

# Hybrid states in the framework of Dyson-Schwinger equations

#### **Shu-Sheng Xu**

#### (徐书生)

#### Nanjing University of Posts and Telecommunications

Based on arXiv: 1805.06430 [nucl-th]

Continuum Functional Methods for QCD at New Generation Facilities @ ECT\*, Trento, Italy, May 10, 2019

- The well-known light hadron is simple
  - It is qualitatively matches the constituent quark model by Gell-Mann and Zweig (1964).
    - Mesons built from a constituent-quark-antiquark (QQ) pair
    - Baryons constituted from three constituent quarks (QQQ) where Q is u, d, s-quarks



- The well-known light hadron is simple
  - It is qualitatively matches the constituent quark model by Gell-Mann and Zweig (1964).
    - Mesons built from a constituent-quark-antiquark (QQ) pair
    - Baryons constituted from three constituent quarks (QQQ) where Q is u, d, s-quarks



- Gell-Mann and Zweig also raised possibility of multi-quark state
  - Tetraquark: QQQQ
  - Pentaquark: QQQQQ
  - No candidate were then known, and they didn't know gluon
  - After ~50 years, in heavy quark systems, that now has changed
    - X, Y, Z,... pentaquark appears.

- In 1970s, discovery of Quantum Chromodynamics(QCD)
  - based on quantum field theory
  - Self-interacting gauge boson mediate the interactions between quarks.

- In 1970s, discovery of Quantum Chromodynamics(QCD)
  - based on quantum field theory
  - Self-interacting gauge boson mediate the interactions between quarks.
- A new possibility appears: a system with valence gluon

  - hybrid baryons GQQQ
  - Glueballs GG, GGG,...

where "G" is a constituent gluon, but we don't know its property only if such system detected

- In 1970s, discovery of Quantum Chromodynamics(QCD)
  - based on quantum field theory
  - Self-interacting gauge boson mediate the interactions between quarks.
- A new possibility appears: a system with valence gluon

  - hybrid baryons GQQQ
  - Glueballs GG, GGG,...

where "G" is a constituent gluon, but we don't know its property only if such system detected

- A few plausible hybrid-meson candidates below 2 GeV
  - Searches for such states are underway at modern facilities (e.g. COMPASS @ CERN, GlueX @ JLab)

# Model studies of hybrids

- Numerous models have employed to study spectrum of light hybrid mesons
  - Approaches are distinguished by their treatment of constituent gluon
  - Their spectrum disagree each other

| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                           |                      |                                          |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|------------------------------------------|----------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                    | Model               | $J^{PC}_{q\overline{q}'}$ | $J_g^{PC}$           | $J^{PC}$                                 | Mass (GeV/ $c^2$ )   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                     | Bag [2, 3]          | 0^+                       | 1 <sup>+-</sup> (TE) | 1                                        | $\sim 1.7$           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                     |                     | 1                         | $1^{+-}$ (TE)        | $(0, 1, 2)^{-+}$                         | $\sim 1.3, 1.5, 1.9$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                     |                     | $0^{-+}$                  | 1 <sup></sup> (TM)   | $1^{+-}$                                 | heavier              |
| Flux tube [4, 5] $0^{-+}$ $1^{+-}$ $1^{}$ $1.7-1.9$ $1^{}$ $1^{+-}$ $(0, 1, 2)^{-+}$ $1.7-1.9$ $0^{-+}$ $1^{-+}$ $1^{++}$ $1.7-1.9$ $1^{}$ $1^{-+}$ $1^{++}$ $1.7-1.9$ $1^{}$ $1^{-+}$ $(0, 1, 2)^{+-}$ $1.7-1.9$ Constituent gluon $0^{-+}$ $1^{}$ $1^{+-}$ $[6]/[7]$ $1^{}$ $1^{}$ $(0, 1, 2)^{++}$ $1.3-1.8/2$ $1^{+-}$ $1^{}$ $(0, 1, 2)^{++}$ $1.3-1.8/2$ $1^{+-}$ $1^{}$ $(0, 1, 2)^{-+}$ $1.8-2.2/2$ $(0, 1, 2)^{++}$ $1^{}$ $1^{}$ $(0, 1, 2)^{}$ |                     | 1                         | 1 <sup></sup> (TM)   | $(0, 1, 2)^{++}$                         | heavier              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                      | Flux tube [4, 5]    | $0^{-+}$                  | 1+-                  | 1                                        | 1.7-1.9              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 1                         | $1^{+-}$             | $(0, 1, 2)^{-+}$                         | 1.7-1.9              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                     |                     | $0^{-+}$                  | $1^{-+}$             | 1++                                      | 1.7-1.9              |
| Constituent gluon $0^{-+}$ $1^{}$ $1^{+-}$ $1.3-1.8 / 2.2$ [6]/[7] $1^{}$ $1^{}$ $(0,1,2)^{++}$ $1.3-1.8 / 2.2$ $1^{+-}$ $1^{}$ $(0,1,2)^{++}$ $1.3-1.8 / 2.2$ $(0,1,2)^{++}$ $1^{}$ $(0,1,2)^{-+}$ $1.8-2.2 / 2.2$ $(0,1,2)^{++}$ $1^{}$ $1^{}, (0,1,2)^{}, (1,2,3)^{}$ $1.8-2.2 / 2.2$                                                                                                                                                                  |                     | 1                         | $1^{-+}$             | $(0, 1, 2)^{+-}$                         | 1.7-1.9              |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                     | Constituent gluon   | $0^{-+}$                  | 1                    | 1+-                                      | 1.3-1.8 / 2.1        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                      | [6]/[7]             | 1                         | 1                    | $(0, 1, 2)^{++}$                         | 1.3-1.8/2.2          |
| $(0,1,2)^{++}$ 1 <sup></sup> 1 <sup></sup> , $(0,1,2)^{}$ , $(1,2,3)^{}$ 1.8-2.2/2.                                                                                                                                                                                                                                                                                                                                                                       |                     | $1^{+-}$                  | 1                    | $(0, 1, 2)^{-+}$                         | 1.8-2.2/2.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | $(0, 1, 2)^{++}$          | 1                    | $1^{}, (0, 1, 2)^{}, (1, 2, 3)^{}$       | 1.8-2.2/2.3          |
| Constituent gluon / $0^{-+}$ $1^{+-}$ $1^{}$ (2.3)                                                                                                                                                                                                                                                                                                                                                                                                        | Constituent gluon / | $0^{-+}$                  | 1+-                  | 1                                        | (2.3)                |
| LQCD [8, 9] $1^{}$ $1^{+-}$ $(0, 1, 2)^{-+}$ $(2.1, 2.0, 2.1)$                                                                                                                                                                                                                                                                                                                                                                                            | LQCD [8, 9]         | 1                         | $1^{+-}$             | $(0, 1, 2)^{-+}$                         | (2.1, 2.0, 2.4)      |
| $1^{+-}$ $1^{+-}$ $(0,1,2)^{++}$ $(>2.4)$                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | $1^{+-}$                  | $1^{+-}$             | $(0, 1, 2)^{++}$                         | (> 2.4)              |
| $(0,1,2)^{++} 	 1^{+-} 	 1^{+-}, (0,1,2)^{+-}, (1,2,3)^{+-} 	 (>2.4)$                                                                                                                                                                                                                                                                                                                                                                                     |                     | $(0,1,2)^{++}$            | 1+-                  | $1^{+-}, (0, 1, 2)^{+-}, (1, 2, 3)^{+-}$ | (>2.4)               |

# Model studies of hybrids

- Numerous models have employed to study spectrum of light hybrid mesons
  - Approaches are distinguished by their treatment of constituent gluon
  - Their spectrum disagree each other

| Model               | $J^{PC}_{q\overline{q}'}$ | $J_g^{PC}$           | $J^{PC}$                                 | Mass (GeV/ $c^2$ )   |
|---------------------|---------------------------|----------------------|------------------------------------------|----------------------|
| Bag [2, 3]          | 0^-+                      | 1 <sup>+-</sup> (TE) | 1                                        | $\sim 1.7$           |
|                     | 1                         | $1^{+-}$ (TE)        | $(0, 1, 2)^{-+}$                         | $\sim 1.3, 1.5, 1.9$ |
|                     | $0^{-+}$                  | 1 <sup></sup> (TM)   | $1^{+-}$                                 | heavier              |
|                     | 1                         | 1 <sup></sup> (TM)   | $(0, 1, 2)^{++}$                         | heavier              |
| Flux tube [4, 5]    | $0^{-+}$                  | 1+-                  | 1                                        | 1.7-1.9              |
|                     | 1                         | $1^{+-}$             | $(0, 1, 2)^{-+}$                         | 1.7-1.9              |
|                     | $0^{-+}$                  | $1^{-+}$             | 1++                                      | 1.7-1.9              |
|                     | 1                         | $1^{-+}$             | $(0, 1, 2)^{+-}$                         | 1.7-1.9              |
| Constituent gluon   | $0^{-+}$                  | 1                    | 1+-                                      | 1.3-1.8 / 2.1        |
| [6]/[7]             | 1                         | 1                    | $(0, 1, 2)^{++}$                         | 1.3-1.8 / 2.2        |
|                     | $1^{+-}$                  | 1                    | $(0, 1, 2)^{-+}$                         | 1.8-2.2 / 2.2        |
|                     | $(0,1,2)^{++}$            | 1                    | $1^{}, (0, 1, 2)^{}, (1, 2, 3)^{}$       | 1.8-2.2 / 2.3        |
| Constituent gluon / | $0^{-+}$                  | 1+-                  | 1                                        | (2.3)                |
| LQCD [8, 9]         | 1                         | $1^{+-}$             | $(0, 1, 2)^{-+}$                         | (2.1, 2.0, 2.4)      |
|                     | $1^{+-}$                  | $1^{+-}$             | $(0, 1, 2)^{++}$                         | (>2.4)               |
|                     | $(0,1,2)^{++}$            | $1^{+-}$             | $1^{+-}, (0, 1, 2)^{+-}, (1, 2, 3)^{+-}$ | (> 2.4)              |

- Development of a reliable continuum method for calculating hybrid meson properties would be valuable
  - For interpretation of empirical observations
  - Provide insights into results obtained via the numerical simulation of LQCD

## **Exotic mesons**

- QQ mesons in quantum mechanics can't possess exotic quantum numbers: JPC=0+-, 0--,1-+, etc.
- Nevertheless, exotic quantum numbers are allowed in relativistic two-body bound state
- Studies of exotic mesons using simple truncation for Bethe-Salpeter kernel produce unrealistic spectra
- More sophisticated kernel can not remedied, it signal that exotic may contain explicit valence gluon degree of freedom

| L | S | JPC |
|---|---|-----|
| 0 | 0 | 0-+ |
| 0 | 1 | 1   |
| 1 | 0 | 1+- |
| 1 | 1 | 0++ |
| 1 | 1 | 1+- |

| 0++ | 0+- | 0-+ | 0 |
|-----|-----|-----|---|
| 1++ | 1+- | 1-+ | 1 |
| 2++ | 2+- | 2-+ | 2 |
| 3++ | 3+- | 3-+ | 3 |

Si-xue Qin, et al., Phys.Rev. C85 (2012) 035202

| ω                | 0.4   | 0.5   | 0.6   |
|------------------|-------|-------|-------|
| m <sub>0</sub>   | 0.814 | 0.940 | 1.053 |
| m <sub>0+-</sub> | 1.186 | 1.252 | 1.323 |
| m <sub>1-+</sub> | 1.234 | 1.277 | 1.318 |

# New perspective on hybrid mesons

- Can one produce sound treatment of hybrids using Poincarécovariant Faddeev equation?
  - Treat these systems as bound states of valence-gluon, -quark and antiquark.
  - Each constituent is massive in their infrared region

# New perspective on hybrid mesons

- Can one produce sound treatment of hybrids using Poincarécovariant Faddeev equation?
  - Treat these systems as bound states of valence-gluon, -quark and antiquark.
    Rapid acquisition of mass i effect of gluon cloud
  - Each constituent is massive in their infrared region
- Recall DSEs for quark propagator and gluon propagator
  - Quark is massive in its infrared region
  - Running gluon mass

$$d(k^2) = \frac{\alpha(\zeta)}{k^2 + m_g^2(k^2;\zeta)}$$
$$m_g^2(k^2) \approx \frac{\mu_g^4}{\mu_g^2 + k^2}$$

It implies gluon is massive in it's infrared region





## Hints from baryons

- Baryon is a bound state of three valence quarks
  - The anti-triplet coloured diquark correlations play in simplifying the baryon three body problem

$$=$$

$$P_{q}$$

The spectrum obtained from quark-diquark picture is almost same as full 3-body Faddeev equation

## Hints from baryons

- Baryon is a bound state of three valence quarks
  - The anti-triplet coloured diquark correlations play in simplifying the baryon three body problem

$$=$$

$$P_{q}$$

- The spectrum obtained from quark-diquark picture is almost same as full 3-body Faddeev equation
- Can hybrid states be solved in this way?

# The idea towards hybrids

- Suppose strong q<sub>g</sub> and q
  <sub>g</sub>
   correlation exist, then
  - Hybrids explained by coupled channel Faddeev-like bound state equation

 $\Psi=\Psi_1+\Psi_2$ , where  $\Psi_1$  is Faddeev amplitude for  $q_g\overline{q}$  and  $\Psi_2$  is that for  $q\overline{q}_g$ 



# The idea towards hybrids

- Suppose strong qg and qg
   correlation exist, then
  - Hybrids explained by coupled channel Faddeev-like bound state equation

 $\Psi=\Psi_1+\Psi_2$ , where  $\Psi_1$  is Faddeev amplitude for  $q_g\overline{q}$  and  $\Psi_2$  is that for  $q\overline{q}_g$ 

#### Challenge:

- confirm existence of tight gluonquark correlations
- determine their properties



## **Gluon-quark correlations**

 Using rainbow-ladder truncation for gluon-quark Bethe-Salpeter equation, and search for a pole solution

$$t^{a}\Gamma_{\mu}(p;Q) = -\int_{d\ell} \mathcal{G}(k^{2})t^{d}\gamma_{\rho}S(\ell_{+}) \text{ valence quark}$$

$$\times t^{c}\Gamma_{\lambda}(\ell;Q)D_{\lambda\tau}(\bar{\ell}_{-})f_{3g}(k^{2}) {}_{0}V^{bca}_{\rho\tau\mu}(k,\bar{\ell},-\bar{p}_{-})$$

$$yalence aluon \qquad 3a vertex dressing factor$$

continuum & lattice: 3g vertex greatly suppressed on  $k^2 < 1 \text{ GeV}^2$ 

- The gluon infrared mass ~1/2 m<sub>proton</sub>
- The quark infrared mass ~1/3 m<sub>proton</sub>
- Solution The pole of gluon-quark corralation located at  $m_{q_g} \sim m_{proton} \sim 1.0$  GeV.

# **Gluon-quark correlations**

- [gq] correlation behave like a dressed quark
  - Colour-triplet fermion-like object
  - Propagator takes the standard form

 $S_{gq}(p) = -i \gamma \cdot p \sigma_{V}(p^{2}) + \sigma_{S}(p^{2})$  $\sigma_{V}(s) = \mathcal{E}(s, s_{V}), \ \sigma_{S}(s) = \frac{m_{gq}}{s} [1 - s_{S} \mathcal{E}(s, s_{S})]$ 

E(s,s0) = (1-Exp[-s/s0])/s

- The behavior of [gq] propagator
  - free-particle like in UV
  - infrared behavior is controlled by sv & ss



=  $2^{9}$  +  $2^{902}$ 

6

 $\mathcal{C}$ 

# Hybrid spectrum in Rainbow-Ladder

| JPC                                | 0-+     | 1-+     | 1       | 0+-     | 0       |
|------------------------------------|---------|---------|---------|---------|---------|
| m(GeV)RL                           | 1.21(5) | 1.78(7) | 1.60(6) | 1.71(7) | 1.72(2) |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 1.72(2) | 1.73(2) | 1.84(2) | 2.03(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 1.69(2) | 1.72(2) | 1.77(6) | 1.99(2) |         |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 2.14(1) | 2.15(2) | 2.26(2) | 2.45(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 2.12(2) | 2.16(2) | 2.21(6) | 2.43(2) |         |

LQCD. Row 4,5:  $m_{\pi}$ >0.4 GeV...Dudek, et al. ePrint: arXiv:1004.4930 [hep-ph] These simulations overestimate mass of pion's first radial excitation by  $\delta \pi_1 = 0.43$  GeV

LQCD. Row 2,3 = Row 4,5 -  $\delta \pi_1$ 

- Bound states exist in all channels
- O-+ and 1-- hybrids are structurally distinct from those accessible using the 2body Bethe-Salpeter equation in these channel

# Hybrid spectrum in Rainbow-Ladder

| JPC                                | 0-+     | 1-+     | 1       | 0+-     | 0       |
|------------------------------------|---------|---------|---------|---------|---------|
| m(GeV)RL                           | 1.21(5) | 1.78(7) | 1.60(6) | 1.71(7) | 1.72(2) |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 1.72(2) | 1.73(2) | 1.84(2) | 2.03(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 1.69(2) | 1.72(2) | 1.77(6) | 1.99(2) |         |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 2.14(1) | 2.15(2) | 2.26(2) | 2.45(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 2.12(2) | 2.16(2) | 2.21(6) | 2.43(2) |         |

- In comparison with LQCD predictions:
  - Solution In the second state of the second
  - wide variations of model parameters do not alter this outcome.

# Hybrid spectrum in Rainbow-Ladder

| JPC                                | 0-+     | 1-+     | 1       | 0+-     | 0       |
|------------------------------------|---------|---------|---------|---------|---------|
| m(GeV)RL                           | 1.21(5) | 1.78(7) | 1.60(6) | 1.71(7) | 1.72(2) |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 1.72(2) | 1.73(2) | 1.84(2) | 2.03(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 1.69(2) | 1.72(2) | 1.77(6) | 1.99(2) |         |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 2.14(1) | 2.15(2) | 2.26(2) | 2.45(1) |         |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 2.12(2) | 2.16(2) | 2.21(6) | 2.43(2) |         |

- In comparison with LQCD predictions:
  - Solution In the second state of the second
  - wide variations of model parameters do not alter this outcome.

We must reconsider each element in our formulation of hybrid mesons.

- Mismatch between RL-direct and LQCD results
- RL truncation can be improved
  - [gq] correlation amplitude is computed in RL truncation
  - RL truncation underestimates DCSB in bound state amplitudes
- Consequently, anomalous chromomagnetic moment (ACM) associated with this correlation is greatly underestimated
  - Solution ACM enhencement essential to explain  $a_1$ - $\rho$  splitting.
- Introduce a correction factor
  - Multiplication of ACM term by constant κ<sub>gq</sub>

- Mismatch between RL-direct and LQCD results
- RL truncation can be improved
  - [gq] correlation amplitude is computed in RL truncation
  - RL truncation underestimates DCSB in bound state amplitudes
- Consequently, anomalous chromomagnetic moment (ACM) associated with this correlation is greatly underestimated
  - Solution ACM enhencement essential to explain  $a_1$ - $\rho$  splitting.
- Introduce a correction factor
  - Multiplication of ACM term by constant κ<sub>gq</sub>
- Can any value of kgq yield match with LQCD?

• The RL truncation underestimated contributions from angular momentum.





We find t<sup>5</sup> raised by 2.5, and omit the spin-independent coupling t<sup>3</sup>, the hybrid spectrum will be significantly changed.

| JPC                                | 0-+  | 1-+  | 1—   | 0+-  | 0—   |
|------------------------------------|------|------|------|------|------|
| m(GeV)RL                           | 1.21 | 1.78 | 1.60 | 1.71 | 1.72 |
| m(GeV)ACM-improved                 | 1.60 | 1.74 | 1.85 | 1.86 | 1.90 |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 1.72 | 1.73 | 1.84 | 2.03 |      |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 1.69 | 1.72 | 1.77 | 1.99 |      |
| LQCD <sub>R</sub> -16 <sup>3</sup> | 2.14 | 2.15 | 2.26 | 2.45 |      |
| LQCD <sub>R</sub> -20 <sup>3</sup> | 2.12 | 2.16 | 2.21 | 2.43 |      |

- Beyond RL spectrum agreement with refined spectrum of LQCD
- Agreement is non-trivial
- Magnitude of our results set by
  - infrared values of the running gluon and quark masses
  - $\subseteq$   $\pi$  and  $\rho$  meson properties
  - unrelated to hybrid channels
- O-- state deserves special attention
- LQCD predict lightest 0-- state above m<sub>ρ</sub>+2GeV
- We confirm 0-- is ground-state heaviest hybrid, but probably too light.
  - Large angular momentum
    DCSB-enhancement
  - Simple corrected RL truncation may not be adequate.



## Summary

- We introduced a novel approach to the valencegluon+quark+antiquark bound-state problem in quantum field theory
- Strong correlations exist in  $[q_g=qg] \& [\overline{q}_g=g\overline{q}]$ , and hence that a simpler, coupled pair of effectively two-body equations can provide the basis for a realistic description of hybrid mesons
- It reproduce the mass and ordering of ground-state lightquark hybrids obtained via LQCD
- It should serve as a guide for subsequent continuum treatments of the hybrid-meson three-body problem
- The hybrids wave functions can be used to predict a range of hybrid decays and other processes