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1. Follow the formation dynamics of the sonic horizon 

2. Determine the asymptotic stationary quantum state 

3. Verify the presence of thermal phonons at the Hawking-Unruh temperature 

4. Study correlations between phonons in the upstream/downstream region 

 

Generic behavior of 1D interacting Bose gases 

 
S.Giovanazzi PRL 2005 
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The solution is obtained by use of many body methods only 

 

- No reference to analogue gravity/effective theory arguments  

-The result is then an confirmation of the analogue Hawking mechanism 
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The thermal nature of the phonon emission is not always achieved 

 

A strict requirement is the decoupling between phonon dynamics (the quantum field)  

and the matter flow (the analogue metric) 



A one dimensional gas of hard core bosons has the same energy spectrum 

and density correlations of a one dimensional Fermi gas (Girardeau 1960) 

 

 

1. The ground state of a free Fermi gas is  

obtained filling the energy levels with  
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 2. Setting the Fermi gas in  

motion shifts the Fermi points by  

This state is clearly stationary   
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Perform a quantum quench by switching on an external potential 

eg. a sharp step (waterfall) potential  
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to (shock) waves propagating away 
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After a transient, a stationary state is reached (starting from the region near the step).  

The stationary (pure) state is built out of the scattering states of the step potential in 

the interval 
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After a transient, a stationary state is reached (starting from the region near the step).  

The stationary (pure) state is built out of the scattering states of the step potential in 

the interval 

A sonic horizon is formed for sufficiently high initial velocity    



Absence of  Thermalization 
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Let’s take for simplicity                 (only left moving fermions) 

Far from the waterfall in the upstream region               each single particle 

wave-function has the form  

 

         

 

The local density is then given by   

 

which corresponds to a fictitious momentum distribution 

 

Quasi-particles are excited but the tail is not thermal  



Density correlations 
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Correlations between the subsonic 

and supersonic regions are present 

but they appear as a band rather than 

a sharp line as expected  



What is going wrong ? 
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Quasi-particles behave as a free quantum field 

only at low density/low energy.  

For the waterfall potential the density of  

excited quasi-particles is not small  

The gravitational analogy breaks down 



Smooth Step 

We can fix this problem by 

taking a sufficiently smooth 

potential 
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taking a sufficiently smooth 

potential 

 

1. We recover a fictitious momentum distribution but the tail is still 

not thermal.  

2. Furthermore, under a certain threshold the sonic horizon 

disappears  
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We can change the form of the potential  

and study the smooth limit 
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In the “Minkowski” (subsonic)  region at                  

the Fermi gas is described by the effective distribution 

Thermalization ! 

32 

with 

Thermal equilibrium distribution (only if a horizon is present!)  
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Correlations 
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Blown up  50 times ! 

For                 (only left moving particles) 



Experiments 

35 



Experiments 

36 

Rubiudium BEC with 

1. Cylindrical transverse trap 

 

2. “Flat” longitudinal trap 

 

3. Initial density 

 

4. Initial velocity 

 

5. Barrier-like obstacle 
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1. Exactly solvable model  

 

• Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with 

repulsive interaction 

• We have the N-body wavefunction: quantum fluctuations are already IN! 
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2. Gravitational collapse dynamics mimicked 

 

• Study of stationary states 

• Confirmation of the (analogue) Hawking emission 

 

3. Hawking emission with thermal spectrum requires additional conditions 

 

• Smooth obstacles are needed 

• Thermality (and correlation pattern) recovered for a barrier potential (not a 

waterfall) 

 

4. Analysis validated with a semiclassical approach + experimental insight 
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Apply the same model to other phenomena 

 

 

 

 

WH dynamics, BH laser effect , Dynamical Casimir 

effect  … 

 

WE’RE OPEN TO SUGGESTIONS! 

 

 

 


