
J. Rodríguez-Quintero

In collaboration with: ... K. Raya, C.D. Roberts,...
Continuum Functional Methods in QCD at New Generation Facilities, 7-10 May 2019, ECT*-Vila Tambosi, Trento.

Antecedents:

GPD definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)= \\
& \frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{+} q\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle_{\substack{z^{+}=0 \\
z_{\perp}=0}}
\end{aligned}
$$

$$
\text { with } t=\Delta^{2} \text { and } \xi=-\Delta^{+} /\left(2 P^{+}\right)
$$

References

Müller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

■ From isospin symmetry, all the information about pion GPD is encoded in $H_{\pi^{+}}^{u}$ and $H_{\pi^{+}}^{d}$.
■ Further constraint from charge conjugation:

$$
H_{\pi^{+}}^{u}(x, \xi, t)=-H_{\pi^{+}}^{d}(-x, \xi, t) .
$$

Antecedents:

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

■ Compute Mellin moments of the pion GPD H.

Antecedents:

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$\left\langle\chi^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle$

■ Compute Mellin moments of the pion GPD H.

- Triangle diagram approx.

Antecedents:

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach
$\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Dyson - Schwinger equation

$$
(-\infty)^{-1}=(-)^{-1}+\text { ع. }
$$

Antecedents:

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Bethe - Salpeter equation

Antecedents:

GPD asymptotic algebraic model:

■ Expressions for vertices and propagators:

$$
\begin{aligned}
S(p) & =[-i \gamma \cdot p+M] \Delta_{M}\left(p^{2}\right) \\
\Delta_{M}(s) & =\frac{1}{s+M^{2}} \\
\Gamma_{\pi}(k, p) & =i \gamma_{5} \frac{M}{f_{\pi}} M^{2 \nu} \int_{-1}^{+1} \mathrm{~d} z \rho_{\nu}(z)\left[\Delta_{M}\left(k_{+z}^{2}\right)\right]^{\nu} \\
\rho_{\nu}(z) & =R_{\nu}\left(1-z^{2}\right)^{\nu}
\end{aligned}
$$

with R_{ν} a normalization factor and $k_{+z}=k-p(1-z) / 2$.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
■ Only two parameters:

- Dimensionful parameter M.
- Dimensionless parameter ν. Fixed to $\mathbf{1}$ to recover asymptotic pion DA.

Antecedents:

GPD asymptotic algebraic model:

- Analytic expression in the DGLAP region.

$$
\begin{aligned}
\boldsymbol{H}_{x \geq \xi}^{u}(x, \xi, 0)= & \frac{48}{5}\left\{\frac{3\left(-2(x-1)^{4}\left(2 x^{2}-5 \xi^{2}+3\right) \log (1-x)\right)}{20\left(\xi^{2}-1\right)^{3}}\right. \\
& \frac{3\left(+4 \xi\left(15 x^{2}(x+3)+(19 x+29) \xi^{4}+5(x(x(x+11)+21)+3) \xi^{2}\right) \tanh ^{-1}\left(\frac{(x-1)}{x-\xi^{2}}\right.\right.}{20\left(\xi^{2}-1\right)^{3}} \\
& +\frac{3\left(x^{3}(x(2(x-4) x+15)-30)-15(2 x(x+5)+5) \xi^{4}\right) \log \left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}} \\
& +\frac{3\left(-5 x(x(x(x+2)+36)+18) \xi^{2}-15 \xi^{6}\right) \log \left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}} \\
& +\frac{3\left(2 (x - 1) \left((23 x+58) \xi^{4}+(x(x(x+67)+112)+6) \xi^{2}+x(x((5-2 x) x+15)+\xi\right.\right.}{20\left(\xi^{2}-1\right)^{3}} \\
& +\frac{3\left(\left(15(2 x(x+5)+5) \xi^{4}+10 x(3 x(x+5)+11) \xi^{2}\right) \log \left(1-\xi^{2}\right)\right)}{20\left(\xi^{2}-1\right)^{3}} \\
& \left.+\frac{3\left(2 x(5 x(x+2)-6)+15 \xi^{6}-5 \xi^{2}+3\right) \log \left(1-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}}\right\}
\end{aligned}
$$

Antecedents:

GPD asymptotic algebraic model (completion):

The full model:

$$
\begin{aligned}
2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle^{u}= & \operatorname{tr}_{C F D} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}}(k \cdot n)^{m} \tau_{+} i \Gamma_{\pi}\left(\eta(k-P)+(1-\eta)\left(k-\frac{\Delta}{2}\right), P-\frac{\Delta}{2}\right) \\
& S\left(k-\frac{\Delta}{2}\right) i \gamma \cdot n S\left(k+\frac{\Delta}{2}\right) \\
& \tau_{-} i \bar{\Gamma}_{\pi}\left((1-\eta)\left(k+\frac{\Delta}{2}\right)+\eta(k-P), P+\frac{\Delta}{2}\right) S(k-P),
\end{aligned}
$$

$$
2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle^{u}=\operatorname{tr} C F D \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}}(k \cdot n)^{m} \tau_{+} i \Gamma_{\pi}\left(\eta(k-P)+(1-\eta)\left(k-\frac{\Delta}{2}\right), P-\frac{\Delta}{2}\right)
$$

$$
S\left(k-\frac{\Delta}{2}\right) \tau_{-} \frac{\partial}{\partial k} \bar{\Gamma}_{\pi}\left((1-\eta)\left(k+\frac{\Delta}{2}\right)+\eta(k-P), P+\frac{\Delta}{2}\right) S(k-P)
$$

Antecedents:
GPD asymptotic algebraic model (completion):

$$
q(x)=H^{q}(x, 0,0)
$$

PDF forward limit

Antecedents:
GPD asymptotic algebraic model (completion):

Antecedents:

GPD overlap approach: The pion light front wave function

$$
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}(\Omega)\left|N, \beta, k_{1} \cdots k_{N}\right\rangle \quad \Omega=\left(x_{1}, \mathbf{k}_{\perp 1}, \cdots, x_{N}, \mathbf{k}_{\perp N}\right)
$$

$$
[\mathrm{d} x]_{N}=\prod_{i=1}^{N} \mathrm{~d} x_{i} \delta\left(1-\sum_{i=1}^{N} x_{i}\right),
$$

N-partons LCWF for the hadron H

Let's consider the two-body pion LCWF:

$$
\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right]_{N}=\frac{1}{\left(16 \pi^{3}\right)^{N-1}} \prod_{i=1}^{N} \mathrm{~d}^{2} \mathbf{k}_{\perp i} \delta^{2}\left(\sum_{i=1}^{N} \mathbf{k}_{\perp i}-\mathbf{P}_{\perp}\right)
$$

$$
\begin{aligned}
\left.\left|\pi^{+}, P\right\rangle\right|_{\uparrow \downarrow} ^{2-\text { body }}= & \int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{(2 \pi)^{3}} \frac{\mathrm{~d} x}{\sqrt{x(1-x)}} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)\left[b_{u \uparrow}^{\dagger}\left(x, \mathbf{k}_{\perp}\right) d_{d \downarrow}^{\dagger}\left(1-x,-\mathbf{k}_{\perp}\right)\right. \\
& \left.+b_{u \downarrow}^{\dagger}\left(x, \mathbf{k}_{\perp}\right) d_{d \uparrow}^{\dagger}\left(1-x,-\mathbf{k}_{\perp}\right)\right]|0\rangle, \quad \Gamma_{\pi}(k, P)=S^{-1}\left(-k_{2}\right) \chi(k, P) S^{-1}\left(k_{1}\right),
\end{aligned}
$$

$$
2 P^{+} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)=\int \frac{\mathrm{d} k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma_{5} \chi(k, P)\right]
$$

Antecedents:

GPD overlap approach: The pion light front wave function

$$
2 P^{+} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)=\int \frac{\mathrm{d} k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma_{\varsigma} \chi(k, P)\right]
$$

BS wave function

$$
\Gamma_{\pi}(k, P)=S^{-1}\left(-k_{2}\right) \chi(k, P) S^{-1}\left(k_{1}\right),
$$

- Expressions for vertices and propagators:

$$
\begin{aligned}
S(p) & =[-i \gamma \cdot p+M] \Delta_{M}\left(p^{2}\right) \\
\Delta_{M}(s) & =\frac{1}{s+M^{2}} \\
\Gamma_{\pi}(k, p) & =i \gamma_{5} \frac{M}{f_{\pi}} M^{2 \nu} \int_{-1}^{+1} \mathrm{~d} z \rho_{\nu}(z)\left[\Delta_{M}\left(k_{+z}^{2}\right)\right]^{\nu} \\
\rho_{\nu}(z) & =R_{\nu}\left(1-z^{2}\right)^{\nu}
\end{aligned}
$$

Keeping so contact with the previous "covariant" approach" based on DSE and BSE.
with R_{ν} a normalization factor and $k_{+z}=k-p(1-z) / 2$.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

$$
\Psi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=-\frac{\Gamma(v+1)}{\Gamma(v+2)} \frac{M^{2 v+1} 4^{v} R_{v}}{\left[\mathbf{k}_{\perp}^{2}+M^{2}\right]^{v+1}} x^{v}(1-x)^{v}
$$

Antecedents:

GPD overlap approach:

Helicity-0 two-body pion LCWF:

$$
\Psi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=-\frac{\Gamma(v+1)}{\Gamma(v+2)} \frac{M^{2 v+1} 4^{v} R_{v}}{\left[\mathbf{k}_{\perp}^{2}+M^{2}\right]^{v+1}} x^{v}(1-x)^{v} .
$$

GPD in the overlap approach:

$$
\begin{aligned}
& H(x, \xi, t)=\sqrt{2} \sum_{N, N^{\prime}} \sum_{\beta, \beta^{\prime}} \int\left[\mathrm{d} \hat{x}^{\prime}\right]_{N^{\prime}}\left[\mathrm{d}^{2} \hat{\mathbf{k}}_{\perp}^{\prime}\right]_{N^{\prime}}[\mathrm{d} \tilde{x}]_{N}\left[\mathrm{~d}^{2} \tilde{\mathbf{k}}_{\perp}\right]_{N} \Psi_{N^{\prime}, \beta}^{*} /\left(\hat{\Omega}^{\prime}\right) \Psi_{N, \beta}(\tilde{\Omega}) \\
& \times \int \frac{\mathrm{d} z^{-}}{2 \pi} e^{i P^{+} z^{-}}\left\langle N^{\prime}, \beta, k_{1}^{\prime} \cdots k_{N}^{\prime}\right| \phi^{q^{\dagger}}\left(-\frac{z}{2}\right) \phi^{\phi}\left(\frac{z}{2}\right)\left|N, \beta, k_{1} \cdots k_{N}\right\rangle \\
& =\sum_{N} \sqrt{1-\xi}^{2-N} \sqrt{1+\xi^{2-N}} \sum_{\beta=\beta^{\prime}} \sum_{j} \delta_{s_{j j}} \quad \text { In DGLAP kinematics: } \quad \zeta \leqslant x \leqslant 1 \\
& \times \int[\mathrm{d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{j}\right) \Psi_{N, \beta^{\prime}}^{*}\left(\hat{\Omega}^{\prime} / \Psi_{N, \beta}(\tilde{\Omega})\right. \\
& =\int\left[\mathrm { d } \overline { x } _ { 2 } [\mathrm { d } ^ { 2 } \overline { \mathbf { k } } _ { \perp }] _ { 2 } \delta \left(x-\bar{x}_{j} \Psi_{\uparrow \downarrow}^{*}\left(\hat{\Omega}^{\prime}\right) \Psi_{\uparrow \downarrow}(\tilde{\Omega})\right.\right. \text { In the pion 2-body case } \\
& + \text { Helicity-1 component } \\
& =\frac{\Gamma(2 v+2)}{\Gamma(v+2)^{2}} \int \mathrm{~d} u \mathrm{~d} v u^{v} v^{v} \delta(1-u-v) \frac{\left(2 M^{2 v} 4^{v} R_{v}\right)^{2} \hat{x}^{\nu}(1-\hat{x})^{v} \tilde{x}^{v}(1-\tilde{x})^{v}}{\left(t u v \frac{(1-x)^{2}}{1-\xi^{2}}+M^{2}\right)^{2 v+1}} \text {. }
\end{aligned}
$$

Antecedents:

GPD overlap approach:

Helicity-0 two-body pion LCWF:

$$
\Psi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=-\frac{\Gamma(v+1)}{\Gamma(v+2)} \frac{M^{2 v+1} 4^{v} R_{v}}{\left[\mathbf{k}_{\perp}^{2}+M^{2}\right]^{v+1}} x^{v}(1-x)^{v} .
$$

GPD in the overlap approach:

$$
\begin{aligned}
& H(x, \xi, t)=\frac{\Gamma(2 v+2)}{\Gamma(v+2)^{2}} \int \mathrm{~d} u \mathrm{~d} v u^{v} v^{v} \delta(1-u-v) \frac{\left(2 M^{2 v} 4^{\nu} R_{v}\right)^{2} \hat{x}^{\nu}(1-\hat{x})^{v} \tilde{x}^{v}(1-\tilde{x})^{\nu}}{\left(t u v \frac{(1-x)^{2}}{1-\xi^{2}}+M^{2}\right)^{2 v+1}} \quad \xi \leqslant x \leqslant 1 \\
& (1-x)^{2}\left(x^{2}-\xi^{2}\right) \quad 1 \quad\left(3 \quad 11-2 z^{\operatorname{arctanh} \sqrt{\frac{z}{1+z}}}\right) \quad \frac{x-\xi}{1-\xi} \quad \frac{x+\xi}{1+\xi} \\
& =30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+z)^{2}}\left(\frac{3}{4}+\frac{1}{4} \frac{1-2 z}{1+z} \frac{\operatorname{arctanh} \sqrt{1+z}}{\sqrt{\frac{z}{1+z}}}\right) \\
& z=\frac{t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}}
\end{aligned}
$$

Encoding the correlations of kinematical variables

Antecedents:

GPD overlap approach:

Helicity-0 two-body pion LCWF:

$$
\Psi_{\uparrow \downarrow}\left(x, \mathbf{k}_{\perp}\right)=-\frac{\Gamma(v+1)}{\Gamma(v+2)} \frac{M^{2 v+1} 4^{v} R_{v}}{\left[\mathbf{k}_{\perp}^{2}+M^{2}\right]^{v+1}} x^{v}(1-x)^{v}
$$

GPD in the overlap approach:

PDF:
$H(x, 0,0)=q(x)=30 x^{2}(1-x)^{2}$
Compares numerically very well with the results obtained from the Triangle diagram!!!

- Overlap - Tiangle diagram
q7

Encoding the correlations of kinematical variables

Consistent descriptions from both approaches!!! (tested with a simple model)

Pion (kaon maybe) realistic picture:

- The pseudoscalar LFWF can be written:

$$
f_{K} \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\operatorname{tr}_{C D} \int_{d k_{\|}} \delta\left(n \cdot k-x n \cdot P_{K}\right) \gamma_{5} \gamma \cdot n \chi_{K}^{(2)}\left(k_{-}^{K} ; P_{K}\right) .
$$

- The moments of the distribution are given by:

$$
\begin{gathered}
\left.<x^{m}\right\rangle_{\psi_{K}^{\uparrow \downarrow}}=\int_{0}^{1} d x x^{m} \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\frac{1}{f_{K} n \cdot P} \int_{d k_{\|}}\left[\frac{n \cdot k}{n \cdot P}\right]^{m} \gamma_{5} \gamma \cdot n \chi_{K}^{(2)}\left(k_{-}^{K} ; P_{K}\right) \\
\int_{0}^{1} d \alpha \alpha^{m}\left[\frac{12}{f_{K}} \mathcal{Y}_{K}\left(\alpha ; \sigma^{2}\right)\right], \mathcal{Y}_{K}\left(\alpha ; \sigma^{2}\right)=\left[M_{u}(1-\alpha)+M_{s} \alpha\right] \mathcal{X}\left(\alpha ; \sigma_{\perp}^{2}\right) \\
\text { Uniqueness of Mellin moments } \longrightarrow \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\frac{12}{f_{K}} \mathcal{Y}_{K}\left(x ; \sigma_{\perp}^{2}\right)
\end{gathered}
$$

The spectral density $\rho_{K}(z)$ can be modelled...
...Or taken with BSE solutions as an input!

Pion realistic picture:

- Spectral density is chosen as:

$$
u_{G} \rho_{G}(\omega)=\frac{1}{2 b_{0}^{G}}\left[\operatorname{sech}^{2}\left(\frac{\omega-\omega_{0}^{G}}{2 b_{0}^{G}}\right)+\operatorname{sech}^{2}\left(\frac{\omega+\omega_{0}^{G}}{2 b_{0}^{G}}\right)\right]
$$

Phenomelogical model: $b_{0}^{\pi}=0.1, b_{0}^{\pi}=0.73$;

Asymptotic case: $\rho(\omega ; \nu) \sim\left(1-\omega^{2}\right)^{\nu}$

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Phenomenological model

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

One should focus on the forward limit: PDF (benchmark) case

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

One should focus on the forward limit: PDF (benchmark) case

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

One should focus on the forward limit: PDF (benchmark) case

Pion realistic picture: PDF DGLAP evolution

$$
\begin{aligned}
& M_{n}(t)=\int_{0}^{1} d x x^{n} q(x, t) \\
& t=\ln \left(\frac{\zeta^{2}}{\zeta_{0}^{2}}\right)
\end{aligned}
$$

Moments' evolution (1-loop):

$$
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots
$$

Pion realistic picture:

PDF DGLAP evolution

A master equation for the (1-loop) moments' evolution:
$\frac{d}{d t} q(x, t)=-\frac{\alpha(t)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, t) P\left(\frac{x}{y}\right)+\ldots$ $\begin{aligned} & \text { Moments' } \\ & \frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots\end{aligned}$

Pion realistic picture:

PDF DGLAP evolution

A master equation for the (1-loop) moments' evolution:

$$
\frac{d}{d t} q(x, t)=-\frac{\alpha(t)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, t) P\left(\frac{x}{y}\right)+\ldots
$$

$$
\begin{aligned}
& M_{n}(t)=\int_{0}^{1} d x x^{n} q(x, t) \\
& t=\ln \left(\frac{\zeta^{2}}{\zeta_{0}^{2}}\right)
\end{aligned}
$$

$$
\begin{array}{r}
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots P(x)=\frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right) \\
\gamma_{n}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-4 \sum_{i=1}^{n+1} \frac{1}{i}\right)
\end{array}
$$

Pion realistic picture:

PDF DGLAP evolution

A master equation for the (1-loop) moments' evolution:

$$
\frac{d}{d t} q(x, t)=-\frac{\alpha(t)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, t) P\left(\frac{x}{y}\right)+\ldots
$$

$$
\begin{aligned}
& M_{n}(t)=\int_{0}^{1} d x x^{n} q(x, t) \\
& t=\ln \left(\frac{\zeta^{2}}{\zeta_{0}^{2}}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots \\
\frac{d}{d t} \alpha(t)=-\frac{\alpha^{2}(t)}{4 \pi} \beta_{0}+\ldots & \\
P(x)=\frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right) \\
\gamma_{0}^{n}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-4 \sum_{i=1}^{n+1} \frac{1}{i}\right)
\end{array}
$$

$\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots$
$t_{\Lambda}=\ln \left(\frac{\Lambda^{2}}{\zeta_{0}^{2}}\right)$

Pion realistic picture:
 PDF DGLAP evolution

A master equation for the (1-loop) moments' evolution:

$$
\frac{d}{d t} q(x, t)=-\frac{\alpha(t)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, t) P\left(\frac{x}{y}\right)+\ldots
$$

$$
\begin{aligned}
& \frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots{ }_{P(x)=} \frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right) \\
& \frac{d}{d t} \alpha(t)=-\frac{\alpha^{2}(t)}{4 \pi} \beta_{0}+\ldots \\
& \gamma_{0}^{n}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-4 \sum_{i=1}^{n+1} \frac{1}{i}\right)
\end{aligned}
$$

$\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots$

$$
t_{\Lambda}=\ln \left(\frac{\Lambda^{2}}{\zeta_{0}^{2}}\right)
$$

$$
M_{n}(t)=M_{n}\left(t_{0}\right)\left(\frac{\alpha(t)}{\alpha\left(t_{0}\right)}\right)^{\gamma_{0}^{v_{0} / \beta_{0}}}
$$

Pion realistic picture: Coupling and effective charge

$$
\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots . \text { Which value of Lambda? । }
$$

Pion realistic picture: Coupling and effective charge

$$
\begin{gathered}
\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots \begin{array}{l}
\text { Which value of Lambda? It depends on the } \\
\text { scheme... Indeed, at the one-loop level, its } \\
\text { value defines by itself the scheme!!!! }
\end{array} \\
\quad \alpha(t)=\bar{\alpha}(t)(1+(C \bar{\alpha}(t)+\ldots) \\
\ln \left(\frac{\Lambda^{2}}{\bar{\Lambda}^{2}}\right)=\frac{4 \pi}{\beta_{0}}\left(\frac{1}{\alpha(t)}-\frac{1}{\bar{\alpha}(t)}\right)+\ldots=\frac{4 \pi(C)}{\beta_{0}}
\end{gathered}
$$

Pion realistic picture:

Coupling and effective charge

$$
\begin{gathered}
\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots \begin{array}{l}
\text { Which value of Lambda? It depends on the } \\
\text { scheme... Indeed, at the one-loop level, its } \\
\text { value defines by itself the scheme!!! }
\end{array} \\
\quad \alpha(t)=\bar{\alpha}(t)(1+c \bar{\alpha}(t)+\ldots) \\
\ln \left(\frac{\Lambda^{2}}{\bar{\Lambda}^{2}}\right)=\frac{4 \pi}{\beta_{0}}\left(\frac{1}{\alpha(t)}-\frac{1}{\bar{\alpha}(t)}\right)+\ldots=\frac{4 \pi c}{\beta_{0}}
\end{gathered}
$$

$$
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots
$$

$$
\frac{d}{d t} \alpha(t)=-\frac{\alpha^{2}(t)}{4 \pi} \beta_{0}+\ldots
$$

The evolution will thus depend on the scheme because of the perturbative truncation

Pion realistic picture: Coupling and effective charge

$$
\begin{gathered}
\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots \begin{array}{l}
\text { Which value of Lambda? It depends on the } \\
\text { scheme... Indeed, at the one-loop level, its } \\
\text { value defines by itself the scheme!!! }
\end{array} \\
\alpha(t)=\bar{\alpha}(t)(1+c \bar{\alpha}(t)+\ldots) \\
\ln \left(\frac{\Lambda^{2}}{\bar{\Lambda}^{2}}\right)=\frac{4 \pi}{\beta_{0}}\left(\frac{1}{\alpha(t)}-\frac{1}{\bar{\alpha}(t)}\right)+\ldots=\frac{4 \pi c}{\beta_{0}}
\end{gathered}
$$

$$
\frac{d}{d t} M_{n}(t)=-\frac{\bar{\alpha}(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots
$$

$$
\frac{d}{d t} \bar{\alpha}(t)=-\frac{\bar{\alpha}^{2}(t)}{4 \pi} \beta_{0}+\ldots
$$

The evolution will thus depend on the scheme because of the perturbative truncation and the usual prejudice is that truncation errors are optimally small in MS scheme.

PDG2018:
[PRD98(2018)030001]

$$
\begin{align*}
& \Lambda \frac{(5)}{M S}=(210 \pm 14) \mathrm{MeV} \tag{9.24b}\\
& \Lambda \frac{(4)}{M S}=(292 \pm 16) \mathrm{MeV} \tag{9.24c}\\
& \Lambda \frac{(3)}{M S}=(332 \pm 17) \mathrm{MeV} \tag{9.24d}
\end{align*}
$$

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Pion realistic picture: Coupling and effective charge

$$
\begin{gathered}
\alpha(t)=\frac{4 \pi}{\beta_{0}\left(t-t_{\Lambda}\right)}+\ldots=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots \begin{array}{l}
\text { Which value of Lambda? It depends on the } \\
\begin{array}{l}
\text { scheme... Indeed, at the one-loop level, its } \\
\text { value defines by itself the scheme!!! }
\end{array} \\
\ln \left(\frac{\Lambda^{2}}{\bar{\Lambda}^{2}}\right)=\frac{4 \pi}{\beta_{0}}\left(\frac{1}{\alpha(t)}-\frac{1}{\bar{\alpha}(t)}\right)+\ldots=\frac{4 \pi c}{\beta_{0}}
\end{array} \\
\frac{d}{d t} M_{n}(t)=-\frac{\bar{\alpha}(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)+\ldots \quad \begin{array}{l}
\text { The evolution will thus depend on } \\
\text { the scheme because of the } \\
\text { perturbative truncation and the } \\
\text { usual prejudice is that truncation } \\
\text { errors are optimally small in MS } \\
\text { scheme. }
\end{array}
\end{gathered}
$$

The use of $\Lambda_{\overline{M S}}=0.234 \mathrm{GeV}$ can be interpreted as the choice of new scheme, differing from MS.

Pion realistic picture: Coupling and effective charge

$$
\begin{aligned}
& \alpha(t)= \frac{4 \pi}{\beta_{0} \ln \left(\frac{m_{a}^{2}+\zeta_{0}^{2} \exp (t)}{\Lambda^{2}}\right)}=\frac{4 \pi}{\beta_{0} \ln \left(\frac{\zeta^{2}}{\Lambda^{2}}\right)}+\ldots \begin{array}{l}
\text { Which value of Lambda? It depends on the } \\
\text { scheme... Indeed, at the one-loop level, its } \\
\text { value defines by itself the scheme!!! }
\end{array} \\
& \ln \left(\frac{\Lambda^{2}}{\bar{\Lambda}^{2}}\right)=\frac{4 \pi}{\beta_{0}}\left(\frac{1}{\alpha(t)}-\frac{1}{\bar{\alpha}(t)}\right)+\ldots=\frac{4 \pi c}{\beta_{0}} \\
& \frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)(1+c \bar{\alpha}(t)+\ldots) \\
& \begin{array}{l}
\text { The evolution will thus depend on } \\
\text { the scheme because of the } \\
\text { perturbative truncation and the } \\
\text { usual prejudice is that truncation } \\
\text { errors are optimally small in MS } \\
\text { scheme. }
\end{array}
\end{aligned}
$$

The use of $\Lambda_{\overline{M S}}=0.234 \mathrm{GeV}$ can be interpreted as the choice of new scheme, differing from MS. And it can be furthermore defined in such a way that one-loop DGLAP is exact (Grunberg's effective charge).

Pion realistic picture:

Coupling and effective charge

- Equivalence In the perturbative domaln reasonable definitions of the charge

$$
\begin{aligned}
\alpha_{g_{1}}\left(k^{2}\right) & =\alpha_{\overline{\mathrm{MS}}}\left(k^{2}\right)\left[1+1.14 \alpha_{\overline{\mathrm{MS}}}\left(k^{2}\right)+\cdots\right] \\
\widehat{\alpha}_{P I}\left(k^{2}\right) & =\alpha_{\mathrm{MS}}\left(k^{2}\right)\left[1+1.09 \alpha_{\mathrm{MS}}\left(k^{2}\right)+\cdots\right]
\end{aligned}
$$

- Equivalence In the non-perturbative domaln highly non-trivial (ghost-gluon interactions)
- Process dependent effective charges fixed by the leading-order term in the expansion of a given observable Grunberg, PRD 29 (1984)
- Bjorken sum rule defines such a charge
Bjorken, PR 148 (1966); PRD 1 (1970)

$$
\int_{0}^{1} \mathrm{~d} x\left[g_{1}^{p}\left(x, k^{2}\right)-g_{1}^{n}\left(x, k^{2}\right)\right]=\frac{g_{A}}{6}\left[1-\alpha_{g_{1}}\left(k^{2}\right) / \pi\right]
$$

- $g_{1}^{p, n}$ spin dependent p / n structure functions extracted from measurements using unpolarized targets
- g^{A} nucleon flavour-singlet axlal charge
- Many merits
- Existence of data
for a wide momentum range
- Tight sum rules constralnts on the Integral at IR and UV extremes
- Isospin non-singlet
suppress contributions from hard-to-compute processes
D. Binosi, C. Mezrag, J. Papavassiliou, J.R-Q, C.D. Roberts, arXiv:1612.04835

Pion realistic picture:

Coupling and effective charge

- Process dependent effective charges fixed by the leading-order term in the expansion of a given observable Grunberg, PRD 29 (1984)
- Bjorken sum rule defines such a charge
Bjorken, PR 148 (1966); PRD 1 (1970)

$$
\int_{0}^{1} \mathrm{~d} x\left[g_{1}^{p}\left(x, k^{2}\right)-g_{1}^{n}\left(x, k^{2}\right)\right]=\frac{g_{A}}{6}\left[1-\alpha_{g_{1}}\left(k^{2}\right) / \pi\right]
$$

- Equivalence In the perturba: reasonable definitions of the c
$\alpha_{g_{1}}\left(k^{2}\right)=\alpha_{\overline{\mathrm{MS}}}\left(k^{2}\right)\left[1+1.14 \alpha_{\overline{\mathrm{M}}}\right.$ $\widehat{\alpha}_{P I}\left(k^{2}\right)=\alpha_{\mathrm{MS}}\left(k^{2}\right)\left[1+1.09 \alpha_{\mathrm{M}}\right.$

$$
\zeta_{0}=\zeta_{H}=m_{a}=0.300 \mathrm{GeV}
$$

- Equivalence In the non-perturbative domaln highly non-trivial (ghost-gluon interactions)
for a wide momentum range
- Tight sum rules constralnts on the Integral at IR and UV extremes
- Isospin non-sInglet
suppress contributions from hard-to-compute processes
D. Binosi, C. Mezrag, J. Papavassiliou, J.R-Q, C.D. Roberts, arXiv:1612.04835

Pion realistic picture: PDF DGLAP evolution

$$
\alpha(t)=\frac{4 \pi}{\beta_{0} \ln \left(\frac{m_{a}^{2}+\zeta_{0}^{2} \exp (t)}{\Lambda^{2}}\right)}
$$

$$
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)
$$

$$
\begin{array}{r}
M_{n}(t)=\int_{0}^{1} d x x^{n} q(x, t) \\
t=\ln \left(\frac{\zeta^{2}}{\zeta_{0}^{2}}\right) \\
\gamma_{0}^{n}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-\sum_{i=1}^{n+1} \frac{1}{i}\right)
\end{array}
$$

Numerical integration with the effective charge

$$
M_{n}(t)=M_{n}\left(t_{0}\right) \exp \left(-\frac{\gamma_{0}^{n}}{4 \pi} \int_{t_{0}}^{t} d z \alpha(z)\right)
$$

No free parameter to be fitted. All the scales (and the evolution between them) appear fixed.

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

No free parameter to be fitted. All the scales (and the evolution between them) appear fixed. And the agreement with the Aicher et al. reanalysis of E615 data is perfect!!!

Pion realistic picture: PDF DGLAP evolution

$$
\alpha(t)=\frac{4 \pi}{\beta_{0} \ln \left(\frac{m_{a}^{2}+\zeta_{0}^{2} \exp (t)}{\Lambda^{2}}\right)}
$$

$$
\frac{d}{d t} M_{n}(t)=-\frac{\alpha(t)}{4 \pi} \gamma_{0}^{n} M_{n}(t)
$$

$$
\frac{d}{d t} q(x, t)=-\frac{\alpha(t)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, t) P\left(\frac{x}{y}\right) \quad P(x)=\frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right)
$$

Numerical integration with the effective charge for the master equation. No need for a reconstruction with evolved Mellin moments!

No free parameter to be fitted. All the scales (and the evolution between them) appear fixed.

Pion realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Pion (more) realistic picture:

- Spectral density is chosen as:

$$
u_{G} \rho_{G}(\omega)=\frac{1}{2 b_{0}^{G}}\left[\operatorname{sech}^{2}\left(\frac{\omega-\omega_{0}^{G}}{2 b_{0}^{G}}\right)+\operatorname{sech}^{2}\left(\frac{\omega+\omega_{0}^{G}}{2 b_{0}^{G}}\right)\right]
$$

Phenomelogical model: $b_{0}^{\pi}=0.1, w_{0}^{\pi}=0.73$; Realistic case: $b_{0}^{\pi}=0.275, b_{0}^{\pi}=1.23$;

Asymptotic case: $\rho(\omega ; \nu) \sim\left(1-\omega^{2}\right)^{\nu}$

Pion (more) realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Phenomenological model

Realistic case

Pion (more) realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

PDF (benchmark) case

Pion (more) realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

PDF (benchmark) case

Pion (more) realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

PDF (benchmark) case

Pion (more) realistic picture:

$$
H_{M}^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

$$
\zeta_{0}=\zeta_{H}=0.3 \mathrm{GeV} \rightarrow \zeta_{2}=1.0 \mathrm{GeV}
$$

$$
-\mathrm{t}[\mathrm{GeV}]
$$

About PDA and LFWF evolution

Standard PDA evolution:

- We project PDA onto a 3/2-Gegenbauer polynomial basis. Such that it evolves, from an initial scale ζ_{0} to a final scale ζ, according to the corresponding ERBL equations:

$$
\begin{gathered}
\phi(x ; \zeta)=6 x(1-x)\left[1+\sum_{n=1} a_{n}(\zeta) C_{n}^{3 / 2}(2 x-1)\right] \\
a_{n}(\zeta)=a_{n}\left(\zeta_{0}\right)\left[\frac{\alpha\left(\zeta^{2}\right)}{\alpha\left(\zeta_{0}^{2}\right)}\right]^{\gamma_{0}^{n} / \beta_{0}}, \gamma_{0}^{n}=-\frac{4}{3}\left[3+\frac{2}{(n+1)(n+2)}-4 \sum_{k=1}^{n+1} \frac{1}{k}\right]
\end{gathered}
$$

- Thus, any PDA at hadronic scale evolves logarithmically towards its conformal distribution, $\phi(x)=6 x(1-x)$.
$>$ Quark mass and flavor become irrelevant. Broad PDA becomes narrower, skewed PDA becomes symmetric.

About PDA and LFWF evolution

LFWF evolution:

$$
\phi(x)=\frac{1}{16 \pi^{3}} \int d^{2} \vec{k}_{\perp} \psi^{\downarrow}\left(x, k_{\perp}^{2}\right)
$$

- We look for a way to evolve the LFWF.
- First, let's assume that the LFWF admits a similar Gegenbauer expansion. That is:

$$
\begin{gathered}
\psi\left(x, k_{\perp}^{2} ; \zeta\right)=6 x(1-x)\left[\sum_{n=0} b_{n}\left(k_{\perp}^{2} ; \zeta\right) C_{n}^{3 / 2}(2 x-1)\right] \\
a_{n}(\zeta)=\frac{1}{16 \pi^{3}} \int d^{2} \vec{k}_{\perp} b_{n}\left(k_{\perp}^{2} ; \zeta\right)(\text { for } n \geq 1), \frac{1}{16 \pi^{3}} \int d^{2} \vec{k}_{\perp} b_{0}\left(k_{\perp}^{2} ; \zeta\right)=1 .
\end{gathered}
$$

- 1-loop ERBL evolution of $a_{n}(\zeta)$ implies:

$$
\frac{1}{a_{n}(\zeta)} \frac{d}{d \ln \zeta^{2}} a_{n}(\zeta)=\frac{\int d^{2} \vec{k}_{\perp} \frac{d}{d \ln \zeta^{2}} b_{n}\left(k_{\perp}^{2} ; \zeta\right)}{\int d^{2} \vec{k}_{\perp} b_{n}\left(k_{\perp}^{2} ; \zeta\right)},
$$

About PDA and LFWF evolution

LFWF evolution:

$$
\phi(x)=\frac{1}{16 \pi^{3}} \int d^{2} \vec{k}_{\perp} \psi^{\star}\left(x, k_{\perp}^{2}\right)
$$

- Now, if we take a factorization assumtion, we arrive at:

$$
\frac{b_{n}\left(k_{\perp}^{2} ; \zeta\right)}{b_{n}\left(k_{\perp}^{2} ; \zeta_{0}\right)}=\frac{\widehat{b}_{n}(\zeta)}{\widehat{b}_{n}\left(\zeta_{0}\right)}=\left[\frac{\alpha\left(\zeta^{2}\right)}{\alpha\left(\zeta_{0}^{2}\right)}\right]^{\gamma_{0}^{n} / \beta_{0}}, b_{n}\left(k_{\perp}^{2} ; \zeta\right) \equiv \widehat{b}_{n}(\zeta) \chi_{n}\left(k_{\perp}^{2}\right) .
$$

- Suplemented by the condition $\chi_{n}\left(k_{\perp}^{2}\right) \equiv \chi\left(k_{\perp}^{2}\right)$, one gets $\widehat{b}_{n}(\zeta) \equiv a_{n}(\zeta)$.
- Such that, the followiong factorised form is obtained:

$$
\psi\left(x, k_{\perp}^{2} ; \zeta\right) \equiv \phi(x ; \zeta) \chi\left(k_{\perp}^{2}\right) \longrightarrow \text { LFWF Evolves like PDA }
$$

- Which is far from being a general result, but an useful approximation instead.

About PDA and LFWF evolution

Testing the factorization ansatz:

$$
\psi\left(x, k_{\perp}^{2} ; \zeta\right) \equiv \phi(x ; \zeta) \chi\left(k_{\perp}^{2}\right)
$$

- A first validation of the factorized ansätz is addressed in Phys.Rev. D97 (2018) no.9, 094014:

- If the factorized ansatz is a good approximation, then the plotted ratio must be 1 . For the pion, it slightly deviates from 1; for the kaon, the deviation is much larger.

About PDA and LFWF evolution

Testing the factorization ansatz:

1) Compute LFWF and ERBL running of PDA 2) ERBL running of LFWF and compute PDA

Notably, 1) and 2) are equivalent. Factorization assumption and evolution seem reasonable.

About PDA and LFWF evolution

 How ERBL and DGLAP evolutions make contact:

1) Obtained from ERBL evolution of LFWF
2) Obtained from DGLAP evolution of GPD

Clearly, 1) and 2) are not equivalent.

About PDA and LFWF evolution

 How ERBL and DGLAP evolutions make contact:

1) Obtained from ERBL evolution of LFWF 2) Obtained from DGLAP evolution of GPD

Clearly, 1) and 2) are not equivalent. Sea-quark and gluon content incorporated to the parton distribution by DGLAP are obviously not present in the valence-quark PDF from LFWFs!!!

About gravitational Form Factors

A word about GPD polinomiality first:

- Express Mellin moments of GPDs as matrix elements:

$$
\begin{aligned}
& \int_{-1}^{+1} \mathrm{~d} x x^{m} H^{q}(x, \xi, t) \\
= & \frac{1}{2\left(P^{+}\right)^{m+1}}\left\langle P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(\overleftrightarrow{i D}^{+}\right)^{m} q(0)\left|P-\frac{\Delta}{2}\right\rangle
\end{aligned}
$$

■ Identify the Lorentz structure of the matrix element:

$$
\text { linear combination of }\left(P^{+}\right)^{m+1-k}\left(\Delta^{+}\right)^{k} \text { for } 0 \leq k \leq m+1
$$

■ Remember definition of skewness $\Delta^{+}=-2 \xi P^{+}$.
■ Select even powers to implement time reversal.
■ Obtain polynomiality condition:

$$
\int_{-1}^{1} \mathrm{~d} x x^{m} H^{q}(x, \xi, t)=\sum_{\substack{i=0 \\ \text { even }}}^{m}(2 \xi)^{i} C_{m i}^{q}(t)+(2 \xi)^{m+1} C_{m m+1}^{q}(t) .
$$

About gravitational Form Factors

Definition and evaluation:

- Pion gravitational form factors are defined through*:

Polinomiality!

$$
J_{\pi^{+}}(-t, \xi) \equiv \int_{-1}^{1} d x x H_{\pi^{+}}(x, \xi, t)=\Theta_{2}(t)-\Theta_{1}(t) \xi^{2}
$$

- Taking $\xi=0+$ isospin symmetric limit, one can readily compute:

$$
\Theta_{2}(t)=\int_{0}^{1} d x x\left[H_{\pi^{+}}^{u}(x, 0, t)+H_{\pi^{+}}^{d}(x, 0, t)\right]=\int_{0}^{1} d x 2 x H_{\pi^{+}}^{u}(x, 0, t) .
$$

- To obtain $\Theta_{1}(t)$, we need to take a non zero value of ξ; hence requiring the knowledge of the GPD in the ERBL region.
- Nevertheless, one can approximate $\Theta_{1}(t)$, by estimating the derivative of $J_{\pi^{+}}(-t, \xi)$ with respect to ξ^{2} as:

$$
D(\xi+\Delta / 2) \equiv \frac{J(\xi+\Delta)-J(\xi)}{2(\xi+\Delta / 2) \Delta}, \Delta \rightarrow 0
$$

*Phys.Rev. D78 (2008) 094011.

About gravitational Form Factors

Definition and evaluation:

- Pion gravitational form factors are defined through*: Polynomiality!

$$
J_{\pi^{+}}(-t, \xi) \equiv \int_{-1}^{1} d x x H_{\pi^{+}}(x, \xi, t)=\Theta_{2}(t)-\Theta_{1}(t) \xi^{2}
$$

- Taking $\xi=0+$ isospin symmetric limit, one can readily compute:

$$
\Theta_{2}(t)=\int_{0}^{1} d x x\left[H_{\pi^{+}}^{u}(x, 0, t)+H_{\pi^{+}}^{d}(x, 0, t)\right]=\int_{0}^{1} d x 2 x H_{\pi^{+}}^{u}(x, 0, t) .
$$

- To obtain $\Theta_{1}(t)$, we need to take a non zero value of ξ; hence requiring the knowledge of the GPD in the ERBL region.
- Nevertheless, one can approximate $\Theta_{1}(t)$, by estimating the derivative of $J_{\pi^{+}}(-t, \xi)$ with respect to ξ^{2} as:

$$
D(\xi+\Delta / 2) \equiv \frac{J(\xi+\Delta)-J(\xi)}{2(\xi+\Delta / 2) \Delta}, \Delta \rightarrow 0 .
$$

*Phys.Rev. D78 (2008) 094011.

Polinomiality tells us that it is enough to evaluate in the vicinity of zero!

About gravitational Form Factors

Definition and evaluation:

- Pion gravitational form factors are defined through*: Polynomiality!

$$
J_{\pi^{+}}(-t, \xi) \equiv \int_{-1}^{1} d x x H_{\pi^{+}}(x, \xi, t)=\Theta_{2}(t)-\Theta_{1}(t) \xi^{2}
$$

- Taking $\xi=0+$ isospin symmetric limit, one can readily compute:

$$
\Theta_{2}(t)=\int_{0}^{1} d x x\left[H_{\pi^{+}}^{u}(x, 0, t)+H_{\pi^{+}}^{d}(x, 0, t)\right]=\int_{0}^{1} d x 2 x H_{\pi^{+}}^{u}(x, 0, t) .
$$

- To obtain $\Theta_{1}(t)$, we need to take a non zero value of ξ; hence requiring the knowledge of the GPD in the ERBL region.
- Nevertheless, one can approximate $\Theta_{1}(t)$, by estimating the derivative of $J_{\pi^{+}}(-t, \xi)$ with respect to ξ^{2} as:

$$
D(\Delta / 2) \equiv \frac{J(\Delta)-J(0)}{\Delta^{2}}, \Delta \rightarrow 0
$$

*Phys.Rev. D78 (2008) 094011.
Polinomiality tells us that it is enough to evaluate in the vicinity of zero!

About gravitational Form Factors

Definition and evaluation:

- To get a clearer picture, let's split $J(-t, \xi)$ as follows:

$$
\begin{array}{r}
J(-t, \xi)=\int_{-\xi}^{1} d x 2 x H(x, \xi, t)=\left[\int_{-\xi}^{\xi} d x+\int_{\xi}^{1} d x\right] 2 x H(x, \xi, t) \\
\Rightarrow J(-t, \xi)=J^{\left.\operatorname{ERBL}^{(}-t, \xi\right)+J^{\operatorname{DGLAP}}(-t, \xi),}
\end{array}
$$

- Notice that, because of the polinomiality of the complete GPD:

$$
\begin{gathered}
J^{\operatorname{DGLAP}_{(-t, \xi)}=\Theta_{2}(t)-\xi^{2} \Theta_{1}(t)^{\mathrm{DGLAP}}+\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i}}, \\
J^{\mathrm{ERBL}_{(-t, \xi)}=-\xi^{2} \Theta_{1}(t)^{\mathrm{ERBL}}-\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i}}
\end{gathered}
$$

- Thus, since so far we can only access DGLAP region: (overlap approximation)

$$
J^{\operatorname{DGLAP}_{(-t, \xi)}=\Theta_{2}(t)-\xi^{2} \Theta_{1}(t)^{\mathrm{DGLAP}}+\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i}, ~}
$$

About gravitational Form Factors

Definition and evaluation:

- To get a clearer picture, let's split $J(-t, \xi)$ as follows:

$$
\begin{array}{r}
J(-t, \xi)=\int_{-\xi}^{1} d x 2 x H(x, \xi, t)=\left[\int_{-\xi}^{\xi} d x+\int_{\xi}^{1} d x\right] 2 x H(x, \xi, t) \\
\Rightarrow J(-t, \xi)=J^{\operatorname{ERBL}}(-t, \xi)+J^{\operatorname{DGLAP}}(-t, \xi),
\end{array}
$$

- Notice that, because of the polinomiality of the complete GPD:

$$
\begin{gathered}
J^{\operatorname{DGLAP}_{(}(-t, \xi)=\Theta_{2}(t)-\xi^{2} \Theta_{1}(t)^{\mathrm{DGLAP}}+\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i},} \\
J^{\operatorname{ERBL}_{(-t, \xi)}}=-\xi^{2} \Theta_{1}(t)^{\mathrm{ERBL}}-\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i}
\end{gathered}
$$

- Thus, since so far we can only access DGLAP region: (overlap approximation)

$$
J^{\operatorname{DGLAP}_{(-t, \xi)}=\Theta_{2}(t)-\xi^{2} \Theta_{1}(t)^{\mathrm{DGLAP}}+\sum_{i=1}^{\infty} c_{i}(t) \xi^{2+i}, ~}
$$

About gravitational Form Factors

Definition and evaluation:

- The extensión to ERBL region is then needed. Taking advantage of the soft-pion theorem, one can conect PDA with $J(-t, \xi)^{E R B L}$ and thus with $\Theta_{1}(t)^{E R B L}$.
- Nonetheless, polinomiality of GPD is not fulfilled without the ERBL región. Such extension is necessary to provide a more reliable computation of Θ_{1}.

Lattice: (2007) Brömmel's dissertation. GPD + Ding et al.

$\Theta_{2}(0) / 2=\langle x\rangle=0.261(5)$
$\Theta_{2}(0) / 2=\langle x\rangle=0.242(20)$

Latt.: D. Brommel, Ph.D. thesis, University of Regensburg, Regensburg,
Germany (2007), DESY-THESIS-2007-023

About gravitational Form Factors

Definition and evaluation:

- The extensión to ERBL region is then needed. Taking advantage of the soft-pion theorem, one can conect PDA with $J(-t, \xi)^{E R B L}$ and thus with $\Theta_{1}(t)^{E R B L}$.
- Nonetheless, polinomiality of GPD is not fulfilled without the ERBL región. Such extension is necessary to provide a more reliable computation of Θ_{1}.

Latt.: D. Brommel, Ph.D. thesis, University of Regensburg, Regensburg,
Germany (2007), DESY-THESIS-2007-023

Conclusions

- Khépani's previous conclusions \& ...
- A good choice for the scheme of the coupling or, furthermore, the definition of a particular effective charge, makes possible a successful DGLAP evolution of the PDF's results, from an unambigous hadronic scale, to the scale of available experimental data. This effective charge is intimately connected to the PI one.
- The comparison of the valence-quark PDF directly obtained from LFWFs at any nonhadronic scale and the evolved one might result insightful.
- Gravitational form factors can be obtained from the overlap GPD, only after some modelling in the case of $\theta_{1}(t)$.

