

Schlessinger Point Method: Theory and Applications

Daniele Binosi ECT* - Fondazione Bruno Kessler, Italy

Continuum Functional Methods for QCD at New Generation Facilities ECT*, Italy May 7-10, 2019

Schlessinger Point Method (SPM)

SPM interpolating fraction

Given a finite set of *N* data points (x_i, f_i) the SPM constructs the rational interpolant p(x)/q(x) given by Schlessinger, PR 167 (1968)

$$C_N(x) = \frac{p(x)}{q(x)} = \frac{f_1}{1+} \frac{a_1(x-x_1)}{1+} \frac{a_2(x-x_2)}{1+} \cdots \frac{a_{N-1}(x-x_{N-1})}{1}$$

• Coefficients *a_i* obtained recursively

$$a_{1} = \frac{f_{1}/f_{2} - 1}{x_{2} - x_{1}}$$

$$a_{i} = \frac{1}{x_{i} - x_{i+1}} \left[1 + \frac{a_{i+1}(x_{i+1} - x_{i-1})}{1 + 1} \frac{a_{i-2}(x_{i+1} - x_{i-2})}{1 + 1} \cdots \frac{a_{1}(x_{i+1} - x_{1})}{1 - f_{1}/f_{i+1}} \right]$$

- [p(x), q(x)] order
 - [N/2 1, N/2] for an even number of input points
 - [(N-1)/2, (N-1)/2] for an odd number of input points

- $f(x) = 1/(x + \mu)$
 - Only 2 points needed to reproduce these curves
 - "First guess" of the method

- $f(x) = 1/(x + \mu)$
 - Only 2 points needed to reproduce these curves
 - "First guess" of the method

• $f(x) = 1/(x + \mu)$

• Only 2 points needed to reproduce these curves

SPM examples

• "First guess" of the method

- Use 3 points to reproduce a straight line
- **15 digits precision** yields

$$f(x) = \frac{22 + 1.8 \times 10^{15} x}{1.8 \times 10^{15} - x} \approx x$$

Daniele Binosi (ECT*)

- *f*(*x*) = 1/(*x* + μ)
 Only 2 points
 - Only 2 points needed to reproduce these curves

SPM examples

• "First guess" of the method

- f(x) = x
 - Use 3 points to reproduce a straight line
 - **15 digits precision** yields

$$f(x) = \frac{22 + 1.8 \times 10^{15} x}{1.8 \times 10^{15} - x} \approx x$$

- $f(x) = e^x$
 - Use 11 points
 - **15 digits precision** yields

$$f(x) = \frac{263504 + 170536x + 46451x^2 + 10389x^3 + 756x^4 + 148x^5}{265568 - 98809x + 15473x^2 - 1274x^3 + 55x^4 - x^5}$$

- $f(x) = e^x$
 - Use 11 points
 - **15 digits precision** yields

$$f(x) = \frac{263504 + 170536x + 46451x^2 + 10389x^3 + 756x^4 + 148x^5}{265568 - 98809x + 15473x^2 - 1274x^3 + 55x^4 - x^5}$$

- $f(x) = e^x$
 - Use 11 points
 - **15 digits precision** yields

$$f(x) = \frac{263504 + 170536x + 46451x^2 + 10389x^3 + 756x^4 + 148x^5}{265568 - 98809x + 15473x^2 - 1274x^3 + 55x^4 - x^5}$$

• Essential singularities

will not be reproduced everywhere

• F_1 d quark proton form factor

results available up to x = 8.6 GeV but provided only up to x = 4.9 GeV

• F_1 d quark proton form factor

results available up to x = 8.6 GeV but provided only up to x = 4.9 GeV

• F_1 d quark proton form factor

results available up to x = 8.6 but provided only up to x = 4.9

• Extrapolation of nucleon to roper form factors Chen, Lu, DB, Chang, Roberts, Rodríguez-Quintero, Segovia, PRD (2019)

• Array of prediction for JLab12 G_p^E, G_n^M, G_n^E up to 14, 16 and 11 m_N^2

Daniele Binosi (ECT*)

PDAs for heavy-light systems

DB, Chang, Ding, Gao, Papavassiliou, Roberts, PLB (2019)

• SPM extrapolation of

Masses Decay constants PDA parameters

Daniele Binosi (ECT*)

14/51

May 08, 2019

The beginning of a beautiful friendship

• Pion PDF

Ding, Raya, DB, Chang, Roberts, Schmidt, in preparation

• SPM extrapolation of PDF moments comparison with algebraic model

0.0

-0.2

Pion PDF

Ding, Raya, DB, Chang, Roberts, Schmidt, in preparation

SPM extrapolation of PDF moments comparison with algebraic model

Pion valence-quark momentum distribution evolved @ 5.2 GeV

May 08, 2019 15/51

SPM and analytic continuation

Analytic continuation

Can be obtained by setting $x = \alpha e^{i\theta}$ in $C_N(x)$

• Pole singularities can be exactly reproduced

• Branch cuts can be approximately reproduced by a series of poles

• Rational fractions can have only one sheet many sheeted functions can only be reconstructed on a single sheet

(Generalized) spectral functions perfect application domain

$$D(p_0) = \int_{-\infty}^{\infty} d\omega \, \frac{2\omega\rho(\omega)}{\omega^2 + p_0^2} + \sum_{j=1}^{n} \frac{Z_j}{p_0^2 - z_j}$$

 $\rho(\omega) = 2 \text{ Im } D(p_0 \rightarrow -i(\omega + i0^+))$

Breit-Wigner (BW) propagator

• SPM test

Simple Breit Wigner propagator

$$\begin{split} \rho(\omega) &= 2 \ \mathrm{Im} \ D(p_0 \to -i(\omega + i0^+)) \\ &= \frac{1}{\pi} \frac{2\Gamma\omega}{(\omega^2 - \Gamma^2 - M^2)^2 + 4\Gamma^2\omega^2} \end{split}$$

$$D(p_0) = \int_{-\infty}^{\infty} d\omega \, \frac{2\omega\rho(\omega)}{\omega^2 + p_0^2} = \frac{1}{2\pi} \frac{1}{(p_0 + \Gamma)^2 + M^2}$$

- Procedure
 - Choose parameters $M = 4\Gamma = 1 \text{ GeV}$
 - Generate Euclidean propagator data 100 points between 0.01 and 50 GeV
 - Apply SPM on your favourite 60 input points
 - Compare exact/reconstructed analytic structure in the p_0 and p_0^2 complex plane
 - Construct the spectral function compare it with the exact one
 - Calculate the propagator compare it with the exact one

Daniele Binosi (ECT*)

1.5

1.0

BW propagator I: p_0 plane

• Poles: perfectly reconstructed

Reconstructed

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-1.5

-1.0

 $\operatorname{Im} p_0 [\operatorname{GeV}]$

C

0.0

Re p_0 [GeV]

0.5

-0.5

Daniele Binosi (ECT*)

May 08, 2019 19/51

BW propagator I: p_0 plane

• How?

Near cancellation between poles and zeros

- For N = 60there are 30 poles and 29 zeros
- Near cancellation

leaves poles with very small residue

BW propagator I: p_0 plane

Filtering

physical poles can be identified by using a threshold for the residues

Reconstructed

BW propagator II: p_0^2 plane

Branch cut:

visualized as a series of poles

Daniele Binosi (ECT*)

BW propagator II: p_0^2 plane

Branch cut:

more clearly visible in a histogram, showing the location of the poles for 100 random subsets of the 60 input points

Reconstructed

22/51

BW spectral function **Spectral function**

Obtained as:

$$\rho(\omega) = 2 \operatorname{Im} D(p_0 \rightarrow -i(\omega + i0^+))$$

Reconstructed propagator

BW propagator plus poles

 Add complex conjugated poles to BW propagator

$$D(p_0) = \frac{1}{2\pi} \frac{1}{(p_0 + \Gamma)^2 + M^2} + \sum_{j=1}^n \frac{Z_j}{p_0^2 - z_j}$$
$$= \int_{-\infty}^\infty d\omega \, \frac{2\omega\rho(\omega)}{\omega^2 + p_0^2} + \sum_{j=1}^n \frac{Z_j}{p_0^2 - z_j}$$

- Procedure
 - Choose parameters $M = 4\Gamma = 1 \text{ GeV}, Z_1 = Z_2 = 1, z_{1,2} = (-1 \pm i) \text{ GeV}^2$
 - Generate Euclidean propagator data 100 points between 0.01 and 50 GeV
 - Apply SPM on your favourite 60 input points
 - Compare exact/reconstructed analytic structure in the p_0 and p_0^2 complex plane
 - Construct the spectral function compare it with the exact one
 - Calculate the propagator compare it with the exact one

$$\rho(\omega) = 2 \operatorname{Im} D(p_0 \to -i(\omega + i0^+))$$
$$= \frac{1}{\pi} \frac{2\Gamma\omega}{(\omega^2 - \Gamma^2 - M^2)^2 + 4\Gamma^2\omega^2}$$

24/51

Daniele Binosi (ECT*)

May 08, 2019 25/51

BW propagator plus poles I: p_0 plane

• Poles: perfectly reconstructed

Exact

- $Im(D(p_0)) [GeV^{-2}]$ 1.5F 1.0 0.5 $\operatorname{Im} p_0 [\operatorname{GeV}]$ 0.0 -0.5 00 -1.0 -1.5 -0.5 -1.0 0.0 0.5 1.0 1.5 -1.5 Re p_0 [GeV]
- Reconstructed

BW propagator plus poles II: p_0^2 **plane**

• Branch cut:

more clearly visible in a histogram, showing the location of the poles for 100 random subsets of the 60 input points

Reconstructed

BW plus poles spectral function

Spectral function Obtained as:

$$\rho(\omega) = 2 \text{ Im } D(p_0 \rightarrow -i(\omega + i0^+))$$

$$D(p_0) = \int_{-\infty}^{\infty} d\omega \, \frac{2\omega\rho(\omega)}{\omega^2 + p_0^2} + \sum_{j=1}^n \frac{Z_j}{p_0^2 - z_j} + h.c.$$

Reconstructed spectral function

Reconstructed propagator

٢∞

Adding noise

• Spice up life with some noise!

Set $D(p_{0i}) \rightarrow D(p_{0i})(1 + \varepsilon r_i)$ with $\varepsilon = 10^{-3}$, r_i a random number drawn from a normal distribution with zero mean and unit standard deviation

Adding noise

• Spice up life with some noise!

Set $D(p_{0i}) \rightarrow D(p_{0i})(1 + \varepsilon r_i)$ with $\varepsilon = 10^{-3}$, r_i a random number drawn from a normal distribution with zero mean and unit standard deviation

Improving SPM

- Improved SPM algorithm requires the following steps DB, Tripolt 1904.08172
 - 1. Select N = 50 points randomly from the set of M > N points $(p_{0i}, D(p_{0i}))$
 - 2. Apply the SPM to this subset of points and construct $C_N(p_0)$
 - 3. Obtain the spectral function as $\rho(\omega) = 2 \text{ Im } C_N(p_0 \rightarrow -i(\omega + i0^+))$
 - 4. Identify the relevant complex poles and compute $D_{\rm rec}(p_0)$
 - 5. Calculate the χ^2 -deviation of the reconstructed propagator, $\chi^2 = \sum_{i=1}^{M} \frac{[D_{\text{rec}}(p_{0i}) D(p_{0i})]^2}{D(p_{0i})}$
 - 6. Repeat 1-5 L = 5000 times and identify the input point $(p_{0j}, D(p_{0j}))$ that appears most often among the K = 200 best subsets, i.e. those with the smallest χ^2
 - 7. Repeat 1-6 but always use the points $(p_{0j}, D(p_{0j}))$ among the N = 50 points until all optimal input points have been identified

BW propagator plus poles and noise

 Improved SPM reconstruction of the BW mock data

THI-

BW propagator plus poles and noise

 Improved SPM reconstruction of the BW mock data

• FRG gluon data

have been analyzed by constructing a gluon basis propagator

A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. (2018)

$$\begin{split} \hat{G}_{\text{Ans}}^{\text{pole}}(p_0) &= \sum_{k=1}^{N_{\text{ps}}} \prod_{j=1}^{N_{\text{pp}}^{(k)}} \left(\frac{\hat{\mathcal{N}}_k}{(\hat{p}_0 + \hat{\Gamma}_{k,j})^2 + \hat{M}_{k,j}^2} \right)^{\delta_{k,j}}, \quad \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) = \sum_{j=1}^{N_{\text{poly}}} \hat{a}_k \left(\hat{p}_0^2 \right)^{\frac{j}{2}} \\ \hat{G}_{\text{Ans}}^{\text{asy}}(p_0) &= (\hat{p}_0^2)^{-1-2\alpha} \left[\log \left(1 + \frac{\hat{p}_0^2}{\hat{\lambda}^2} \right) \right]^{-1-\beta}, \quad G_{\text{Ans}}(p_0) = \mathcal{K} \hat{G}_{\text{Ans}}^{\text{pole}}(p_0) \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) \hat{G}_{\text{Ans}}^{\text{asy}}(p_0) \end{split}$$

• Optimize the Kallén–Lehmann to estimate the parameters

$\hat{\mathcal{N}}_1$	α	β	$\hat{\lambda}$		
1.33678	-0.428714	-0.777213	1.75049		
\hat{a}_1	\hat{a}_2	\hat{a}_3	\hat{a}_4	\hat{a}_5	
0.454024	0.241017	3.10257	-1.30804	0.63701	
$\hat{\Gamma}_{1,1}$	$\hat{\Gamma}_{1,2}$	$\hat{\Gamma}_{1,3}$	$\hat{\Gamma}_{1,4}$	$\hat{\Gamma}_{1,5}$	$\hat{\Gamma}_{1,6}$
0.100169	0.100141	2.36445	1.5564	1.22013	1.15102
$\hat{M}_{1,1}$	$\hat{M}_{1,2}$	$\hat{M}_{1,3}$	$\hat{M}_{1,4}$	$\hat{M}_{1,5}$	$\hat{M}_{1,6}$
0.849883	0.849902	2.52171	2.44035	3.6016	2.36723
$\delta_{1,1}$	$\delta_{1,2}$	$\delta_{1,3}$	$\delta_{1,4}$	$\delta_{1,5}$	$\delta_{1,6}$
1.61116	1.94095	-2.54586	1.89765	0.168592	0.296215

Daniele Binosi (ECT*)

May 08, 2019 34/51

FRG gluon propagator data

• FRG gluon data

have been analyzed by constructing a gluon basis propagator

A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. (2018)

$$\hat{G}_{\text{Ans}}^{\text{pole}}(p_0) = \sum_{k=1}^{N_{\text{ps}}} \prod_{j=1}^{N_{\text{pp}}} \left(\frac{\hat{\mathcal{N}}_k}{(\hat{p}_0 + \hat{\Gamma}_{k,j})^2 + \hat{M}_{k,j}^2} \right)^{\delta_{k,j}}, \quad \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) = \sum_{j=1}^{N_{\text{poly}}} \hat{a}_k \left(\hat{p}_0^2 \right)^{\frac{j}{2}}$$

$$\hat{G}_{\text{Ans}}^{\text{asy}}(p_0) = (\hat{p}_0^2)^{-1-2\alpha} \left[\log \left(1 + \frac{\hat{p}_0^2}{\hat{\lambda}^2} \right) \right]^{-1-\beta}, \quad G_{\text{Ans}}(p_0) = \mathcal{K} \hat{G}_{\text{Ans}}^{\text{pole}}(p_0) \hat{G}_{\text{Ans}}^{\text{poly}}(p_0) \hat{G}_{\text{Ans}}^{\text{asy}}(p_0)$$

• Optimize the Kallén–Lehmann to estimate the parameters

FRG gluon data have been analyzed by constructing a gluon basis propagator A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, N. Wink, SciPost Phys. (2018)

Study three data sets

with improved SPM

- Fit from Cyrol et al. with noise $\varepsilon = 10^{-6}$
- Fit from Cyrol et al. with noise and two poles

$$G_{\mathsf{Ans}}(p_0) = \mathcal{K}\hat{G}_{\mathsf{Ans}}^{\mathsf{pole}}(p_0)\hat{G}_{\mathsf{Ans}}^{\mathsf{poly}}(p_0)\hat{G}_{\mathsf{Ans}}^{\mathsf{asy}}(p_0) + \frac{3}{p_0^2 - (-0.25 + i)} + \frac{3}{p_0^2 - (-0.25 - i)}$$

Original data set

• Exact

Set 3

Daniele Binosi (ECT*)

DSE gluon propagator data

• Improved SPM reconstruction of DSE gluon data

Strauss, Fischer, Kellermann, PRL (2012)

DSE gluon propagator data

• Improved SPM reconstruction of DSE gluon data

Strauss, Fischer, Kellermann, PRL (2012)

Daniele Binosi (ECT*)

Lattice gluon propagator data

Improved SPM reconstruction

Lattice gluon propagator data

- Improved SPM reconstruction of DSE ghost data Strauss, Fischer, Kellermann, PRL (2012)
- Need to reconstruct the dressing to avoid massless pole $\rho_D(\omega) = F(0)\delta'(\omega) - \rho_F(\omega)/\omega^2$
- Branch cut only
 - Starts at zero gluon has non zero spectral density at arbitrarily low frequencies

- Improved SPM reconstruction of DSE ghost data Strauss, Fischer, Kellermann, PRL (2012)
- Need to reconstruct the dressing to avoid massless pole $\rho_D(\omega) = F(0)\delta'(\omega) - \rho_F(\omega)/\omega^2$
- Branch cut only
 - Starts at zero gluon has non zero spectral density at arbitrarily low frequencies

2.0

- **Improved SPM reconstruction** of DSE ghost data Strauss, Fischer, Kellermann, PRL (2012)
- Need to reconstruct the dressing to avoid massless pole $\rho_D(\omega) = F(0)\delta'(\omega) - \rho_F(\omega)/\omega^2$

1.0

0.8

0.6

0.4

0.0

0.0

-1.0

0.001

× Residuals -0.5

0.2

3

10

 $q \,[\text{GeV}]$

0.1

1

0.0010.01 0.1 1

 $q \; [\text{GeV}]$

0.01

 $F_{
ho}(q)$

- **Branch cut only**
 - Starts at zero gluon has non zero spectral density at arbitrarily low frequencies

May 08, 2019 51/51

2

SPM interpolating fraction powerful method to capture global features of data sets

Multiple uses two discussed today:

Extrapolation

form factors, masses, decay constants, moments...

- **Analytic continuation** of two-point functions
- Most interesting results

Conclusions