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One dimensional model of Hard Core Bosons (Tonks-Girardeau gas) flowing
against an obstacle

1. Follow the formation dynamics of the sonic horizon

2. Determine the asymptotic stationary quantum state

3. Verify the presence of thermal phonons at the Hawking-Unruh temperature
4. Study correlations between phonons in the upstream/downstream region

Generic behavior of 1D interacting Bose gases

S.Giovanazzi PRL 2005



Take away message

The solution is obtained by use of many body methods only

- No reference to analogue gravity/effective theory arguments
-The result is then an confirmation of the analogue Hawking mechanism
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The solution is obtained by use of many body methods only

- No reference to analogue gravity/effective theory arguments
-The result is then an confirmation of the analogue Hawking mechanism

The thermal nature of the phonon emission is not always achieved

A strict requirement is the decoupling between phonon dynamics (the quantum field)
and the matter flow (the analogue metric)



The model

A one dimensional gas of hard core bosons has the same energy spectrum
and density correlations of a one dimensional Fermi gas (Girardeau 1960)

1. The ground state of a free Fermi gas is
obtained filling the energy levels with

|]€| < kp
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The model

A one dimensional gas of hard core bosons has the same energy spectrum
and density correlations of a one dimensional Fermi gas (Girardeau 1960)

1. The ground state of a free Fermi gas is
obtained filling the energy levels with

|k| < kF —kp—kg

2. Setting the Fermi gas in
motion shifts the Fermi points by — &k
This state is clearly stationary




Quantum Quenc

Waterfall potential

Perform a quantum quench by switching on an external potential
eg. a sharp step (waterfall) potential
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This strong perturbation gives rise
to (shock) waves propagating away
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Stationary state

After a transient, a stationary state is reached (starting from the region near the step).
The stationary (pure) state is built out of the scattering states of the step potential in
the interval —kp — ko < k < kp — kg
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the interval —kp — ko < k < kp — kg

Stationary state
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After a transient, a stationary state is reached (starting from the region near the step).
The stationary (pure) state is built out of the scattering states of the step potential in
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A sonic horizon
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Is formed for sufficiently high initial velocity



Absence of Thermalization

Let’s take for simplicity £y = kr (only left moving fermions)
Far from the waterfall in the upstream region £ — oo each single particle
wave-function has the form

1
Yr(x) = N

The local density is then given by

0 0 kr+k
dk FTRO dk
(@ wp= [ [ R

—kpr—ko —
which corresponds to a fictitious momentum distribution

[eilm + Ry e_ik“"c] for k<0

1 for —kp—Fky<k<O

f(k) = [\/%_%r for 0<k<kp+ko

Quasi-particles are excited but the tail is not thermal



Density correlations

N <n(z)n(z’) >
Mo )= S s n@y >

Correlations between the subsonic
and supersonic regions are present
but they appear as a band rather than
a sharp line as expected
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What is going wrong ?

Statistical Physics
Part 2
Landau and Lifshitz
Course of Theoretical Physics
Volume 9

The number of elementary excitations in a Bose liquid tends to zero as
T — 0, and at low temperatures, when their density is sufficiently small, the
quasi-particles may be regarded as not interacting with one another, 1.e. as
forming an ideal Bose gas.



What is going wrong ?

i |

Quasi-particles behave as a free quantum field
only at low density/low energy.
For the waterfall potential the density of
excited quasi-particles is not small

The
T -q¢ The gravitational analogy breaks down
quasis
formi
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Smooth Step

We can fix this problem by

taking a sufficiently smooth
potential

V(x) = % [1+ te;nh(ax)] — a— 0

We recover a fictitious momentum distribution but the tail is still
not thermal.

2. Furthermore, under a certain threshold the sonic horizon
disappears



Smooth Barrier

We can change the form of the potential
and study the smooth limit
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Smooth Barrier

We can change the form of the potential
and study the smooth limit
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Thermalization!

In the “Minkowski” (subsonic) region at x — o0
the Fermi gas is described by the effective distribution

1 f —kr — ko < k<O
f(k)={ o TR |

|Ri|? for 0<k<kp+ ko with  |Rg|? =

esx(F=Q) 41

Thermal equilibrium distribution (only if a horizon is present!)



Thermalization!

In the “Minkowski” (subsonic) region at x — o0
the Fermi gas is described by the effective distribution

1 for —kp—ko<k<O
fk) = |Ri|? for 0<k <kp+ ko with | Ry|* = !
: esx(F=Q) 41
Thermal equilibrium distribution (only if a horizon is present!)
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Correlations

For kg = kg (only left moving particles)

2’| _ cr, + v _
T cr — |vR|
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Blown up 50 times !
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Experiments

Rubiudium BEC with
1. Cylindrical transverse trap
—— | a; = 0.25 pm.
2. “Flat” longitudinal trap
length L 2 10pm
3. Initial density
po = 3.8 10° ,um_l
4. Initial velocity
vo ~ 18 mm/s
5. Barrier-like obstacle

V(z) = Voe @®® V) ~ 3.6uK
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Conclusions

Exactly solvable model
» Tonks-Girardeau is not a singular point! Reflects generic behaviour of BEC with
repulsive interaction
 We have the N-body wavefunction: quantum fluctuations are already IN!

Gravitational collapse dynamics mimicked

« Study of stationary states
« Confirmation of the (analogue) Hawking emission

Hawking emission with thermal spectrum requires additional conditions
* Smooth obstacles are needed
« Thermality (and correlation pattern) recovered for a barrier potential (not a

waterfall)

Analysis validated with a semiclassical approach + experimental insight



Outlooks

Apply the same model to other phenomena

l

WH dynamics, BH laser effect , Dynamical Casimir
effect ...

WE'RE OPEN TO SUGGESTIONS!



