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A system interacting with a Quantum Field

System: Atoms / Detectors (with internal dof), q black hole (as atom),
the universe (scale factor a obeys HO eq with — freq”2)

Quantum Field processes:
- vac polarization (e.g., trace anomaly), fluctuations (e.g., Casimir eff)
- particle creation
from vacuum fluctuations parametrically amplified, e.g.,
dynamical Casimir effect,
in the early universe (Planck time)
in spacetimes with event horizons:
black holes: Hawking radiation, in de Sitter universe (static)
uniformly accelerated detectors: Unruh radiation



Issue 2. Backreaction of field on system

The next best thing to do, short of finding an exact
solution.

The simplest time-dependent perturbation theory (TDPT)
results are valid only for a very short time span. Making
general statements based on these calculations may be
misleading. [compare with exact solutions]

Best understood from an open system perspective
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1) The detector no longer behaves like a perfect thermometer. From a
calculation of the evolution of the reduced density matrix of the detector, we
find that the transition probability from the initial ground state over an

infinitely long duration of interaction derived from time-dependent perturbation
theory is valid only in shart transient, corresponding to the Markovian regime.

2) The detector at late times never sees an exact Boltzmann distribution over
the energy eigenstates of the free detector, thus in the non-Markovian regime
covering a wider range of parameters the Unruh temperature cannot be
identified inside the detector
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Detector (Atom) - Field Model of BH 1nfo

ll. The Model: A uniformly accelerated harmonic oscillator (Unruh-
DeWitt detector) in (3+1)D initially in an excited state (pure state),
coupled to a scalar field Minkowski vacuum (pure state) at t=0.

Follow what happens after t=0: Entanglement Dynamics

1 )
Sg = — f d*z =0, O
Environment 2
(field)

m - :
So = /drf (9:Q)° - 232

System
(detector, atom..)

Sr=Xo f dr / d*zQ

S. Y. Linand B. L. Hu, Class. Quant. Grav 25:154004 (2008) [arXiv: 0710.0435]
. L. Huand SY. Lin, Po -Ph: arXiv: .

(T)D(x)6* (2" — 21 (7))
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Implications on BH information

Viewing the UD detector as the analog of a quantum black hole,
our results suggest:

1. All the initial information of the black hole will be encoded in its radiation
(spontaneous emission in atom analog)

-- consistent with the "no-hiding theorem" (Braunstein and Pati 2007),
-- no information is hidden in the correlation between BH and the field.

2. Only in the ultraweak coupling limit can both the BH and the field restore
most of its purity and quantum coherence.

3. In the non-Markovian regime (strong BH-field coupling), the area-eigenstate
of BH could not form a good basis, and the final state of BH would be a
complicated mixed state distributed widely from the ground state to the
highly excited area-eigenstates.

4. Therefore, at late times BH could end up as a large remnant (with
large expectation value of area operator) with all its initial
information already leaked out and dispersed into the quantum fielczi(3



Issues 3: Stochasticity and nonMarkovianity

Nonequilibrium Statistical Mechanics: Open Systems
- Classical: Projection Operator Formalism zwangzig-Mori (57,61) Grabert
- Quantum: Influence Functional Formalism Feynman-Vernon (63)

To see the non-Markovianity property: Begin with 2 coupled subsystems S1 and S2, each obeying a
2" order ODE. Solve the cpld system of ODEs self-consistently for each subsystem dynamics.

If only the dynamics of S1 is of interest, one can convert this system of equations into one integral-
differential equation for just the dynamical variable of S1, but with backreaction from S2

The kernel is time-nonlocal: Because the dynamical time scales of S2 is different from that of S1.
Thus backreaction naturally introduces memory effects.

When S2 is assumed to have many more dof than S1, it is regarded as an environment E to S.

In an open system approach, one focuses on the dynamics of one chosen subsystem, coarse-grain
(CG) the E and assign some distribution function for its fluctuations. The correlations of these
stochastic variables are in general not a delta function: Colored noise.

The backreaction of CG - E (colored noise) on the system generates nonlocal dissipative dynamics
Noise (in E) and Dissipation (in S) are governed by a Fluctuation-Dissipation Relation.



“Opening up” a Quantum Closed System
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nonMarkovianity: Back-action of environment on the open
system always bring in memory: nonlocal kernels
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Issues in an Open System paradigm

1. Stochasticity: Noise/ Fluctuations from coarse-
orained environment: Colored noise

2. Backreaction of coarse-grained environment E
on the system S: Memory

3. Nonunitarity: Dissipative (nonlocal) Dynamics
of Opened system.

4. NonMarkovianity: different dynamics of Svs E
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Quantum Brownian Motion (QBM) via the
Influence Functional (IF> Method (Feynman Vernon 1963)

Open Quantum Systems:
System S (harmonic osc, Unruh-DeWitt detector, harmonic atom. Q
black hole) + Environment E (quantum scalar field)

Osc with time-independent fr equency: Caldeira-Leggett (83) Markov master

eqn; Grabert Ingold Schramm (88) Unruh Zurek (89) Hu- Paz- Zhang (92)
nonMarkovian master equation for a general environment

Osc with time-dependent frequency: Hu Matacz (94) =2 Quantum optics

Introduce a detector to probe the properties of a quantum field, obtain QFT results + NEq
Stat Mech properties E.g., Hawking- Unruh effect derived from this approach



System (1HO) interacting bilinearly with
an Environment (NHO): All Gaussian

t
S[x] = / ds F/\//x2 — V(x)}
0 2
/t dsz anqQ — lm,ﬂ,wqu]
0 2 n 2 n-n

n

Silx, {an}] = /O ds 3" (—Cox gn)

Selqn]

10 slides courtesy Hing-Tong Cho



‘ Closed-Time-Path /Schwinger-
Keldysh/ in-in Effective Action

[Schwinger 61, Keldysh 63, Chou, Hao, Su, Yu 1981, Calzetta Hu 1987, 88 ...]

eir[XJHX_] _ efS[X+]—iS[X_] >

f H DQn+ an_ (efSE[{Qn+}]—iSe[{qn_}]
crTp

eianr[X+ A qn+ H—iSine[x—,{qn— }])

eiS[x+] —iS[x_]4iSiF x4 ,x—]

where S IF is the Influence Action.




1
SiFlxg, x_] = Z§/dsdsl

X1 (8) G+ (5, 5")x1- () — x4-(5) G — (5, 5")x—(5")
=Xx_(8)Gn—1(5,8)x4(5') + x-(5) Gn— (s, 5')x-(s"),

where Gn are the Schwinger-Keldysh or closed time path (+, -) propagators:

Ghii(s,s') = —nu(s—5")sgn(s —s")+ivy(s—5)
Ghi_(5,8) = na(s—35)+ivy(s—5)

Gro1(s,8") = —na(s—5)+ivy(s—5)
Gro_(s5,5') = np(s—3)sgn(s—5")+iv,(s—5')

n is used in HPZ92, called pn in later papers



The influence action S;r can be written as

eiSIF — e—ifot ds fOS ds'[Ax(s)n(s—s')Ex(s")]
e~ 3 Jo ds J5 ds' [Ax(s)(s—s")Ax(s)]

where Ax(s) = x4.(s) — x_(s) and x(s) = x;(s) + x_(s), and

C2
n(s —s') Znns—s)——z sinwpy(s — s)

2mpw
Called p in later papers n n=n

v(s—5s') = ZVn(S—S/):Z G coswy(s — s')

2m,w
n n-vn

Spectral density J(®) (ater)



Feynman-Vernon Gaussian

Integral Identity, Noise Kernel

Rewriting the imaginary part of SF as

e—% foqu
— N/Dfe%fg”lge%fAX”AX

_ N/Dé-e%f(fil/AX)l/l(fiVAX)e%IAXVAX
— N [ DePlge <

where P[¢] = e~2 /€€ is the Gaussian probability density of the
stochastic force €.

Due to this probability density one has the stochastic average
(€(5)&é(s"))s = v(s — s’) which is called the noise kernel.



Equation of Motion

from the influence action

After this procedure the effective action
Mxpx-] = Slx] = S[x-]
/ ds/ ds’ Ax(s)n(s — s')Xx(s")

called pu in later papers

/0 dsAx(s)E(s)

The equation of motion for the particle is then given by

Ol x4, x_]

5X_|_ - O

X} =X_=X



Langevin Equation

Dissipation kernel

The equation of motion is a Langevin equation with the stochastic
force &(t),

Mx + V'(x) + /0 dsn(t — s)x(s) = &(t)

The integral term is related to dissipation as one can write

o) = o) > 1) = 3 50

coswnt
2 n
n 2”7,«,(4]”

and we have v is called the damping kernel

M5 + V'(x) + /O ds~(t — s)x(s) = &(¢)

n(s — s') is called the dissipation kernel.(called u in later papers)



Issue 4:  Fluctuation-Dissipation Relation

v(s) = /OO ds' K(s — s")v(s")

in this simple case y called damping kernel

>~ d
K(s) :/ T w cosws
0

v

Note the existence of FDR is a condition of self-consistency between
the system dynamics with backaction from the environment.
This relation originates from the unitarity In the original closed system.

The coarse-grained environmental variables are now represented by
noise and fluctuations. Their backreaction on the system imparts to it
dissipative dynamics in the now opened system.

FDR called Optical theorem in particle physics (scattering)
Kramers Kronig relation in condensed matter physics
u related to the dynamical susceptibility function

FDR for N detectors- Quantum Field System: Later.



Backreaction in Gravitation and Cosmology
—- Three levels of Theoretical Structure




FDR applied to Black hole &

Cosmological backreaction problems

Candelas Sciama (PRL1977) for a dynamic Kerr black
hole emitting Hawking radiation.

Mottola (PRD1986) for a static black hole (in a box) in
quasi-equilibrium with its radiation via linear response
theory

Hu & Sinha (1995): Dissipation of anisotropy in Bianchi
Type | universe and fluctuations in particles creation.

Campos & Verdaguer (1996) for weakly inhomogeneous
cosmology
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Black Holes

Backreaction of Hawking radiation on the
black hole dynamics (since 80s)

Quasi-stationary: Schwarzschild metric m(t)
due to Tmn of @ (t) but system assumed to
remain in quasi-equilibrium: Need to place the
BH in a box or in AdS space. York et al (1983)

Radiating BH: e.g., Bardeen (Vaidya metric)

28



FDR for static Black Hole (1n a box)

Mottola showed that in some generalized Hartle-Hawking states a FDR
exists between the expectation values of the commutator and anti-
commutator of the energy-momentum tensor This FDR is similar to the
standard thermal form found in linear response theory.

< dw o I\ -
Sabea(r, 2") = / — e ) coth (§3w> Dapeq(x, X" 0), (3.5)

— 00 27T

where S and D are the anticommutator and commutator functions of the energy-momentum
tensor, respectively, and D is the temporal Fourier transform of D. That is,

Sab(‘d-(Ia I[) — <{Tab(I)ﬁ .Tcd(I,)}%ﬁ

Dabcd(Iv J:,) — <[.Ta.b(¢r')a Tcd(ljl)bﬁ- (36)
He also identifies the two-point function D as a dissipation kernel by relating it to the time
rate of change of the energy density when the metric is slightly perturbed. Thus, Eq.(3.5)

represents a bona fide FDR relating the fluctuations of a certain quantity (say, energy density)
to the time rate of change of the very same quantity.
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ILinear Response Theory cannot provide
self-consistent backreaction description

Two Critiques by Hu Raval Sinha (gr-qc/9901010)

1. About LRT: It is usually based on the assumption of a
fixed, non-dynamical background (spacetime) and state
(thermal) of the matter field(s). S-E cplg vanishingly weak.

- The spacetime and the state of matter should rather be
determined in a self-consistent manner by their
dynamics under mutual influence.

2. To Candelas and Sciama (1977) the fluctuation part
represented by the noise kernel is amiss <= this is the
centerpiece and major task of Stochastic Gravity 1994-96
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Exact solutions (quantum gravity). Test Field
Approximation (QFTCST*: Level 0), Backreaction
(SCG: Level 1) w Fluctuations (StoGra: Level 2)+

Einstein equation:

Guwlgl = r T8l

Semi-classical gravity (mean field):

G@u[g] — kK (TPW[g] + <T£V[g]>)

Stochastic gravity (including quantum fluctuations):

Three Levels of

Theoretical Structures

pr[g —+ h] — K (T;U/[g + h] + <Tgu[g + h]> + gMV[g])

to linear order in h, where §,,,, is the stochastic force induced by
the quantum field fluctuations.

* Birrell & Davies, Parker & Toms: QFTCST (CUP 1982, 2009).

+ Hu & Verdaguer, Semiclassical and Stochastic Gravity (CUP 2020)



Backreaction of particle creation on
the Dynamics of the early universe

Consider a massless conformal scalar quantum field in a Bianchi Type | universe.

The normal modes satisfy: Bi. The line element of Bianchi Type I universe is thus

Xie(n) + [Qi(n) + Qlxk(n) = 0.

3
ds* = —dt* +) " £3(t)(da')?
3/ =d/dn and i=1

O (n) = wi(t)a* = k* + m?a® where £; = a(t)e’ is the scale factor in the x; direction.
o= d ~ dq;; dqi;
4ij = B i (M d:;) + K d:yj + kqi; = cij + 845, <j (1.1.8)

N 1 a2 1 a2 a’
M = In(f1 k=— + — ) =
3()(4@2 nifia) 87Gy  90(4m)* [( a) ( a )]

dq;;
Kqi; Zfdnzfdmf(nz _m)d L
m

c;i; = | Jij(n)dn where Jij is an external source for switching on the

anisotropy in the distant past. sij stochastic source - later
39




Rate ot Particle production
~ Weyl curvature”?2

With a real and causal equation of motion for ¢;; = 3}, one can take the

Fourier transform and identify from the dissipative term iwvyq(w) (where

¢ = qiiq”), i.e. the “resistance” component in a LCR circuit, the viscosity

function vy(w):

_ WP
60(47)2

v(w) (1.1.5)
The damping of anisotropy going like w? translates to a dependence on
the quadrature of the second derivative of [3;;, which can be identified as the
lowest order terms of the Weyl curvature tensor. This leads to the result that
the rate of particle production in anisotropic or inhomogeneous cosmological
spacetimes is proportional to the Weyl curvature-squared C.;.qC* of the
background geometry.
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Energy of particles created = integrated braking power of anisotropy damping
Quantum Field Process ii Spacetime Dynamics

equation) one can obtain the (spectral) power P(w) dissipated by a velocity-
dependent viscous force F acting on the background spacetime simply from
P(w) = F -v. The dissipated energy density p(w) is obtained by integrating
this ‘(spectral) braking power’ P(w) over all frequencies.

[d
Pdissipation = /_wwﬁzj [ (w)w/ﬁij(wn. (116)
0

Alternatively, focusing on the matter field sector (the right-hand side of
the SCE equation) one can calculate the energy density of particles created
from the vacuum. The power spectrum of particle pairs created by a given
anisotropy history is given by

1
3072
Integrating over the full spectrum [~ dw(2w)P(w) produces the total energy

-density of particle pairs created, which is seen to be precisely equal to the
energy density dissipated in the dynamics of spacetime.

Plw) = W TrB* (2w)B3(2w) (1.1.7)
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s_1i] Colored Noise from Fluctuations of Q Field

with s;;(n) = [dn/'&;(n') where &;(n) is a Gaussian type noise, which is
completely characterized by its second moment
(&ij(m)e =0
(i ()& (n2)) ¢ = Vi (1 — 112)- (1.1.9)
Here v;jri(1n1 — 12) is known as the noise kernel. It is the two-point time-

correlation function of the external stochastic source &;;(n). Since this cor-
relation function is non-local, this noise is colored. In the above the angled

The noise kernel v for the spatial 1 dw 4
anisotropy is given by: V() = 30(477)2/0 o oS

It is related to the damping kernel y by a v(n) = /dﬁ’K(TY —1)v(1)
Fluctuation-Dissipation Relation / <;
where the fluctuation-dissipation kernel 00

K(n) is given by K(n) = dw W COS W1].

™
0
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5. FDR+CPR
in N-Osc system + Q Field




System Charge, Mass, Atom, Black Hole, Universe

Environment: Quantum Field, Open Systems viewpt

Now let’s use the N detector (atom) System- Q
Field model to probe deeper into the relations

= between the system and its environment,
NEq dynamics, relaxation, FDR, energy balance

= between any two detectors mediated by E:

CPR, nonMarkovianity, mutual influence
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Key points

Quantum Brownian Motion 1 osc-scalar field bath:
Langevin eq: Dissipation in the system is balanced by
Fluctuations (noise) in the environment (scalar field)

Fluctuation-Dissipation Relation in the (thermal) bath

N coupled oscillators in a common scalar field bath

FDR between the oscillators and the bath was shown
(RHA): Diagonal components of a matrix relation,

Correlation-Propagation Relation: Off-diag components
Combined: Generalized FDR. (CPR unknown before)

Generalized FDR between detectors shown recently (JT)



"FDR + CPR = a matrix FDR

PHYSICAL REVIEW D VOLUME 53, NUMBER 12 15 JUNE 1996

Stochastic theory of accelerated detectors in a quantum field

Alpan Raval and B. L. Hu'
Department of Physics, University of Maryland, College Park, Maryland 20742
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
and Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

James Anglini
Theoretical Astrophysics, MS B-288, Los Alamos National Laboratory, New Mexico 87545
(Received 23 May 1995)

We analyze the statistical mechanical properties of » detectors in arbitrary states of motion interacting with
one another via a quantum field. We use the open system concept and the influence functional method to
calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via
fields. We discuss the difference between self and mutual impedance, advanced and retarded noise, and the
relations between noise-correlations and dissipation-propagation. The mutual effects of detectors on one an-
other can be studied from the Langevin equations derived from the influence functional, as it contains the back
reaction of the field on the system self-consistently. We show the existence of general fluctuation-dissipation <::|
relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly en-
capsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions on the
accelerated detector problem. The general methodology presented here could also serve as a platform to
explore the quantum stafistical properties of particles and fields, with practical applications in atomic and
optical physics problems. [S0556-2821(96)03912-4]



A. Influence functional for N arbitrarily moving detectors

Consider N detectors 7i=1,....N m 1+ 1 dimensions
with internal oscillator coordinates ().(7;), and trajectories
(x.(7;).t,(7;)) ., 7; being a parameter along the trajectory of
detector 7. In the following analysis, we do not need to as-
sume that 7; 1s the proper time, although this 1s, 1 most
cases, a convenient choice. However, we will assume here-
after that the trajectories (7,(7;),x;(7;)) are smooth and that
the parameters 7; are chosen such that 7,(7;) 1s a strictly
increasing function of 7; .

The detectors are coupled to a massless scalar field
¢(x,1) via the mteraction action

ﬁ, T dQ, -
‘Sint:E il de-S'f(Tf)dT_ (xi(7:),1,(77)). (2.1)




Here, 7" 1s a global Minkowski time coordinate which defines
a spacelike hypersurtace, e; denotes the coupling constant of
detector 7 to the field, s,(7;) is the switching function for
detector i (typlullly a step function), and ¢; * 1s the nverse
function of 7, . hr ) 1s, therefore, the Value of 7, at the
point of intersectlon of the spacelike hypersurface defined by
T with the trajectory of detector i. Note that the strictly
increasing property of 7,(7;) mmplies that the mverse, 1f it
exists, 1S unique.

The action of the system of detectors 1s

M——Ef dnl(0,00°-0207.  (22)

The scalar field action 1s given by

1 (1
Sﬁeldzzjxdfj dx[(9,)* = (9, p)"] (2.3)

and the complete action

S — Sﬁ€1d+ S S int - (24)

OSL



2.4 Influence Kernel for Linear Coupling

We have established a correspondence between the parametric oscillators and a quantum
field. This will facilitate the transcription of calculations for the former problem using the
influence functional formalism to the latter. There 1s one final link to be added to complete
the picture: How do we see that the influence kernel takes on the form (2.15)7

Consider a particle detector following a trajectory *(s) parametrized by s with internal
coordinate ) coupled linearly to a quantum field ¢ with a coupling of the form L;,; =
—eQo(x(s)). (The trajectory is denoted here simply by x(s).) The dissipation and noise
kernels p1 and v, are given respectively by [287] Raval, Hu & Koks PRD 1997

2 2

u(s,s') = %G’(:x:(.s-),:z:(s"))z—-'i {[0((5)), dla(s))
v(s,s) = SED(a(s).x(s) = 5 ({(a(s). da(s ) (242)

where G and GW are the Schwinger and the Hadamard functions of the free field operator
¢ evaluated for two points on the detector trajectory, () denotes expectation value with
respect to a vacuum state at some arbitrarily chosen initial time ¢;, and [, | and {, } denote
the commutator and anticommutator respectively. This result may be obtained either by
integrating out the field degrees of freedom as in the Feynman-Vernon influence functional
approach [40] or via manipulations of the coupled detector-field Heisenberg equations of
motion in the canonical operator approach.



{=v+iu, called the influence kernel. For linear couplings,
it follows from the above expressions that { 1s given by the

. - e ~ 4 .
Wightman function G "> gy is gef in RHA6, €2G. in HHL19 = i ¢ )

{(s.s)=e*GT(x(s),x(s")=e*(Pp(x(5))(x(s"))). <>?
(1.4

The influence kernel thus admits the mode function represen-
tation (RHA96 picked sin and cos mode function following Hu Matacz PRD94)

[(s,s")= 62; (e (s)uF(x(s")), (1.5)

the u,’s being the mode functions satisfying the field equa-
tions and defining the particular Fock space whose vacuum



Closed-Time-Path (CTP) coarse-grained
(CG) effective action = FV influence action

Seq = Z ./‘d'r@ m A,EQ)(T?')ZEQ)(Tj) — mw? A,EQ)(T@)EEQ)(T;:)}

. /dQT\/_/d2 !/ —g AV (z,2") ) (&)

/(1’23(’\/—/0’2 '/ —g AV (z, 2" ) AV () .
AP = 23 — 25 and 2@ = (205 4+ 2(5))/2

Retarded Gg;” (x,2") =i0(t —t) Tr( (x), o(2")] pl)
p bis the initial field state

1) 1
Gg{‘)(m,m’) 5 h({o r, o2 }p“> ,

Hadamard



Wightman
function

The Wightman function of a massless scalar field in the Minkowski vacuum
when expressed in terms of the Rindler coordinates (&,n) is given by:

) dr 1
G(g (z,2") = Z./o By 2}{{ {coth ? cos K(Ay + Ag) —i sink(A, + Aé)}

+ {cmh% cos k(Ay — A¢) — i sink(Ay — Ag)]}

— . — . /
Unruh Temperature 7" = Qi Ay =mn—1n and &g = § — ¢
-

(generalized) Fluctuation-Dissipation (matrix) relation for the field:

é}_}b)(ﬁ:) — coth 22 Im ég)) (k). <j
Diagonal terms: FDR 2

Off-diagonal terms: CPR: Correlation-Propagation Relation (RHA1996)
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6. CPR



Influence Functional

I J

l

FIOAQ H= eXp[ m

XdT,S,(T)J d’T s (1))
10, do; -,
x dr; dr; Zif{7i J")dfr}
dO’
—Z*(T 7') <, ) l (2.14)

Zij(7;. )—ZefeJE ACEARNETHEATHEA N



Two Inertial
Detectors:

We now consider the case of two detectors moving on the
inertial trajectories x;(7)= —x¢/2, x,2(7)=Xxy/2, and
1,(1))=1ty(7y)=7, coupled to a scalar field mitially in the
Minkowski vacuum state, with coupling constants e 5. They
are separated by a fixed coordinate distance x,. As before,
we will assume that both detectors have been forever
switched on, 1.e., s(7)=1,i=1,2.

le(’r,}’?")

efjxdk | y !
27 )0 k expl —ik(7=77) .

ey (=dk | f
Zy(7,7") EL p expl —ik(7—17")],

le(’Tj’T’):Zzl(’T?’T}')

elezjxd;tr ” , p
“2a | E exp| —ik(7— 7")|coskx



In the above, the continuum limit in the mode sum is recovered through the replacement
S — zL_T J5° dk. We then obtain, after substituting for uf and (g,

g 2m k J

In this form, Z;; is proportional to the two point function of the free scalar field in the
Minkowski vacuum, evaluated for the two points lying on trajectories < and j of the detector
system. It obeys the symmetry relation

Zij(1i, 75) = Z35(7;, 73) 4 (2.17)

Corresponding to (2.12), we may also split Z;; into its real and imaginary parts. Thus
we define

i €4 oo df ke (s (T (T
Zii(1inT)) = Ci% / — =M=t 05D cos ke(xi(1) — x;(7))). (2.16)
0

Zi(1i, 7)) = U735, 75) + ifig (75, 75) (2.18)
where (RHA96 picked sin and cos mode function following Hu Matacz PRD94)
- €46 o dk . _ . Yy ]
hi(TT) = 52 [ T cosk(tim) — () cos k(wi(r) — 2,(7)))
2i €5 o dk .
iy (T, 7)) = —E;:L ?Slﬂk‘-(fg(ﬂ) —t;(7})) cos k(xi(m:) — 2;(7])). (2.19)

v and ji are proportional to the anticommutator and the commutator of the field in the
Minkowski vacuum, respectively.



The coupled Langevin equations for the system are

d20, e*d eer dO dn

%1_'_ 1 Q1+ 1€2 £2|~—-A‘+Q%Ql:i:

adT° 2 dT 2 dr 70 dr
(3.27

d*0, e3dQ, eje;dQ, , - dn,

+ + —— +Q50,=—=

d 7> 2 dT 2 drt |T—"‘0 {505 dr’
(3.28"

where 7—x 1s the retarded time between the two trajecto-

- . F , 2
rles.‘: and ni(Tl-)ZeikEU \/; ug (1)t (1))).

Ani(7),n,(T)})=hv,(7—7"). (3.29)



éz(w)zlzz(w)gz(w)+L21(w)51('10): 4(3-33)

where L, 1s the modified self-impedance of detector two
because of the presence of detector one, and L,; 1s the mu-
tual impedance:

Los(0)=x2 (1 =4y ye 200y Dyl 20y~

— i’ (2)_ (1)
Ly(w)=—2\y v’ oyl (

X (1 =4y y,e 2%y Dy () =1 (3 34)

We obtain the Correlation Functlop ,

<{Qf(w>,QJ-(w')}>=gl 321 Lin(@)L 5"

><({ ga(w)agﬁ(w’)}>'



FDR for N osc with time-like trajectories

d : : e :
Vil 7o) == S (7. 7)) ith detector on itself: radiation reaction, self force

dv, The timelike property of the trajectories implies that
dr,  |dx;/dt;|<1. Together with the fact that 7,(7,) are increasing
. functions of 7,, this implies that du,/dr, and dv,/dr, are
dr, necessarily positive. It also implies that the functions u,( ;)
and v,(7;) have unique inverses, 1if they exist. This can be

e;
I{ﬁ(v —0,(7]))

in adv. & ret. null coord (u, v)
+(uy(7;)—u,(7)))

=Y (r. )+ yi(7.7)),
P
i 1) = (i = ). 3.7
Thus we see that, for an arbitrary trajectory, the dissipation or radiation reaction kernel has
the same form and is always local. This fact has been used in obtaining the dissipative term
in the equations of motion for the accelerated detector and probe (4.1 and 4.7).

The fluctuation-dissipation relation now follows in a straightforward manner:

fdsh L 8) (s, 7)) « (3.8)

where

I{i(Tia 5) = [{?(7}', 5) + ]XV:(T?, 5)

< dk

= | 5 lcos k(vi(1;) — vi(s)) + cos k(u;(1:) — ui(s))]. (3.9)




ith detector on jth detector: Re Zij: Correlations of the
field; Im Zij: propagation of radiation b/w two trajectories

3.2 Correlation-propagation relation

We now ask whether a similar relation holds between the real and imaginary parts of Z;;,
i # j. This would not be a fluctuation dissipation relation in the usual sense, as the real
part of Z;; describes correlations of the field between points on different trajectories rather
than fluctuations, and its imaginary part describes the propagation of radiation between
one detector and the other, rather than dissipation. We will call such relations “correlation-
propagation” relations.

If points on different trajectories have space like separations, the relevant 7;; (defined as
_(E,Lﬁ.-',u

dri . . . . o
points at spacelike separations. This is simply an expression of causality in the detector

) will vanish as a consequence of the vanishing of the commutator of a free field for

dynamics. However, the corresponding correlation 7;; need not vanish, and hence there
cannot be a general relation between these two kernels. Such a situation is realized most
clearly. for example, in the case of two uniformly accelerating detectors, one in the right
and the other in the left Rindler wedge. The trajectories, although individually timelike,
are spacelike separated everywhere. The corresponding 5 and ~9; will therefore vanish
identically. However. v1o and 19 will remain non-zero, reflecting the highly correlated nature
of the Minkowski vacuum state.

If the two pts on different trajectories are spacelike separated, e.g.,
one in L, the other in R: no CP relation.



CPR for Trajectories w/o horizons

Trajectories without horizons If, however, none of the detector trajectories possess past
or future horizons (in Minkowski space this is true in particular for geodesic trajectories, but
not only for geodesic trajectories), then each of them will lie completely within the causal
future of the others. In that case, we can obtain correlation-propagation relations relat-
ing separately the advanced and retarded correlations to their “propagating” counterparts.
These relations follow from the fluctuation dissipation relations along single trajectories de-

. . . . o i
rived above, essentially by a method of geometric construction : defining 7/ = ——* and
N 2
similarly 77, we have
€;€; dv;
A A I / 1 ‘
Vi (Tiy ;) = 1 0(vi(7;) _Uj(Tj))d - (3.10)

Since the trajectory ¢ does not possess horizons, the null coordinates u; and v; range from
—00 to 0o. Thus the functions v;v; ! and uu; 1 are identity functions over the entire real
line. Then we obtain, similar to equation (5.6),

EJ EJ.

) = TP —Tw) g
- ej ~a , 1 . !/ 311
- e. rn(T?‘?“ (?“J(Tj))) ( : )
and ;-
V(1. 7)) = AL g (7)), (3.12)



The correlations 7;; may be constructed from the noises 7;; in an identical manner:

~a / €€ dk B
’/-ij(TiaTj) — J j/o ?COSZ’L(’U( )_Ui(yi I’Uj(TJ/-)))

47(' 4
— (o7 (7)) (3.13)
€;

where we have inserted the identity function vy ' in the first step. Also,

e
J~r —1
VLT, u;

€;

u;(71)). (3.14)

~r no_
V(T 7)) = J
These two sets of constructions for the propagation and correlation kernels in terms of the
dissipation and noise kernels enables us to write down the correlation-propagation relations
simply by invoking the fluctuation-dissipation relations (5.8) as they separately apply to the
advanced and retarded parts of the noise and dissipation along single trajectories:

Vi ( TE,T / ds K" (7, .9)7;7(9,7]'-), 4 (3.15)

Correlation-propagation relation
K" and K being defined earlier (5.9). Since the quantities 7;; are really just o-functions
and the quantities K" are proportional to 7", these 1"elationb can be equivalently viewed
as constructions of the correlations r;; from the noises ;.

The above relations hold for trajectories without event horizons.



Two moving detectors following
arbitrary timelike trajectories zi(t)

* We can construct the FDR/CPR of the field for two
moving detectors following arbitrary timelike trajectories
Zi(t) as long as they do not possess the horizons.

 However, since in this case, such constructed two-point
functions of the field in general are not time-
translationally invariant, the corresponding generalized

FDR can only be expressed in the form of a convolution
iIntegral in time.

> Further details about FDR-CPR in J T Hsiang'’s talk at RQI-Tainan



Two detectors interacting via a common fie

Fluctuations in Quantum Field: E
- Stochastic component in system dynamics

Quantum Radiation [Johnson & Hu, PRD2000]

Reactive force (self-force) on system: S

NonMarkovianity shows up in the:
Colored noise in E, correlated field fluctuations
and (nonlocal) mutual influence in S

We examine these factors in
the Neg dynamics of the internal DoF, :
the condition for reaching an equilibrium
the existence FDR-CPR among them

L



Stochastic cviiEiiRiEs

Variation of the influence action yields a Langevin Eq the
internal DoF of the detector

mQ;(1;) + mw? Q;(T; —l—)\jsz /dTJ (#) [2i(%2), 2;(7)]Q; (7)) = =\ i(T3)

(Gi(m:)) =0, (Gi(m)Gi (1)) = G [2i(73), 25 (75)] -

the noise force ¢i(7i) accounts for field fluctuations of the initial
state at the location of the detectori,
the corresponding probabillity distribution is Gaussian

Qi thus has a stochastic component, which is of quantum origin



Nonlocal potential, Self Force, Quantum
Radiation, FDR, nonMarkovianity,

the nonlocal term il () : :
—A o [ dr; GRUlzi(T), 25(7;)1Q;(75)
1

(Lienard-Wiechert potential) depicts the stochastic motion of Qj;

Quantum radiation emitted by Q; has two consequences:
local: reactive force (self force) which damps Q_i

nonlocal: influence from and influencing the other
detectors. Memory, History dependent, non-Markovian

it is this guantum radiation — not classical radiation --which
matches up with the field fluctuations to form the FDR (quantum
to quantum)



Generalized FDR for the system dof

we obtain a generalized FDR for the internal DoF of the detectors
(a matrix relation)

é}?}(ﬁ.) = coth T;H' Im éf}(ﬁ;] «
it looks similar to that of the field G9 (k) = coth — Im G¥ (x)
d
. . . d--"I' LL] ":I%LL; 1
it also looks similar fo the one from LRT ~ Cjr(w) = 3 coth —= Aji(w)

But LRT is very restricted: Bath is nondynamical,

Our gFDR is obtained from the Neg dynamics of the system.

The final state of the system in general is NOT a canonical Gibbs
state unless the sys-bath coupling is vanishingly small

The off-diagonal terms are in general nonzero even there is no
direct interaction among the sys constituents



Generdlized EEEE=RERIRE PR

generalized FDR is a matrix equation containing two sets of
relations

diagonal terms. conventional fluctuation-dissipation
relations — connecting local frictional force and noise
force for each detector

off-diagonal terms: correlation-propagation relations —
relating the correlation and non-Markovian influence
between detectors;

They are not present if
(1) there is no direct inferaction between detectors and
(2) the bath (QF) does not play any dynamical role



/. FDR used for Energy
Balance and Information Flow

- The generalized FDR guarantees the energy
balance between the detectors, and the balance
between the detector and the quantum field.

- Use these relations to analyze quantum
iInformation issues for different observers in
Rindler, black hole spacetimes and inflationary
universes. Begin with mutual information.

Fluctuations, Correlations (here) - Entanglement, Teleportation (next)

- Energy/entropy, ktIn 2, Landauer relation etc.


Beilok
Inserted Text


Thank Youl!
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Rindler spacetime:
Uniformly accelerated detectors (UAD)

N uniformly accelerating Unruh-DeWitt detectors in an ambient scalar field in
1+1 Minkowski space,

The external degree of freedom @fofedch detector is described by

at at

ex ;
f = — sinhan, Z = cosh an .
d d

Its proper acceleration is a=ae *

the field o is a massless scalar field, initially prepared in global Minkowski
vacuum.

the internal DoF of the detector is modeled by a SHO.

its coupling with the field is turned on*at ¢t = 0



The interaction action takes the form ( Aiis called e_iin RHA) ¢ d@
dr

SirlQun) = [a=g iie)oa) e = A [ Qir) T 2T
. r'\‘""[ "*m]_‘ - g9k I)ﬁ)(.}, gty :I.‘)— t‘ aT; i\Ti \./T."? s

the initial state of the internal DoF can be arbitrary

the field looks thermal to the detector

the internal DoF of the detector is not in equilibrium with the field, we need to follow its
nonequilibrium evolution to find out whether at late times they settle into equilibrium

J.-T. Hsiang, B. L. Hu, and S. -Y. Lin, Fluctuation-Dissipation and Correlation-
Propagation Relations from the Nonequilibrium Dynamics of Detector-Quantum Field
Systems arXiv:1905.08596 (PRD)]




Black Hole Information Loss Paradox (Hawking, 1976)

Black hole radiation is in a mixed (thermal) state.

If the black hole continues to evaporate until it disappears completely,

a precisely known initial pure state (BH + field vacuum, a state with
specified classical quantities — mass, angular momentum and charge
plus full coherence information in the quantum field) will evolve to

a mixed state (nothing? + thermal radiation, a state permitting only
probability assignments to various alternatlves) Breakdown of unitarity?

- Related to the End-state issue. Could the information
- be retained by a stable BH remnant?
- be stored in a naked singularity
- be transferred to a baby universe?

- leak out with the Hawking radiation? Where does the information reside?

A. Inthe correlation between the field and the BH? < most particle physicists’
opinion (but countered by recent QI result of Braunstein and Pati, PRLO7)

B. Transferred to the field completely, appearing to be mixed by approximately
local measurement? (Wilczek 93)

- Information stored in field correlations, flows from lower order to higher order
(Hu, Erice 95). Can in principle be retrieved, but very difficult. Apparent
information “loss’ due to the limitation in measurement by a local observer!’



Atom analog of quantum black hole

Area of BH ~ action variable (e.g. energy) of atom
Hawking radiation of BH ~ spontaneous emission of atom

- Quantized horizon area, "area-eigenstates” (Bekenstein 1997)
- Einstein A and B coefficients of BH (Bekenstein and Meisels 1976)
- Spectroscopy of BH (Bekenstein and Mukhanov 1995)

Assume the combined (BH atom + quantum field) system is unitary.
Information gets carried away thru the Hawking radiation. But how so?

An analog: Quantum harmonic oscillator (~ BH) in a quantum field

2D: Anglin, Laflamme, Zurek and Paz 1995,
Lin and Hu, Class. Quant. Grav. 25:154004 (2008)

Working on a harmonic oscillator + quantum field model we obtained an
exact solution (so it includes full backreaction), and thus can treat strong
coupling and non-Markovian behavior never attainable before.

To follow the information trail, we calculate the entanglement dynamics.g
between the two sectors and see how coherence in each sector evolves.



Implications on BH information

Viewing the UD detector as the analog of a quantum black hole,
our results suggest:

1. All the initial information of the black hole will be encoded in its radiation
(spontaneous emission in atom analog)

-- consistent with the "no-hiding theorem" (Braunstein and Pati 2007),
-- no information is hidden in the correlation between BH and the field.

2. Only in the ultraweak coupling limit can both the BH and the field restore
most of its purity and quantum coherence.

3. In the non-Markovian regime (strong BH-field coupling), the area-eigenstate
of BH could not form a good basis, and the final state of BH would be a
complicated mixed state distributed widely from the ground state to the
highly excited area-eigenstates.

4. Therefore, at late times BH could end up as a large remnant (with
large expectation value of area operator) with all its initial
information already leaked out and dispersed into the quantum field.
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Quantum Twin Paradox [Lin, Behunin and Hu, work in progress]
We expect...

Information of the initial state of the detectors will be dispersed into the
field.

Initial entanglement between the detectors, if any, would disappear
(sudden death) if the traveling time of Bob is long enough.

During the acceleration and deceleration stages, Bob will experience
something similar to the Unruh effect.

If Bob and Alice are sitting close enough to each other in the final
stage, then the field induced quantum entanglement would take over,
namely, entanglement will be created (revived) by mutual influences
mediated by the field.

No time reversal symmetry in the history of the system.
Finite time acceleration. No event horizon
Time dilation of Bob should be considered.

Mutual influence due to the deceleration of Bob does not have an
impact on Alice.
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FDR description ot Backreaction of Quantum
Processes in Black holes and the Early Universe




Black Holes

Backreaction of Hawking radiation on the
black hole dynamics (since 80s)

Quasi-stationary: Schwarzschild metric m(t)
due to Tmn of @ (t) but system assumed to
remain in quasi-equilibrium: Need to place the
BH in a box or in AdS space. York et al (1983)

Radiating BH: e.g., Bardeen (Vaidya metric)
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‘ FDR tfor Black Hole (Candelas & Sciama 1977)

As a starting point they considered the classical relation, due to Hartle and Hawking
[47], between energy flux transmitted across the horizon of a perturbed black hole and the
shear 3:

*E  M?
dtdQ 7

where o(2M) is the perturbed shear of the null congruence which generates the future

| o (2M) |2, (4.4)

horizon.
In turn, the dissipation of horizon area with respect to the advanced null coordinate
is related to the energy flux across the horizon, and the above equation becomes (see, for

example [48])

dA
R 4ﬂ,{f | o |2 dA, (4.5)
dv H

the integral being performed over the horizon.

The classical formula above immediately suggests a fluctuation-dissipation description:
the dissipation in area is related linearly to the squared absolute value of the shear amplitude.
This description is even more relevant when the gravitational perturbations are quantized.
Then the integrand of the right-hand-side of Eq.(4.5) is (¢%0), the expectation value being
taken with respect to an appropriate quantum state. Candelas and Sciama choose this state
to be the Unruh vacuum, arguing that it is the vacuum which approximates best a flux of
radiation from the hole at large radii.
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Substitution of this quantity in (4.5), the left-hand-side of that equation
now represents the dissipation in area due to the Hawking flux of
gravitational radiation, and the right-hand-side comes from pure quantum
fluctuations of gravitons (as opposed to semiclassical fluctuations of
gravitational perturbations, which are induced by the presence of
quantum matter).

Critiques: by Hu,Raval Sinha 1999

Does not relate dissipation of a certain quantity (horizon
area) to the fluctuations of the same quantity.

Need to compute the two-point function of the area, a
four-point function of the graviton field, related to a two-
point function of the stress tensor, called Noise Kernel

Noise Kernel, the centerpiece of stochastic gravity theory
(Hu & Verdaguer et al) enters into the FDR description of
backreaction
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