Thermodynamics of 2+1 flavor Polyakov-loop quark-meson model under external magnetic field

Xiang Li

Peking University & ECT

"Continuum Functional Methods for QCD at New Generation Facilities"

A D K A D K A D K A D K

Xiang Li, Wei-jie Fu, and Yu-xin Liu, PRD 99, 074029 (2019).

Motivation

Phenomenological

• Large collider 1 ($m_\pi^2 \approx 0.02~{
m GeV^2}$)

 Neutron star magnetic field origins from a magnetohydrodynamic dynamo process. (wiki)

¹Wei-Tian Deng et al, Phys. Rev. C 85 044907 (2012).

Motivation

Theoretical

Lattice QCD predicts inverse magnetic catalysis that chiral critical temperature *decreases* with the ascending of magnetic field.²

While phenomenological models (such as NJL, QM, and χ PT) predict *opposite* effect³

²G. S. Bali et al, JHEP 1202 (2012) 044.

³K. Klimenko, Z. Phys. C 54 323 1992.

イロト イヨト イヨト

Approach Polyakov-loop quark meson model (PQM)

$$\mathcal{L} = \bar{\psi}(\partial \!\!\!/ + ieA_{\mu}^{em}\gamma_{\mu} + iA_{4}\gamma_{4} + g\Sigma_{5})\psi + Tr[\mathcal{D}_{\mu}\Sigma \cdot (\mathcal{D}_{\mu}\Sigma)^{\dagger}] + U(\Sigma) - c[det(\Sigma) + det(\Sigma^{\dagger})] - Tr[H(\Sigma + \Sigma^{\dagger})] + V_{glue}(\Phi)^{5}$$
(1)

Deconfinement aspect

$$\Phi = \frac{1}{N_c} \operatorname{Tr} \, \mathrm{P} \, \exp(i \int_0^\beta d\tau A_4) \tag{2}$$

If quark is extremely heavy

$$(rac{1}{i}rac{\partial}{\partial t}-ec{ au}\cdotec{A^0})\psi(ec{r},t)=0^{-6}$$

Polyakov-loop is related to the free energy of a single-quark system

$$\Phi = e^{-F_q} \begin{cases} 0 & F_q \to \infty & \text{confinement} \\ 1 & F_q \to 0 & \text{deconfinement} \end{cases}$$
(3)

⁶L. D. McLerran et al, Phys. Rev. D 24, 450 (1981) → (♂) (≥) (≥) (≥) (≥)

$$\frac{V_{glue}(\Phi,\bar{\Phi})}{T^4} = -\frac{b_2(T)}{2}\Phi\bar{\Phi} - \frac{b_3}{6}(\Phi^3 + \bar{\Phi}^3) + \frac{b_4}{4}(\Phi\bar{\Phi})^2$$
$$b_2(T) = a_1 + \frac{a_2}{1+t} + \frac{a_3}{(1+t)^2} + \frac{a_4}{(1+t)^3}^7$$
(4)

 V_{poly} is added to imitate the effect from confinement.

$$\tilde{n}_f(E_f, \Phi) = \frac{1 + 2\Phi e^{\beta E_f} + \Phi e^{2\beta E_f}}{1 + 3\Phi e^{\beta E_f} + 3\Phi e^{2\beta E_f} + e^{3\beta E_f}}$$
(5)

Statistical confinement is achieved at low temperature, i.e., $\Phi \sim 1$.

$$\tilde{n}_f = \frac{1}{e^{3\beta E_f} + 1} \tag{6}$$

1.

⁷C. Ratti et al, Phys. Rev. D 73, 014019 (2005). < □ > (

- perturbative expansion
- mean-field approximation (neglects meson's fluctuation)
- functional renormalization group (FRG)⁸

A momentum-dependent mass term $R_k(p)$ is assigned to each propagator in the loop. Effective action gets modified $\Gamma \rightarrow \Gamma_k$.

High energy mode is integrated gradually as the scale k go down. An abstract functional differential equation can be obtained

$$\partial_k \Gamma_k = \frac{1}{2} \operatorname{Tr} \left[\frac{\partial_k R_k^B}{\Gamma_k^{2B} + R_k^B} \right] - \operatorname{Tr} \left[\frac{\partial_k R_k^F}{\Gamma_k^{2F} + R_k^F} \right]$$
(7)

Vertex expansion

Dyson-Schwinger equation

Functional renormalization group

Local potential approximation(LPA)

A truncation for Γ_k is necessary

$$\Gamma_{k} = \int d^{4}x \ \bar{\psi}(\not{D} - i\gamma_{4}A_{4} + g\Sigma_{5})\psi + \operatorname{Tr}[\mathcal{D}_{\mu}\Sigma \cdot (\mathcal{D}_{\mu}\Sigma)^{\dagger}] + U_{k}(\rho_{1}, \rho_{2}) - h_{x}\sigma_{x} - h_{y}\sigma_{y} - c_{a}\xi + V_{glue}(\Phi)$$
(8)

Employing the optimized regulator $R_k(p)^{10}$

$$\partial_{k}U_{k} = \frac{k^{4}}{12\pi^{2}} \Big\{ \sum_{b} \alpha_{b}(k) \frac{1}{E_{b}} [1 + 2n_{b}(E_{b})] \\ - \sum_{f=u,d,s} \alpha_{f}(k) \frac{1}{E_{f}} [1 - 2\tilde{n}_{f}(E_{f}, \Phi)] \Big\}^{11}$$
(9)

¹⁰D. F. Litim, Phys. Rev. D 64, 105007 (2001).

¹¹K. Kamikado, and T. Kanazawa, JHEP 1501 (2015) 129, → (= → (= →) < ⊙ < ○

$$U_{k} = \sum_{i+2j=0}^{5} \frac{a_{i,j}(k)}{i!j!} [\rho_{1} - \rho_{1}(k)]^{i} [\rho_{2} - \rho_{2}(k)]^{j} \quad (10)$$

$$\rho_{1} = \operatorname{Tr} [\Sigma \cdot \Sigma^{\dagger}],$$

$$\rho_{2} = \operatorname{Tr} [(\Sigma \cdot \Sigma^{\dagger} - \frac{1}{3}\rho_{1})^{2}] \quad (11)$$

Substituting into (9) and gain non-perturbative β functions.

$$k\frac{da_{i,j}}{dk} = \beta_{i,j}(a_{m,n}, k, T, eB)$$
(12)

In summary

$$\Gamma_k \xrightarrow{Parameterized} a_{i,j}(k) \xrightarrow{FRG} \beta_{i,j} \xrightarrow{Mathematica} \Gamma$$

11 / 27

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Compansate

The theory is only valid below $T\sim rac{\Lambda}{2\pi}\sim 160 MeV$

Extending Λ to ∞

12

$$\begin{split} \Gamma_{\Lambda}(0,0) \rightarrow \Gamma_{\Lambda}(0,0) + \Delta\Gamma \\ \Delta\Gamma &= \Gamma_{\Lambda}(T,eB) - \Gamma_{\Lambda}(0,0) \\ \hline J. \text{ Braun et al, Phys. Rev. D 70 085016 (2004).} \end{split}$$

$$\Delta\Gamma_{\Lambda}[T, eB] = [\Gamma_{\Lambda}(T, eB) - \Gamma_{\Lambda}(0, 0)]$$

= $[\Gamma_{\Lambda}(T, eB) - \Gamma_{\infty}(T, eB)] - [\Gamma_{\Lambda}(0, 0) - \Gamma_{\infty}(0, 0)]$
= $\int_{\infty}^{\Lambda} dk \left[\partial_{k}\Gamma_{k}(T, eB) - \partial_{k}\Gamma_{k}(0, 0)\right].^{13\cdot 14}$ (14)

Meson decouples at high energy region so

$$\Delta U_{\Lambda}[T, eB] = \int_{\infty}^{\Lambda} dk \; \frac{k^4}{12\pi^2} \sum_{f=u,d,s} \alpha_f(k) \; \frac{2\tilde{n}_f(E_f, \Phi)}{E_f} \,, \tag{15}$$

¹³ J. Braun, M. Leonhardt, and J. M. Pawlowski, arXiv:1806.04432.
 ¹⁴ W. J. Fu, J. M. Pawlowski, and F. Rennecke, arXiv:1808.00410.

Result

The initial conditions.

g	h_x/Λ^3	h_y/Λ^3	c_a/Λ	a_{10}/Λ^2	<i>a</i> ₂₀	<i>a</i> 01	$\Lambda/{\rm GeV}$
6.5	0.121 ³	0.336 ³	4.808	0.56 ²	26	50	1

Calculated hadronic observables (in MeV).

f_{π}	f _K	m_{π}	m _K	m_{σ}	m_{f_0}
92.0	113.4	138.3	495.1	601.8	1234.7
$m_{\eta'}$	m_η	m_{a_0}	m_κ	m _{u,d}	m _s
962.8	539.1	1013.7	1102.5	299.0	438.1

<□> <□> <□> <□> <=> <=> <=> <=> <=> <000

Order parameters

Deconfinement phase transition $V_{glue}(T, eB?)$

Chiral phase transition ・ロン・クラン・モン・モン・モン・マック 15/27

Inverse case

Ordinary procedure

$$\partial_{\mu} \rightarrow \partial_{\mu} + ieA_{\mu}^{em}$$

Magnetic field couples with gluon indirectly

$$\overline{\boldsymbol{\omega}} = \overline{\boldsymbol{\omega}} + \Sigma_f$$

Indirect effect on strong interaction should be considered

$$G(\bar{\psi}\psi)^2 \to G(eB) \; (\bar{\psi}\psi)^2 \quad {}^{16}$$
 (16)

$$V_{glue}(T, eB?) \tag{17}$$

¹⁵N. Mueller et al, Phys.Rev. D 91 116010 (2015).

¹⁶R. L. S. Farias eta Ia, Phys. Rev. C 90 025203 (2014). (→ (=) (=) (=) ()

Phase diagram

Chiral and deconfinement phase transition lines will split with the increasing magnetic field.

Meson spectral

Figure: Calculated meson masses and twice light quark mass.

At low temperature (chiral symmetry broken), pion dominates. At high temperature (chiral symmetry restored), quark dominates.

Pressure and entropy^{17,18}

Figure: Calculated normalized pressure and normalized entropy density as functions of normalized temperature at eB = 0.

¹⁷A. Bazavov et al, Phys. Rev. D 90, 094503 (2014).

¹⁸S. Borsányi et al, Phys. Lett. B 730, 99 (2014). < □ > < ⊕ > < ≡ > < ≡ > > ∞ <

Magnetic induced entropy

$$E^2 = m^2 + p_z^2 + (2l + 1 - s)eB$$

Mesons' energy get increased by eB at least (I=0, s=0)

Quarks encounter dimension reduction (3d \rightarrow 1d) and their energy get decreased (I=0, s=1)

$$\Delta S = S(T, eB) - S(T, 0)$$

< ロ > < 同 > < 回 > < 回 >

Figure: PQM+FRG

Entropy varies more violently with magnetic field in Lattice.¹⁹

¹⁹G. S. Bali et al, JHEP 1408 (2014) 177

Magnetic susceptibility χ

$$\tilde{\chi}(T) = \frac{\partial^2 P}{\partial (eB)^2}$$

$$\chi(T) = \tilde{\chi}(T) - \tilde{\chi}(0)$$

Diamagnetic at low temperature due to the orbital motion of mesons.

Paramagnetic at high temperature due to the spin orientation of quarks.

critical temperature in MeV

T _{QM}	T _{PQM}	T _{Gas}	T _{Lattice}	
171	199	199	154	
		+ 문 + 	22 / 27	

Noninteracting gas approximation

Approximate the system as noninteracting quark and meson gas,

$$\chi(T) = \chi_q(T) + \chi_m(T) \tag{18}$$

$$\chi_{q}(T) = \frac{N_{c}}{6\pi^{2}} \sum_{f} q_{f}^{2} \qquad \left\{ 2 \int_{0}^{\infty} dx \; \frac{\tilde{n}_{f}(\sqrt{x^{2} + m_{f}^{2}(T)}, \Phi(T))}{\sqrt{x^{2} + m_{f}^{2}(T)}} -\ln\left(\frac{m_{f}(0)}{m_{f}(T)}\right) \right\},$$
$$\chi_{m}(T) = -\frac{1}{48\pi^{2}} \sum_{b} \qquad \left\{ 2 \int_{0}^{\infty} dx \; \frac{n_{b}(\sqrt{x^{2} + m_{b}^{2}(T)})}{\sqrt{x^{2} + m_{b}^{2}(T)}} +\ln\left(\frac{m_{b}(0)}{m_{b}(T)}\right) \right\}^{20}$$
(19)

Adler function $D(Q^2)^{21,22,23}$

$$D(Q^{2}) = -12\pi^{2}Q^{2}\frac{d}{dQ^{2}}\Pi(Q^{2})$$

$$3Q^{2}\Pi(Q^{2}) = i\int d^{4}xe^{iq\cdot x}\langle 0|TJ^{\mu}(x)J_{\mu}(0)|0\rangle \int d^{4}x \langle 0|TJ_{\mu}(x)J_{\mu}(0)|0\rangle$$
Virtual photon's momentum Q is
replaced by Matsubara frequency.
$$Q \leftrightarrow 2\pi T \qquad = \frac{1}{e^{2}}\int d^{4}x\frac{\delta^{2}W[A]}{\delta A_{\mu}(x)\delta A_{\mu}(0)}$$

$$D(2\pi T) = 6\pi^{2}T\frac{\partial\chi(T)}{\partial T} \quad (20) \qquad \stackrel{?}{=} \frac{\partial^{2}P}{\partial(eB)^{2}} \quad (W[A] = \beta VP)$$

$$= \tilde{\chi}(T) \quad (21)$$

²²P. A. Baikov et al. Phys. Rev. Lett. 104, 132004 (2010). ²³G. S. Bali et al, J. High Energy Phys. 1408 (2014) 177.

QM model has no gluon's effect PQM model has gluon's effect

the lowest order $\mathcal{O}(\alpha_s^0)$ higher order $\mathcal{O}(\alpha_s^3)$

イロト イヨト イヨト

Intuitive picture

low temperature

chiral symmetry breaking

quark pairs $(\pi \cdots)$ dominate

Landau diamagnetic

high temperature

chiral symmetry restored

free quarks dominate

Pauli paramagnetic

- PQM system displays magnetic catalysis effect.
- The response behaviors of PQM system experience a transition as the temperature rises.

Thank you for your listenning.