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New Physics

Some Basic Questions

What underlies the Standard Model?
Why is the θ parameter in QCD so small?
Why is there more matter than antimatter in our universe?
Are neutrinos Majorana?

...

The observation (or continued non-observation) of electric dipole
moments and 0νββ decay will help us address these questions.

Atomic EDMs yield some of the best experimental limits. Heavy
diamagnetic atoms are particularly sensitive to new physics within
the nucleus.

Many ββ decay candidates are also heavy.
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EDMs: How Atoms Can Get Them

EDMs require CP violation
and

an undiscovered source of CP violation is required to explain why
there is so much more matter than antimatter.

The source can work its way into
nuclei through CP-violating πNN
vertices (in chiral EFT). . .

leading, e.g. to a neutron EDM. . .
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ḡ

π
ḡ
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EDMs: How Atoms Can Get Them (cont.)

. . . and to a nuclear EDM from the nucleon
EDM or a T-violating NN interaction:

Note:��CP = �T
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(®σ1 ± ®σ2

) · (®+1 − ®+2

) exp (−mπ |®r1 − ®r2 |
)

mπ |®r1 − ®r2 |
+ contact term

The ḡ’s (isoscalar, isovector and isotensor) depend on source of CP violation.

Atoms gets an EDM from nuclei. But electronic shielding replaces
nuclear dipole operator with “Schiff operator,”

S ≈
∑

p
r2
pzp + . . . ,

making relevant nuclear quantity the Schiff moment:

〈S〉 =
∑

m

〈0| S |m〉 〈m| VPT |0〉
E0 − Em

+ c.c.

Job of nuclear-structure theory: compute dependence of
〈S〉 on the ḡ’s (and on the contact term and nucleon EDM).

It’s up to QCD to compute the dependence of the
ḡ vertices on fundamental sources of CP violation.
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ḡ

π
ḡ
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EDMs: How Atoms Can Get Them (cont.)
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ḡ

γ

VPT ∝ ḡ
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What to Compute

More precisely, because the ḡi are so small,

〈S〉 =
∑

i

ai g ḡi ,

and we have to calculate the three ai. These reflect action of both
the S and VPT operators.

Most heavy nuclei must be treated in something like DFT for now,
leading to uncertainty in the ai that is large and difficult to estimate.

But other observables can help.



225Ra: Octupole Physics
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of the favored K * = z* band. (We have chosen to show in fig. 4 the M 1 multipolarity 
for the 134 keV y so that this apparent con%& in the data will not be overlooked 
by the reader.) 

Definitive I” assignments for the remaining levels above 236 keV are difficult to 
make fram the available data, although the y-ray multipolarities and o-transition 
hindrance factors provide at least some insight. Again, the low value (23) of the 
hindrance factor of the rw-transition to the 394.7 keV Ievel is quite interesting, but 
no definite conclusion can be drawn regarding the I” assignment of this fevei. 

Parity doublet

Unlike in other nuclei, these
two states are the whole story.

Deformed density

Two members of the parity
doublet correspond to the same
intrinsic mean-field state:

| 1
2

±
〉 ≈ 1√

2

( | 〉 ± | 〉 )
and, to good approximation,

〈S〉 ≈ 2
3

〈S〉intr.

〈 | Sz | 〉〈 | VPT | 〉
E+ − E−



Correlation of 〈S〉intr. with Octupole Defm. in 224Ra

Gaffney et al., 2013
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Correlation with octupole moment of 225Ra even better.

Will be determined at ANL.
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Light Actinides More Generally
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Implications for Lab Schiff Moment
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Reducing Uncertainty of Lab Moments

The problem is that we don’t have information about 〈VPT〉.
Can β decay constrain its matrix element?

VPT has same space-spin form as two-body axial-charge operator:

A0
2b ∝ ®τ1 × ®τ2

(®σ1 + ®σ2
) · (®+1 − ®+2

) e−mπ |®r1−®r2 |
mπ

��®r1 − ®r1
��

Because the one-body part,

A0
2b ∝

1
M
®σ · ®+

is suppressed by q/M, the pion-exchange contribution is significant.
Also, the effective one-body form of VPT :

Veff
PT ∝ ®σ · ®+ρ

has a similar form.

Can we measure
1. charge-changing transition strength to

analog of |1/2−〉 in 225Fr?
2. axial-charge β decays in other nuclei?
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Review of 0νββ Decay
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Nuclear Matrix Element (Simplified)

M0ν = g2
A M

0ν

GT − g2
V M0ν

F + . . .

with

M0ν
GT = 〈f |

∑
a,b

HGT(rab)®σa · ®σbτ
+
a τ

+
b |i〉

M0ν
F = 〈f | |

∑
a,b

HF(rab)τ+a τ+b |i〉

HGT(r) ≈ HF(r) ≈ Rnucl.

r

Dominant
piece

Also:

M2ν = g2
A

∑
m

〈f |∑a ®σaτ
+
a |m〉 · 〈m|

∑
b ®σbτ

+
b |i〉

Em − Ef+Ei
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Ab Initio Methods for (Fairly) Heavy Nuclei
Partition of Full Hilbert Space

P̂HP̂ P̂HQ̂

Q̂HP̂ Q̂HQ̂

P Q

P

Q

“Model” state or space

P = states we care about
Q = the rest

Task: Find unitary transformation to
make H block-diagonal in P and Q,
with Heff in P reproducing most
important eigenvalues.

For transition operator M̂, must apply
same transformation to get M̂eff.

As difficult as solving full problem. But N-body effective
operators with N >2 or 3 can be treated approximately.
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Coupled Clusters

Wave function ansatz:

|Ψ〉 = eT̂ |Slater det.〉
= exp

(
t1
ija
†
i aj + t2

ijkla
†
i a†j akal + . . .

)
|Slater det.〉

Then using a similarity transform:

Ĥ −→ e−T̂ĤeT̂ ,

means that you work with a Slater determinant rather than the
fully correlated state when building excitations.



In-Medium Similarity Renormalization Group

Flow equation for effective Hamiltonian.
Gradually decouples shell-model space.
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Figure 7: Decoupling for the White generator, Eq. (41), in the Jπ = 0+ neutron-
neutron interaction matrix elements of 40Ca (emax = 8, ~ω = 20 MeV, Entem-Machleidt
N3LO(500) evolved to λ = 2.0 fm−1). Only hhhh, hhpp, pphh, and pppp blocks of the
matrix are shown.

mechanism. A likely explanation is that the truncation of the commutator (49) to one-
and two-body contributions only (Eqs. (50), (51)) causes an imbalance in the infinite-
order re-summation of the many-body perturbation series. For the time being, we have to
advise against the use of the Wegner generator in IM-SRG calculations with (comparably)
“hard” interactions that exhibit poor order-by-order convergence of the perturbation
series.

5.4. Decoupling

As discussed in Sec. 4.1, the IM-SRG is built around the concept of decoupling the
reference state from excitations, and thereby mapping it onto the fully interacting ground
state of the many-body system within truncation errors. Let us now demonstrate that
the decoupling occurs as intended in a sample calculation for 40Ca with our standard
chiral N3LO interaction at λ = 2.0 fm−1. Figure 7 shows the rapid suppression of the
off-diagonal matrix elements in the Jπ = 0+ neutron-neutron matrix elements as we
integrate the IM-SRG(2) flow equations. At s = 2.0, after only 20–30 integration steps
with the White generator, the Γpp′hh′(s) have been weakened significantly, and when we
reach the stopping criterion for the flow at s = 18.3, these matrix elements have vanished
to the desired accuracy. While the details depend on the specific choice of generator, the
decoupling seen in Fig. 7 is representative for other cases.

With the suppression of the off-diagonal matrix elements, the many-body Hamiltonian
is driven to the simplified form first indicated in Fig. 2. The IM-SRG evolution not only
decouples the ground state from excitations, but reduces the coupling between excitations
as well. This coupling is an indicator of strong correlations in the many-body system,
which usually require high- or even infinite-order treatments in approaches based on the
Goldstone expansion. As we have discussed in Sec. 3, the IM-SRG can be understood as
a non-perturbative, infinite-order re-summation of the many-body perturbation series,
which builds the effects of correlations into the flowing Hamiltonian. To illustrate this,
we show results from using the final IM-SRG Hamiltonian H(∞) in Hartree-Fock and
post-HF methods in Fig. 8.

After the same 20–30 integration steps that lead to a strong suppression of the off-
diagonal matrix elements (cf. Fig. 14), the energies of all methods collapse to the same
result, which is the IM-SRG(2) ground-state energy. By construction, this is the result

29

Hergert et al.

Trick is to keep all 1- and 2-body terms in H at each step after
normal ordering (approximate treatment of 3-, 4- . . . terms).

If model space contains just a single state, approach yields
ground-state energy. If it is larger, result is effective interaction and
operators.



ββ Decay in 48Ca with Coupled Clusters

2ν

!! decay of 48Ca

Convergence with respect to 
model-space sizes of 48Ti (top)
and 48Sc (bottom), and 
comparison with data.

0ν
Neutrinoless !! decay of 48Ca

Small spread of results for different interactions
Small corrections when going from CCSD to more precise CCSDT-3
Ab initio results close to shell-model (SM) results

Coupled cluster 
method S. Novario et al., in prep.

A little larger than shell-model result.

From G. Hagen



Small Fly in the Ointment

Usual light neutrino exchange:

must be supplemented, at same order in
chiral EFT, by short-range operator
(representing high-energy ν exchange):

Coefficient of this term is unknown.
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Two-Body Axial Current and Connection with β Decay
β Decay (simplified) with electron lines omitted

Leading order in χEFT:
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Usual β-decay current.
Finite-momentum corrections at
next order.

Coefficients same as in
three-body interaction:
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plus a contact



Two-Body Axial Current and Connection with β Decay
β Decay (simplified) with electron lines omitted

Leading order in χEFT:
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Two-Body Axial Current and Connection with β Decay
β Decay (simplified) with electron lines omitted

Leading order in χEFT:
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Product of Currents

In first quantization, let∑
i

Ô1b
i = 1-body operator in J+∑

ij

Ô2b
ij = 2-body operator in J+

J+(®q)J+(−®q) =
∑

ij

Ô1b
i Ô1b

j +

3-body op.∑
ijk

(
Ô2b

ij Ô1b
k + Ô1b

i Ô2b
jk

)
+ 4-body

+
∑

ij

(
Ô2b

ij [Ô1b
i + Ô1b

j ] + [Ô1b
i + Ô1b

j ]Ô2b
ij

)
2-body op.



Inclusion of Two-Body Currents

Diagrams for these contributions:
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Prior Work on Effects in Heavy Systems
Javier, Doron, Achim: Symmetric Nuclear Matter

Normal ordered two-body current, to get effective one-body
current. Corresponds to:
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q2 + 4m2
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+ I(ρ, P)
(
2c4 − 33

3
+

1
6m

)]
I(ρ, P) ≈ 2/3 at nuclear density, with weak dependence on P.

0νββ decay quenched by about 30%, somewhat less than
2νββ decay because of q dependence of effective gA.
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More Complete Nuclear Matter Calculation
With Simplest Operator: gA at one-body vertex, cD at two-body vertex

Goldstone (Time-Ordered) Diagrams
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i<F

〈F | p†d n†i nanb p†c ni |I〉

Three-body operators contribute (a)
and (b) plus twice (c) and (d) ≈ 0.

(c) + (d) ≈ − 1
2
[(a) + (b)]

(e) + (f) ≈ (Λ/kF − 1) [(a) + (b)]

Need counter-term
to renormalize these



76Ge in Shell Model

Three-body operators
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Takeaway: Effects of three-
body operators are small.
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Two-Body Operators
With Nucleon Form Factors

Right side includes usual modifications.
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Need counter term, just like in leading order. Help!
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Two-Body Operators
With Nucleon Form Factors

Right side includes usual modifications.
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Takeaway: Effects of two-body current look
moderate... But we don’t know for sure.



So, to Sum Up. . .

1. Schiff moments, for now, must be calculated in DFT, which
makes drastic and uncontrolled approximations. Other
observables can help constrain calculations.

Can β-decay rates do that?

2. Application of chiral EFT to 0νββ decay implies short-range
contribution to neutrino exchange with unknown coefficient.
A similar issue hampers our ability to fully examine effects of
the two-body current in 0νββ decay.

The part for which we do know coefficients seems to quench
very little, however.
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Finally. . .
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