

LARGE-SCALE DIAGONALIZATION, BETA-DECAY, AND LOW-MOMENTUM SCALES OF FINITE NUCLEI

ECT* workshop: "Precise beta decay calculations for searches for new physics", April 8–12, 2019

CHRISTIAN FORSSÉN

Department of Physics, Chalmers University of Technology, Sweden

Outline

Part 1: The nuclear many-body problem and uncertainties

- Interactions and many-body solvers
- Convergence and limitations for the ab initio
 No-Core Shell Model

Phys. Rev. C 97 (2018) 034328 Phys. Rev. X 6 (2016) 011019 PPNP 69 (2013) 131

Unpublished

- Part 3:
 Many-body systems in finite oscillator spaces
 - ▶ IR extrapolations at fixed UV cutoff
 - Low-momentum scales of finite nuclei

Phys. Rev. C 91, (2015) 061301R Phys. Rev. C 97, (2018) 034328

Part 1: The nuclear many-body problem and uncertainties

SUMMARY — PART 1A

Many-body methods with polynomial scaling (CC, IMSRG, SCGF) reach calcium and nickel regions, and even beyond...

SUMMARY — PART 1A

Many-body methods with polynomial scaling (CC, IMSRG, SCGF) reach calcium and nickel regions, and even beyond...

Computational capabilities exceed accuracy of available

interactions.

New generation d

 different fitting intermediate d

Goal: Credible presented ab initio nuclear presented about the control of the contr

SUMMARY — PART 1A

- Many-body methods with polynomial scaling (CC, IMSRG, SCGF) reach calcium and nickel regions, and even beyond...
- Computational capabilities exceed accuracy of available interactions.
- New generation of nuclear interactions:
 - different fitting strategies (saturation point); including intermediate delta particle; revisit power counting.
- Goal: Credible program for uncertainty quantification in ab initio nuclear physics

QUANTIFIED THEORETICAL UNCERTAINTIES

- Statistical: parametric uncertainties (should be done also for phenomenological models).
- Systematic: method (many-body solver) and numerical uncertainty.
- Systematic: physics model uncertainty.

Part 1b: Ab initio No-Core Shell Model

The no-core shell model

- Many-body Schrödinger equation
 - A-nucleon wave function;
 - Non-relativistic, point nucleons
- Hamiltonian:

$$H_A = \frac{1}{A} \sum_{i < j}^{A} \frac{(\vec{p}_i - \vec{p}_j)^2}{2m} + \sum_{i < j}^{A} V_{NN,ij} + \sum_{i < j < k}^{A} V_{NNN,ijk}$$

- Many-body basis: Slater determinants composed of harmonic oscillator single-particle states
- Respects translational invariance and includes full antisymmetrization

The no-core shell model

Bare interactions used (here NNLOopt).

Model space parameters: N_{max} and HO frequency.

Convergence pattern needs to be understood (part 3).

The NCSM curse of dimensionality - explicit matrix storage

Dimensions: p- and sd-shell

Transition densities

$$\left(\xi_{f}J_{f}\parallel T_{\lambda}\parallel \xi_{i}J_{i}\right)=\hat{\lambda}^{-1}\sum\left(a\parallel T_{\lambda}\parallel b\right)\left(\xi_{f}J_{f}\parallel \left[a_{a}^{\dagger}a_{b}\right]_{\lambda}\parallel \xi_{i}J_{i}\right)$$

TRDENS: Phys. Rev. C 70 (2004) 014317

ANICRE: D. Sääf, PhD thesis (2015)

Transition densities

$$\left(\xi_{f}J_{f} \parallel T_{\lambda} \parallel \xi_{i}J_{i}\right) = \hat{\lambda}^{-1}\sum\left(a,b \parallel T_{\lambda} \parallel c,d\right)\left(\xi_{f}J_{f} \parallel \left[a_{a}^{\dagger}a_{b}^{\dagger}a_{c}a_{d}\right]_{\lambda} \parallel \xi_{i}J_{i}\right)$$

TRDENS: Phys. Rev. C 70 (2004) 014317

ANICRE: D. Sääf, PhD thesis (2015)

Part 2: Selected (preliminary) results

A=6 Gamow-Teller transition (IA)

Possibly employ correlation studies to constrain prediction.

A=19 Gamow-Teller transition

N _{max}	B(GT) ⁶ He(0+) → ⁶ Li(1+) ⁸ Ω=24 MeV	B(GT) 19Ne(1/2+) → 19F(1/2+) %Ω=28 MeV
2	5.251	2.013
4	5.191	2.059
• • •	• • •	
14	5.104	Preliminary

Dark matter scattering off nuclei

Rate of nuclear scattering events in direct detection experiments:

$$\frac{\mathrm{d}\mathcal{R}}{\mathrm{d}q^2} = \frac{\rho_{\chi}}{m_{A}m_{\chi}} \int \mathrm{d}^3\vec{v} \, f(\vec{v} + \vec{v}_e) v \frac{\mathrm{d}\sigma}{\mathrm{d}q^2}$$

- astrophysics $\rightarrow m_{\chi}$, ρ_{χ} , f dark matter mass, density, velocity distributions
- particle and nuclear physics $ightarrow rac{{
 m d}\sigma}{{
 m d}q^2}$

Scattering cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q^2} = \frac{1}{(2J+1)v^2} \sum_{\tau,\tau'} \left[\sum_{\ell=M,\Sigma',\Sigma''} R_{\ell}^{\tau\tau'} W_{\ell}^{\tau\tau'} + \frac{q^2}{m_N^2} \sum_{\ell=\Phi'',\Phi''M,\atop \tilde{\Phi}',\Delta,\Delta\Sigma'} R_{\ell}^{\tau\tau'} W_{\ell}^{\tau\tau'} \right]$$

- dark matter response functions $R_m^{ au au'}\left(v_T^{\perp 2}, \frac{q^2}{m_N^2}, c_i^{ au}c_j^{ au'}\right)$
- nuclear response functions $W_{\ell}^{\tau\tau'}(q^2)$

Uncertainties?

• ρ_{χ} : $\pm 30\%$, $f(\vec{v})$: $\pm ?$ (important only for light DM), $W_{l}^{\tau\tau'}$: $\pm ?$

Non-relativistic EFT and nuclear response functions

nuclear response functions:

$$W_{AB}^{\tau\tau'}(q^2) = \sum_{L \leq 2J} \langle J, T, M_T || \hat{A}_{L;\tau}(q) || J, T, M_T \rangle \langle J, T, M_T || \hat{B}_{L;\tau'}(q) || J, T, M_T \rangle$$

• $\hat{A}_{L;\tau}$, $\hat{B}_{L;\tau}$ – nuclear response operators:

$$\begin{split} &M_{LM;\tau}(q) = \sum_{i=1}^{A} M_{LM}(q\rho_i) \, t_{(i)}^{\tau}, \quad \Sigma_{LM;\tau}'(q) = -\mathrm{i} \sum_{i=1}^{A} \left[\frac{1}{q} \overrightarrow{\nabla}_{\rho_i} \times \mathbf{M}_{LL}^{M}(q\rho_i) \right] \cdot \vec{\sigma}_{(i)} t_{(i)}^{\tau}, \\ &\Sigma_{LM;\tau}''(q) = \sum_{i=1}^{A} \left[\frac{1}{q} \overrightarrow{\nabla}_{\rho_i} M_{LM}(q\rho_i) \right] \cdot \vec{\sigma}_{(i)} t_{(i)}^{\tau}, \quad \Delta_{LM;\tau}(q) = \sum_{i=1}^{A} \mathbf{M}_{LL}^{M}(q\rho_i) \cdot \frac{1}{q} \overrightarrow{\nabla}_{\rho_i} t_{(i)}^{\tau}, \\ &\widetilde{\Phi}_{LM;\tau}'(q) = \sum_{i=1}^{A} \left[\left(\frac{1}{q} \overrightarrow{\nabla}_{\rho_i} \times \mathbf{M}_{LL}^{M}(q\rho_i) \right) \cdot \left(\vec{\sigma}_{(i)} \times \frac{1}{q} \overrightarrow{\nabla}_{\rho_i} \right) + \frac{1}{2} \mathbf{M}_{LL}^{M}(q\rho_i) \cdot \vec{\sigma}_{(i)} \right] t_{(i)}^{\tau}, \\ &\Phi_{LM;\tau}''(q) = \mathrm{i} \sum_{i=1}^{A} \left(\frac{1}{q} \overrightarrow{\nabla}_{\rho_i} M_{LM}(q\rho_i) \right) \cdot \left(\vec{\sigma}_{(i)} \times \frac{1}{q} \overrightarrow{\nabla}_{\rho_i} \right) t_{(i)}^{\tau} \end{split}$$

• nuclear ground-state wave functions $|J, T, M_T\rangle$ calculated within (no-core) shell model

Part 3: Many-body systems in finite oscillator spaces

6-Li ground-state observables

- From N_{max} =20 to 22 the variational minimum changes by < 90 keV.
- However, mostly we will be restricted to smaller model spaces.
- Convergence behaviour of radius?

Convergence in finite oscillator spaces

- What is the equivalent of Lüscher's formula for the harmonic oscillator basis?
 - [Lüscher, Comm. Math. Phys. 104, 177 (1986)]
- Convergence in momentum space (UV) and in position space (IR) needed
 - [Stetcu et al. (2007); Coon et al. (2012); Furnstahl et al. (2012, 2015); König et al. (2014)]
- **Choose regime** ($N, \hbar \omega$) with negligible UV corrections.
- The infrared error term is universal for short range Hamiltonians.
- It can be systematically corrected and resembles error from putting system into an infinite well.

$$E(L) = E_{\infty} + Ae^{-2k_{\infty}L} + \mathcal{O}(e^{-4k_{\infty}L})$$
$$\langle r^2 \rangle_L \approx \langle r^2 \rangle_{\infty} [1 - (c_0\beta^3 + c_1\beta + c_2)e^{-\beta}]$$

What (precisely) is the IR scale L?

Key idea: compute eigenvalues of kinetic energy and compare with corresponding (hyper)spherical cavity to find L.

What is the corresponding cavity?

Single particle	A particles (product space)	A particles in No-core shell model
Diagonalize T _{kin} =p ²	Diagonalize A-body T_{kin}	Diagonalize A-body T_{kin}
3D spherical cavity	A fermions in 3D cavity	3(A-1) hyper-radial cavity

$$L_{2} = \sqrt{2(N+3/2+2)}b \quad L_{\text{eff}} = \left(\frac{\sum_{nl} \nu_{nl} a_{l,n}^{2}}{\sum_{nl} \nu_{nl} \kappa_{l,n}^{2}}\right)^{1/2} L_{\text{eff}} = b \frac{X_{1,\mathcal{L}}}{\sqrt{T_{1,\mathcal{L}}(N_{\text{max}}^{\text{tot}})}}$$

More, Ekström, Furnstahl, Hagen, Papenbrock, PRC 87, 044326 (2013) Furnstahl, Hagen, Papenbrock, Wendt, J. Phys. G 42, 034032 (2015)

Wendt, Forssén, Papenbrock, Sääf, PRC 91, 061301(R) (2015)

IR length in NCSM spaces

Diagonalize kinetic energy in 3(A-1) dimensional harmonic oscillator; seek lowest antisymmetric state and equate to hyperspherical cavity with radius Leff.

A practical approach to IR extrapolations

- In practice it is often challenging to fulfill:
 - 1.... being UV converged
 - 2. ... reaching asymptotically large values of $k_{\infty}L$
- Moreover, we lack a physical interpretation of k_{∞} for many-body systems.

A practical approach to IR extrapolations

- Perform instead the extrapolation at a fixed (not necessarily UV converged) value of Λ
- The LO IR extrapolation becomes

$$E(L,\Lambda) = E_{\infty}(\Lambda) + a(\Lambda) \exp\left[-2k_{\infty}(\Lambda)L\right]$$

- Previous work on UV corrections [eg. Furnstahl et al. 2012] just represents a special case of this general formula.
- We treat $E_{\infty}(\Lambda)$, $a(\Lambda)$, $k_{\infty}(\Lambda)$ as fit parameters; and include also an estimated NLO correction as a weighting factor.

Hyperradial well, explains low-momentum scale

NCSM: hyper-radial well
$$\vec{\rho}^2 = \sum_{j=1}^{A-1} \vec{\rho}_j^2$$
. $e^{-k_1|\vec{\rho}_1|}$

$$e^{-k_1|\vec{\rho}_1|}$$

Separation energy for lowest threshold

$$S = \frac{\hbar^2 k_{\infty}^2}{2m}$$

See also König and Lee, arXiv:1701.00279 for volume dependence of N-Body Bound States in lattice calculations.

Results: A=3 — ground-state energy

Results: A=4 — ground-state energy

Results: 6Li — ground-state energy

From	extrapolat	From extracted threshold	
Nucleus	Channel	↓ k _∞	k_{sep}
3 H	d+n	0.54(1)	0.54(1)
³ He	d+p	0.51(2)	0.51(1)
⁴ He	³ H+p	0.84(5)	0.97(3)
⁶ Li	⁴ He+d	0.44(5)	0.19(8)

Results: ³H, ⁶Li — point-proton radii

Acknowledgments

Many thanks to my collaborators

- Håkan Johansson, Boris Carlsson, Andreas Ekström, Daniel Sääf (Chalmers)
- Aaina Bansal, Gaute Hagen, Thomas Papenbrock (ORNL/UT)
- Daniel Gazda (Prague)

