (no scattering 
implemented yet) have the form 

with f0(r,p) the equilibrium occupation numbers 
Γ(r,p) the rate which typically projects on one 
flavor, e.g. the electron flavour. 

1
2 {∇r ρ(r, p), ∇pΩ(r, p)} −

1
2 {∇p ρ(r, p), ∇rΩ(r, p)} .

∂tρ(r, p)coll,CC = Γ(r, p), (1 −
ρ(r, p)
f0(r, p) ) ,
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Numerical Setup
Typically we use Nf =2 flavours, momentum  modes with equal energy and 
one spatial dimension x with a one-dimensional array of Np momentum 
modes whose velocity projections onto the x (radial) direction are 
isotropically distributed between -1 and +1, 

The source term then is 

and analogously for anti-neutrinos. The vacuum term is  

where Δm2 >0, cos 2ϴ0 >0 corresponds to the inverted hierarchy.  
The matter term is

vx(ip) = − 1 +
1
Np

+
ip − 1
Np − 1 (2 −

2
Np ) , ip = 1,⋯, Np, with Np even .

∂tρ(x, ip)coll,CC = fs(x)f(x, ip) (1 0
0 0), (1 −

ρ(x, ip)
f0(x, ip) ) ,

Ω0
vx

=
Δm2

4 ( cos 2θ0 −sin 2θ0

−sin 2θ0 −cos 2θ0) ,

Ωm(x) = λ(x)(1 0
0 0) .
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The self-interaction coefficients are normalised as 

which assures that the average coupling of one momentum mode summed 
over all other modes is unity and thus does not depend on Np, before being 
multiplied with the characteristic self-coupling µ(x). 

As initial conditions we typically put pure flavour eigenstates, 

where                          can contain a modulation in ip and an asymmetry 
between neutrinos and anti-neutrinos, e.g. a crossing, a switch of sign 
as a function of direction n of the flavour 1 lepton number density 

gi, j =
(1 − δij)(1 − vivj)

∑kl (1 − δkl)(1 − vkvl)/Np
,

ρ(t = 0,x, ip) = fi(x)f(x, ip)(1 0
0 0) , ρ̄(t = 0,x, ip) = fi(x)f̄(x, ip)(1 0

0 0) ,

f(x, ip) and f̄(x, ip)

G(n) = ∫
∞

0

dpp2

2π2 [fν1
(pn) − fν̄1

(pn)] .
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The modulation function was defined by 

where a and b are parameters and 

with g(x) a function which vanishes at the boundaries, g(x=0)=g(x=Lx)=0. Note that 

Usually we set a=0. A crossing can be induced by setting b>0.

f(x, ip) =
1
2

[1 − ah(x, ip)][1 − bh(x, ip)] , f̄(x, ip) =
1
2

[1 − ah(x, ip)][1 + bh(x, ip)] ,

h(x, ip) = (2
ip − 1
Np − 1

− 1) g(x) ,

∑
ip

[f(x, ip) + f̄(x, ip)] = Np .
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At x=Lx the boundary condition for the incoming modes, vx<0, is given in terms of the 
initial condition (to make them consistent), 

and analogously for anti-neutrinos. Idea is to make them close to zero (no neutrinos 
coming from outside). 
At x=0 the boundary conditions for the incoming modes, vx<0, are given in terms of a 
reflective boundary, 

Anti-neutrino initial and equilibrium densities and production rates are typically 
assumed to be equal to the ones of neutrinos. Flavor perturbations are initially  
driven by the vacuum frequency. 

Partial differential equations are integrated within 0<x<Lx and 0<t<tmax.  

Mathematica 11.1 was used with the NDSolve routine.

ρ(t, x = Lx, vx < 0) = ρ(t = 0,x = Lx, vx < 0) = fi(Lx)f(Lx, ip)(1 0
0 0) ,

ρ(t, x = 0,vx) = ρ(t, x = 0, − vx) , ρ̄(t, x = 0,vx) = ρ̄(t, x = 0, − vx) .
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We show the following quantities: 
Total number of neutrinos 

off diagonal terms 

and total flavour asymmetry 

N(t, x) ≡ ∑
vx

Tr [ρ(x, vx) + ρ̄(x, vx)] ,

Foff(t, x) ≡
∑vx

ρ12(x, vx) + ρ̄12(x, vx)

N(t, x)
,

Fasym(t, x) ≡
∑vx

[ρ11(x, vx) − ρ22(x, vx) + ρ̄11(x, vx) − ρ̄22(x, vx)]
N(t, x)

.

Results
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We consider the following cases: 

models 1-2 show slow transitions with constant µ(x) without and with constant ƛ(x), 
ϴ0=0.01 

models 3-6 show slow transitions for µ(x) profiles, for ϴ0=0.01 and ϴ0=34o, 
without and with ƛ(x) matter profile 

model 7 shows a fast transition with an angular crossing and large matter term 

models 8-9 show slow transitions for larger hierarchies of frequencies, 
ϴ0=34o, without and with ƛ(x)  matter profile
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Model 1

Results for a simulation with Np=20 isotropically distributed angular modes, 
pure flavor 1 for neutrinos and anti-neutrinos with initial total number 
N(t=0,x)=Npfi(x)=20exp(-x) and injected with a rate fs(x)=exp(-x) and 
equilibrium occupation numbers characterised by f0(x)=1 (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes 
is assumed here, i.e.  

Further, Δm2=1, ϴ0=0.01, µ(x)=10, ƛ(x)=0, Lx=20 with integration up to t=30. 

Upper left: Normalized flavor asymmetry. 
Upper right: Normalized off-diagonal elements. 
Lower left: Cuts through flavor asymmetry from upper left 
at x=0, x=4, x=8, x=12, x=16, and x=20. 
Lower right: Total neutrino+anti-neutrino number.

f(x, ip) = f̄(x, ip) = 1/2
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Model 2
Same as Model 1, but a matter potential of the form ƛ(x)=20 was added. No 
significant effect of matter is observed.
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Model 3

Results for a simulation with Np=20 isotropically distributed angular modes, 
pure flavor 1 for neutrinos and anti-neutrinos with initial total number 
N(t=0,x)=Npfi(x)=20exp(-x) and injected with a rate fs(x)=exp(-x) and 
equilibrium occupation numbers characterised by f0(x)=1 (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes 
is assumed here, i.e.  

Further, Δm2=1, ϴ0=0.01, µ(x)=10/(x/10+1)4, ƛ(x)=0, Lx=20 with integration 
up to t=30. 

Upper left: Normalized flavor asymmetry. 
Upper right: Normalized off-diagonal elements. 
Lower left: Cuts through flavor asymmetry from upper left 
at x=0, x=4, x=8, x=12, x=16, and x=20. 
Lower right: Total neutrino+anti-neutrino number.

f(x, ip) = f̄(x, ip) = 1/2
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Model 4
Same as Model 1, but a matter potential of the form ƛ(x)=20/(x/10+1)4 was 
added. A strong matter potential thus suppresses the transition.
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Model 5
Same as Model 1, i.e. no matter potential, but for a realistically large vacuum 
mixing angle ϴ0=34o
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Model 6
Same as Model 2, i.e. for a matter potential of the form ƛ(x)=20/(x/10+1)4, 
but for a realistically large vacuum mixing angle ϴ0=34o. Thus for a large vacuum 
mixing angle a strong matter potential suppresses the transitions less.
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Model 7

Results for a simulation with Np=20 isotropically distributed angular modes, 
pure flavor 1 for neutrinos and anti-neutrinos with initial total number 
N(t=0,x)=Npf0(Lx) and injected with a rate fs(x)=exp(-x) and equilibrium 
occupation numbers characterised by f0(x)=1./(x/10+1)4  (identical for anti-
neutrinos). A crossing of lepton flavor in the momentum modes is assumed 
here with b=0.5. 

Further, Δm2=1., ϴ0=34o, µ(x)=10/(x/10+1)4, ƛ(x)=20exp(-x), Lx=20 with 
integration up to t=30. 

Upper left: Normalized flavor asymmetry. 
Upper right: Normalized off-diagonal elements. 
Lower left: equidistant cuts through flavor asymmetry increasing in x from 
top to bottom 
Lower right: Total neutrino+anti-neutrino number.
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Model 8

Results for a simulation with Np=10 isotropically distributed angular modes, 
pure flavor 1 for neutrinos and anti-neutrinos with initial total number 
N(t=0,x)=Npf0(Lx) and injected with a rate fs(x)=0.1/(x/10+1)4 and equilibrium 
occupation numbers characterised by f0(x)=0.8/(x/10+1)4  (identical for anti-
neutrinos). No anisotropy or crossing of lepton flavor in the momentum modes 
is assumed here, i.e.  

Further, Δm2=0.1, ϴ0=34o, µ(x)=100/(x/10+1)4, ƛ(x)=0, Lx=40 with 
integration up to t=500. 

Upper left: Normalized flavor asymmetry. 
Upper right: Normalized off-diagonal elements. 
Lower left: equidistant cuts through flavor asymmetry increasing in x from 
top to bottom 
Lower right: Total neutrino+anti-neutrino number. 

f(x, ip) = f̄(x, ip) = 1/2
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Model 9
Same as Model 5, but a matter potential of the form ƛ(x)=50/(x/10+1)4 was 
added. A strong matter potential thus suppresses the transition.
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A large ƛ(x) seems to strongly suppress transitions for a steep x-profile, 
but not for a flat/constant profile. 

For large θ0 and steep (exponential) µ(x) and ƛ(x) profiles, at large x 
one seems to get essentially vacuum oscillations initially after which the 
distribution tends to relax to flavor equilibration. 

A angular flavor crossing is not necessary/does not make a big 
difference for flavour conversions for the profiles we considered (slow 
conversions)

Some general Tendencies



Conclusions
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1.) Toy models can be used to understand the interplay between 
self-interaction, matter, vacuum, source terms and boundary 
conditions, although in general they are prohibitive for realistic 
conditions

3.) Matter terms may not be trivially “rotated away” for profiles 
with significant slopes; probably depends on relation between 
profile scale height and oscillation lengths

4.) Flavor crossing may have limited influence

2.) Consistent initial and boundary conditions are important and 
sometimes not completely straightforward


