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Part 1: The nuclear many-body 
problem and uncertainties



▸ Many-body methods with polynomial scaling (CC, 
IMSRG, SCGF) reach calcium and nickel regions, and 
even beyond…  

▸ Computational capabilities exceed accuracy of available 
interactions. 

▸ New generation of nuclear interactions:  

- different fitting strategies (saturation point); including 
intermediate delta particle; revisit power counting. 

▸ Goal: Credible program for uncertainty quantification in 
ab initio nuclear physics

SUMMARY — PART 1ATrend in realistic ab initio calculations 
Explosion of many-body methods  
(Coupled clusters, Green’s function Monte Carlo, In-
Medium SRG, Lattice EFT, No-Core Shell Model, 
Self-Consistent Green’s Function, UMOA, …) 

Computational capabilities exceed accuracy of available interactions  
[Binder et al, Phys. Lett. B 736 (2014) 119] 
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▸ Many-body methods with polynomial scaling (CC, 
IMSRG, SCGF) reach calcium and nickel regions, and 
even beyond…  

▸ Computational capabilities exceed accuracy of available 
interactions. 

▸ New generation of nuclear interactions:  

- different fitting strategies (saturation point); including 
intermediate delta particle; revisit power counting. 

▸ Goal: Credible program for uncertainty quantification in 
ab initio nuclear physics

SUMMARY — PART 1A



▸ Statistical: parametric 
uncertainties (should be done 
also for phenomenological 
models). 

▸ Systematic: method (many-
body solver) and numerical 
uncertainty. 

▸ Systematic: physics model 
uncertainty.

QUANTIFIED THEORETICAL UNCERTAINTIES 

Preliminary

Phys. Rev. X 6 (2016) 011019



Part 1b:  
Ab initio No-Core Shell Model



▸ Many-body Schrödinger equation 
• A-nucleon wave function; 
• Non-relativistic, point nucleons 

▸ Hamiltonian: 
 
 
 

▸ Many-body basis: Slater determinants composed of harmonic 
oscillator single-particle states 

▸ Respects translational invariance and includes full 
antisymmetrization

The no-core shell model

HA =
1
A

A�

i<j

(�pi � �pj)2

2m
+

A�

i<j

VNN,ij +
A�

i<j<k

VNNN,ijk

P. Navråtil et al, PPNP 69 (2013) 131
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The no-core shell model

Bare interactions used 
(here NNLOopt). 

Model space 
parameters: Nmax and 
HO frequency. 

Convergence pattern 
needs to be understood 
(part 3).



The NCSM curse of dimensionality - explicit matrix storage
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Dimensions: p- and sd-shell



Transition densities

TRDENS: Phys. Rev. C 70 (2004) 014317  
ANICRE: D. Sääf, PhD thesis (2015)

(ξf Jf Tλ ξiJi) = ̂λ− 1 ∑ (a Tλ b) (ξf Jf [a†
aab]λ

ξiJi)



Transition densities

TRDENS: Phys. Rev. C 70 (2004) 014317  
ANICRE: D. Sääf, PhD thesis (2015)

(ξf Jf Tλ ξiJi) = ̂λ− 1 ∑ (a, b Tλ c, d) (ξf Jf [a†
aa†

b acad]λ
ξiJi)



Part 2:  
Selected (preliminary) results



A=6 Gamow-Teller transition (IA)

Preliminary
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constrain prediction.



A=19 Gamow-Teller transition

 
Nmax

B(GT) 
6He(0+) → 6Li(1+) 

#$=24 MeV

B(GT) 
19Ne(1/2+) → 19F(1/2+) 

#$=28 MeV

2 5.251 2.013

4 5.191 2.059

… …

14 5.104 Preliminary



Dark matter scattering off nucleiNonrelativistic EFT for DM–nucleus interaction

Rate of nuclear scattering events in direct detection experiments:

dR
dq2

=
⇢�

mAm�

Z
d3~v f (~v + ~ve)v

d�

dq2

astrophysics ! m�, ⇢�, f - dark matter mass, density, velocity distributions

particle and nuclear physics ! d�
dq2

Scattering cross section:

d�

dq2
=

1

(2J + 1)v2

X

⌧,⌧ 0

"
X

`=M,⌃0,⌃00

R
⌧⌧ 0

` W
⌧⌧ 0

` +
q
2

m2
N

X

`=�00,�00M,
�̃0,�,�⌃0

R
⌧⌧ 0

` W
⌧⌧ 0

`

#

dark matter response functions R
⌧⌧ 0

m

⇣
v

?2
T , q2

m2
N
, c⌧

i c
⌧ 0

j

⌘

nuclear response functions W
⌧⌧ 0

`

�
q
2
�

Uncertainties?

⇢�: ±30%, f (~v): ±? (important only for light DM), W ⌧⌧ 0
l : ±?

D. Gazda (Chalmers) Nuclear structure calculations for dark matter searches 6



Non-relativistic EFT and nuclear response functionsNonrelativistic EFT for DM–nucleus interaction

nuclear response functions:

W ⌧⌧ 0
AB (q2) =

X

L2J

hJ,T ,MT kÂL;⌧ (q)kJ,T ,MT ihJ,T ,MT kB̂L;⌧ 0 (q)kJ,T ,MT i

ÂL;⌧ , B̂L;⌧ – nuclear response operators:

MLM;⌧ (q) =
AX

i=1

MLM(q⇢i ) t
⌧
(i), ⌃0

LM;⌧ (q) = �i
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i=1


1

q

�!r⇢i ⇥MM
LL(q⇢i )

�
· ~�(i)t

⌧
(i),

⌃00
LM;⌧ (q) =

AX

i=1


1

q

�!r⇢i MLM(q⇢i )
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⌧
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nuclear ground-state wave functions |J,T ,MT i
calculated within (no-core) shell model

D. Gazda (Chalmers) Nuclear structure calculations for dark matter searches 7D. Gazda, R. Catena, CF: Phys. Rev. D 95 (2017) 103011



Part 3: Many-body systems in 
finite oscillator spaces



6-Li ground-state observables

• From Nmax=20 to 22 the variational minimum changes by < 90 keV. 

• However, mostly we will be restricted to smaller model spaces. 

• Convergence behaviour of radius?

NN interaction: NNLOopt (Ekström et al, 2013)�35
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▸ What is the equivalent of Lüscher’s formula for the harmonic 
oscillator basis?  
[Lüscher, Comm. Math. Phys. 104, 177 (1986)] 

▸ Convergence in momentum space (UV) and in position space (IR) 
needed  
[Stetcu et al. (2007); Coon et al. (2012); Furnstahl et al. (2012, 2015); König et al. (2014)] 

▸ Choose regime (N, ħω) with negligible UV corrections. 

▸ The infrared error term is universal for short range Hamiltonians. 

▸ It can be systematically corrected and resembles error from putting 
system into an infinite well.

 Convergence in finite oscillator spaces

PHYSICAL REVIEW C 87, 044326 (2013)

Universal properties of infrared oscillator basis extrapolations

S. N. More,1,* A. Ekström,2,3 R. J. Furnstahl,1,†G. Hagen,4,5 and T. Papenbrock4,5,‡
1Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

2Department of Physics and Center of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway
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4Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
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(Received 21 February 2013; revised manuscript received 4 April 2013; published 22 April 2013)

Recent work has shown that a finite harmonic oscillator basis in nuclear many-body calculations effectively
imposes a hard-wall boundary condition in coordinate space, motivating infrared extrapolation formulas for
the energy and other observables. Here we further refine these formulas by studying two-body models and the
deuteron. We accurately determine the box size as a function of the model space parameters, and compute
scattering phase shifts in the harmonic oscillator basis. We show that the energy shift can be well approximated in
terms of the asymptotic normalization coefficient and the bound-state momentum, discuss higher-order corrections
for weakly bound systems, and illustrate this universal property using unitarily equivalent calculations of the
deuteron.

DOI: 10.1103/PhysRevC.87.044326 PACS number(s): 21.30.−x, 05.10.Cc, 13.75.Cs

I. INTRODUCTION

Harmonic oscillator (HO) basis expansions are widely used
in nuclear structure calculations, but limited computational
resources often require that the basis be truncated before
observables are fully converged. In such cases, a procedure
to extrapolate results to infinite basis size is needed. Such
schemes have conventionally been formulated using the basic
parameters defining the oscillator space, namely the maximum
number of oscillator quanta N and the frequency ! of
the oscillator wave functions. An alternative approach to
extrapolations is motivated by effective field theory (EFT)
and based instead on explicitly considering the infrared (IR)
and ultraviolet (UV) cutoffs imposed by a finite oscillator
basis [1,2]. This has recently led to a theoretically motivated IR
correction formula and an empirical UV correction formula [2]
in which the basic extrapolation variables are an effective
hard-wall radius L and the analogous cutoff in momentum,
"UV. In terms of the oscillator length b ≡

√
h̄/(m!), rough

estimates of these variables are L ≈
√

2(N + 3/2)b ≡ L0 and
"UV ≈

√
2(N + 3/2)h̄/b [1,2].

The b dependence of L and "UV suggests that if the oscil-
lator length is small enough (i.e., if the oscillator frequency is
large enough), the UV correction will be negligible compared
to the IR correction. In this domain, an estimate for the energy
in the truncated basis was derived in Ref. [2] based on an
effective Dirichlet boundary condition at L:

E(L) = E∞ + Ae−2k∞L + O(e−4k∞L), (1)

where k∞ =
√

−2mE∞/h̄2 is the binding momentum defined
from the separation energy E∞. Consideration of the tails of
the HO wave functions motivated an improved choice for L

*more.13@osu.edu
†furnstahl.1@osu.edu
‡tpapenbr@utk.edu

given N and h̄! [2]:

L′
0 ≈ L0 + 0.54437 b (L0/b)−1/3. (2)

The extrapolation formula (1) is the leading-order correction
to the ground-state energy once UV corrections can be
neglected and once L exceeds the radius of the nucleus
under consideration. Test calculations of few- and many-
body nuclei using L = L′

0 and with E∞, A, and k∞ as
fit parameters showed that the IR correction formula (1)
can be used in practice [2]. (Note: The results in Ref. [2]
were derived in the laboratory system with m the particle
mass. Here for convenience we take m to be the reduced
mass µ, which rescales b and k∞ but leaves the expressions
unchanged.)

In the present work we seek a more complete understanding
of this correction formula and to more accurately determine
the hard-wall radius L. While the most useful application of
Eq. (1) is to few- or many-body nuclei, we specialize here
to the two-particle case, which we can control and calculate
precisely. In doing so we gain insight into the universal
features of the IR extrapolation, including its invariance to
phase-shift equivalent potentials and its application to excited
states. While the coefficient A was previously treated purely
as a fit parameter, we extend the derivation from Ref. [2] to
show how it can be expressed in terms of the observables
k∞ and the asymptotic normalization constant γ∞, just as
in the related Lüscher-type formulas developed for lattice
applications [3– 6]. We examine the approximations leading to
Eq. (1) and derive a corrected formula appropriate for weakly
bound states, which is shown to work much better for the
deuteron.

Our strategy is to use a range of model potentials for which
the Schrödinger equation can be solved analytically or to any
desired precision numerically to broadly test and illustrate
various features, and then turn to the deuteron with a set of
phase-shift equivalent potentials for a real-world example. In

044326-10556-2813/2013/87(4)/044326(14) ©2013 American Physical Society
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where

�hr
2
iL =

R
L

0
|uL(r)|2 r2 dr

R
L

0
|uL(r)|2 dr

�

R1
0

|u1(r)|2 r2 dr
R1
0

|u1(r)|2 dr
. (65)

Though the squared radius is a long-ranged operator, its
matrix elements will still be modified at short distances
by renormalizations or similarity transformations of the
Hamiltonian, see, e.g., Ref. [34]. Thus we cannot expect
an extrapolation law for the radius that depends entirely
on observables. Instead, we seek a formula that identifies
the L dependence but leaves parameters to be fit.

The strategy is to isolate the polynomial L dependence
by splitting the necessary integrals into an interior part
and an exterior part:
Z

L

0

r
n
|uL(r)|

2
dr =

Z
R

0

r
n
|uL(r)|

2
dr+

Z
L

R

r
n
|uL(r)|

2
dr ,

(66)
where R is su�ciently large so that the asymptotic form
of uL(r) from Eq. (2) can be used in the second integral.
Our expression for �hr

2
iL is independent of the normal-

ization of uL(r), so we are free to choose it so that the
large r form is exactly given by Eq. (2).

The first integral will depend on the details of the in-
terior wave function and therefore on the potential, but
the linear energy method shows us that to O(e�2k1L)
the L dependence is isolated. In particular, the depen-
dence on L of uL(r) in Eq. (49) is confined to �EL =
k1�

2
1e

�2k1L because duE(r)/dE|E1 for r < R is in-
dependent of L with our choice of normalization. Thus
the integral over r cannot introduce polynomial L depen-
dence and we can conclude that
Z

R

0

r
n
|uL(r)|

2
dr = O(L0)e�2k1L +O(e�4k1L) . (67)

The O(L0) coe�cient will depend on the potential, so we
will treat it as a parameter to be fit.

The second integral can be directly evaluated to
O(e�2k1L) using Eq. (2) and [kL]LO = k1 � �

2
1e

�2k1L

to expand |uL(r)|2. For n = 0 we find

Z
L

R

|uL(r)|
2
dr =

1

2k1
e
�2k1R

+
h
�
2
1

k1

⇣
R+

1

2k1

⌘
e
�2k1R + 2R� 2L

i
e
�2k1L

+O(e�4k1L) , (68)

and for n = 2 we find
Z

L

R

r
2
|uL(r)|

2
dr =

1

2k31

h1
2
+ k1R+ (k1R)2

i
e
�2k1R

+
h
�
2
1

k41

⇣3
4
+

3

2
k1R+

3

2
(k1R)2 + (k1R)3

⌘
e
�2k1R

+
1

k31

⇣2
3
(k1R)3 � k1L�

2

3
(k1L)3

⌘i
e
�2k1L

+O(e�4k1L) . (69)

Note that it is necessary to keep the expansion of |uL(r)|2

up to e
�4k1L until after doing the integrals because

terms proportional to e
�4k1L

e
2k1r will be leading or-

der.
When we use (68) and (69) and our previous result for

the interior integrals in Eq. (65), expanding consistently
to O(e�2k1L), we will mix R-dependent terms with the
L dependence. However, we can immediately conclude
that the general form to this order is (with � ⌘ 2k1L)

hr
2
iL ⇡ hr

2
i1[1� (c0�

3 + c1� + c2)e
�� ] . (70)

Here, hr2i1, c0, c1, and c2 are fit parameters while k1
should be determined from fitting the energy. This form
has been verified explicitly for finite-range model poten-
tials (e.g., square well and delta shell). The approxima-
tion (70) should be valid in the asymptotic regime � � 1.
In practice, one needs � & 3 so that the dominant �

3

correction is approximately an order of magnitude larger
than the subleading terms (with c1 and c2 expected to
be roughly the same size as c0 or smaller).
If we take the zero-range limit R ! 0 of the potential,

we arrive at the simple expression

�hr
2
iL

hr2i1
⇡ �

✓
(2k1L)3

3
� 4

◆
e
�2k1L

. (71)

Note that in this limit the correction becomes indepen-
dent of the potential.
The derivation given here can be directly extended to

l > 0 using the general expression for the asymptotic
wave function in Eq. (43). However, this wave function
has additional L dependence so the corresponding result
to Eq. (70) will have more complicated � dependence
unless additional simplifications are made. The extension
to other single-particle coordinate-space operators is also
direct, by replacing r

2 with the appropriate expression.

VI. SUMMARY AND OPEN QUESTIONS

In this paper we derived and tested a consistent and
systematic expansion for the s-wave binding momentum
and energy of a two-body system with a Dirichlet bound-
ary condition, Eqs. (16) and (17). As shown in Ref. [11]
for l = 0 bound states, such a boundary condition arises
as an e↵ective infrared cuto↵ when using a truncated
harmonic oscillator basis. Here we extended to l > 0 the
derivation from [11] that associates the oscillator basis
parameters to the appropriate hard-wall radius L. The
same formula for L derived previously for l = 0 (called
L2) is found to still hold for general l if expressed in
terms of the oscillator quantum number N = 2n+ l. We
subsequently obtained the energy correction for l > 0 at
LO.

Our expansion is based on the analytic structure of
the two-body S-matrix in the complex momentum plane.
The asymptotic wave functions for a boundary condition
at r = L are analytic continuations of the scattering solu-
tions to (purely) imaginary momentum. If continued to



 What (precisely) is the IR scale L?

Key idea: compute eigenvalues of kinetic energy and compare with 
corresponding (hyper)spherical cavity to find L. 

What is the corresponding cavity?

What (precisely) is the IR length L? 
Key idea: compute eigenvalues of kinetic energy and compare with 
corresponding (hyper)spherical cavity to find L. 
 
What is the corresponding cavity?  

Single particle A particles  
(product space) 

A particles in  
No-core shell model  

Diagonalize Tkin=p2 Diagonalize A-body Tkin Diagonalize A-body Tkin 

3D spherical cavity A fermions in 3D cavity 3(A-1) hyper-radial cavity 

Furnstahl, Hagen, TP, 
Wendt, J. Phys. G 42, 
034032 (2015)  

More, Ekström, 
Furnstahl, Hagen, TP, 
PRC 87, 044326 (2013) 

Wendt, Forssén, TP, Sääf, 
PRC 91, 061301(R) (2015)  
 
 

More, Ekström, Furnstahl, 
Hagen, Papenbrock, PRC 87, 
044326 (2013)

Furnstahl, Hagen, 
Papenbrock, Wendt, 
J. Phys. G 42, 034032 
(2015)

Wendt, Forssén, Papenbrock, 
Sääf, PRC 91, 061301(R) 
(2015) 



IR length in NCSM spacesIR length in NCSM spaces 

Wendt, Forssén, TP, Sääf, PRC 91, 061301(R) (2015)  

Diagonalize kinetic energy in 3(A-1) dimensional harmonic oscillator; seek lowest 
antisymmetric state and equate to hyperspherical cavity with radius Leff.  Diagonalize kinetic energy in 3(A-1) dimensional harmonic oscillator; 

seek lowest antisymmetric state and equate to hyperspherical cavity 
with radius Leff.

Wendt et al. (2015) 



▸ In practice it is often challenging to fulfill: 

1.… being UV converged 

2. … reaching asymptotically large values of k∞L 

▸ Moreover, we lack a physical interpretation of k∞ for 
many-body systems.

A practical approach to IR extrapolations



▸ Perform instead the extrapolation at a fixed (not 
necessarily UV converged) value of Λ 

▸ The LO IR extrapolation becomes 

▸ Previous work on UV corrections [eg. Furnstahl et al. 
2012] just represents a special case of this general 
formula. 

▸ We treat E∞(%), a(%), k∞(%) as fit parameters; and include 
also an estimated NLO correction as a weighting factor.

2

totically large values of k1L), and it would be profitable
to relax these conditions. We also note that IR extrapo-
lations of bound-state energies – when performed at large
UV cuto↵s that significantly exceed the cuto↵ of the em-
ployed interaction – sometimes fail to improve on the
variational minumum, see Refs. [25, 30] for examples.
This casts doubts on the usefulness of such extrapola-
tions and makes it necessary to revisit them in more de-
tail. This is a purpose of this paper.

This paper is organized as follows. In Section II we
propose IR extrapolation formulas for energies and radii
that are applicable in cases lacking a full UV convergence.
The extended reach of large-scale exact diagonalization
with the NCSM is presented in Sec. III, with more details
on the technical developments that have made such cal-
culations possible adjourned to the appendix A. We then
present an extensive set of large-basis NCSM results and
apply the IR extraplation formulas in Sect. IV, V, VI
and VII for the extrapolation of ground-state energies
and radii. We summarize our results in Sect. IX.

II. DERIVATION

Let us assume we work at a fixed value of ⇤ that is
not yet so large that UV convergence is fully achieved.
Usually this is the case for values of ⇤ that only moder-
ately exceed the cuto↵ employed by the interaction. As
the IR length L is increased, the tail of the bound-state
wave function will be built up, and we see that Eq. (1)
generalizes to

E(L,⇤) = E1(⇤) + a(⇤) exp [�2k1(⇤)L] (2)

at fixed ⇤. Equation (2) is only the leading term for
asymptotically large k1L but exhibits the full ⇤ depen-
dence [at least for ⇤ large enough to yield a bound-state
energy E(L,⇤)]. We note that the combined IR and UV
extrapolation formula applied in Ref. [21] is a special case
of Eq. (2) with constant a(⇤) = a, constant k1(⇤) = k1,
and E1(⇤) = E1 +A0 exp (�2⇤2

/A
2
1).

Let us consider applications of the extrapolation for-
mula (2) at fixed ⇤. In the harmonic oscillator basis, the
oscillator length is

b ⌘
r

~
m!

(3)

for a nucleon mass m and the oscillator frequency !. The
IR length scale L and the UV cuto↵ ⇤ are related to each
other [29]

L(N, b) = f(N)b ,

⇤(N, b) = f(N)~b�1
, (4)

because of the equivalency of momenta and coordinates.
Here, f(N) is a function that depends on the number
N of quanta that can be excited. This function depends
on the number of particles and di↵ers for product spaces

and NCSM spaces. We will use the standard notation
Nmax to denote an NCSM truncation of Nmax quanta
above the lowest possible configuration. The maximum
number of quanta for a single particle in such a basis will
be, e.g., N = Nmax + 1 for a p-shell nucleus. Following
More et al. [23], f(N) ⇡ [2(N+3/2+2)]1/2 as N � 1 for
a two-body system in the center-of-mass frame. In fact,
f(N) / N

1/2 in general for N � 1 [25, 28].
We can express L in Eq. (4) as L(N,⇤) = ~f2(N)/⇤.

Thus, L / N for N � 1 at fixed ⇤. This shows that
IR extrapolations (2) at fixed ⇤ are actually exponen-
tial in N . Formally, this result coincides with several
commonly used extrapolation formulas [12–16, 31]. We
also note that this result agrees with semiclassical argu-
ments regarding the convergence of bound-states in the
harmonic oscillator basis [32].
For radii, we proceed as for the bound-state energies

and generalize the extrapolation formulas of Refs. [21, 28]
to

r
2(L,⇤) = r

2
1(⇤)� ↵(⇤) [k1(⇤)L]3 exp [�2k1(⇤)L]

(5)
at fixed UV cuto↵ ⇤.
In the extrapolation formulas (2) and (5), the quantity

k1 is taken as an adjustable parameter. It is only in the
two-body system that k1 is related to the binding energy
B via

B =
~2k21
2µ

. (6)

Here µ = m/2 is the reduced mass, and k1 is the momen-
tum corresponding to the relative coordinate ~r = ~r1�~r2.
We note that the oscillator length for this coordinate em-
ploys the reduced mass instead of the nucleon mass in
Eq. (3).
We would like to understand the physics meaning of

k1 in IR extrapolations of NCSM results for few- and
many-body systems. In the NCSM, the IR length (4)
constitutes an e↵ective hard-wall for the hyperradius ⇢

with

~⇢
2 =

AX

j=1

~r
2
i �A~R

2
cm, (7)

where

~Rcm ⌘ 1

A

AX

j=1

~rj (8)

is the center of mass coordinate. We use an orthog-
onal transformation and introduce Jacobi coordinates
~⇢1, . . . , ~⇢A such that

~⇢A = A
1/2 ~Rcm =

1p
A

AX

j=1

~rj . (9)

Using an orthogonal transformation has the advantage
that the reduced mass corresponding to each of the Ja-
cobi coordinates is simply the nucleon mass m. Thus,

A practical approach to IR extrapolations
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the oscillator length for each Jacobi coordinate is given
by Eq. (3).

Maybe we should have a figure that illustrates these
examples?

We note that there are many ways to introduce Jacobi
coordinates ~⇢1 to ~⇢A�1 that are orthogonal to each other
and orthogonal to ~⇢A in Eq. (9). In particular, one can
choose ~⇢1 such that it corresponds to the lowest-energetic
separation channel. For example, ~⇢1 = (~r1 � ~r2)/

p
2

for the deuteron, ~⇢1 = [~r3 � (~r1 + ~r2)/2]
p

2/3 for the
triton (because its lowest separation is into a neutron
and a deuteron), and ~⇢1 = [(~r1 + ~r2 + ~r3 + ~r4)/4� (~r5 +
~r6)/2]

p
4/3 for 6Li (because its lowest separation is into

an alpha particle and the deuteron). For any such choice
of Jacobi coordinates, the intrinsic hyperradius is

~⇢
2 =

A�1X

j=1

~⇢
2
j . (10)

We note that the e↵ective hard-wall radius L of the
NCSM is also a hard-wall boundary condition also for
the Jacobi coordinate ~⇢1. Thus, bound-states wave func-
tions in this coordinate fall o↵ asymptotically as e�k1|~⇢1|,
with k1 being the momentum conjugate to ⇢1. From the
IR extrapolation we identify k1 = k1. The correspond-
ing separation energy is

S =
~2k21
2m

. (11)

Here, m is the nucleon mass. We note that this mass (op-
posed to a reduced mass) enters here, because we used
an orthogonal transformation from (~r1, . . . ,~rA) to the Ja-
cobi coordinates. We also note that Eq. (11) yields the
same value for the separation energy as Eq. (6) in case
of the two-body bound state.

We recall that the relation between the energy (11) of
the lowest separation channel and the fit parameter k1
from IR extrapolations in the NCSM is valid only in the
asymptotic regime k1L ! 1. Many nuclei have n sep-
aration channels ~⇢1, . . . ~⇢n into di↵erent clusters, and the
corresponding momenta k1, . . . , kn might not be well sep-
arated in scale. In practical NCSM calculations one can
only reach the regime k1L � 1, and this means that other
separation channels can yield non-negligible corrections
to the leading-order IR extrapolation formulas (2) and
(5). In those cases, IR extrapolation will only yield an
approximate value for k1, and the application of Eq. (11)
will only yield an approximate value for the separation
energy.

It would be very useful with a similar interpretation
for the square model space of the CC method.

In what follows, we will apply the extrapolation formu-
las (2) and (5) to obtain bound-state energies and radii
at fixed ⇤. As examples we consider We focus on 4He and
6Li, computed with the NCSM from the nucleon-nucleon
interaction NNLOopt [33]. The cuto↵ of this interaction

⇡

⌫

Mp Mp + 1

Mn Mn � 1

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6

FIG. 1. Many-body states in the proton and neutron sub-
spaces factorize into blocks according to their Jz projection.
A-particle states with fixed Jz = M are product states |Ii =
|⇡i⌦ |⌫i with proton- and neutron states from corresponding
blocks.

is ⇤� = 500 MeV. The 4He nucleus will serve as an ex-
ample for a well-bound nucleus where IR extrapolations
are relatively simple. As we will see, the case of 6Li is
more challenging because of the low-lying decay channel
6Li!4He+d.

III. PUSHING THE FRONTIER OF EXACT
DIAGONALIZATION WITH THE NCSM

The A > 4 NCSM calculations presented in this work
have been performed with pANTOINE — an exact diago-
nalization code for nuclear physics that is based on the
NCSM version of ANTOINE originally developed by E.
Caurier et al. [34–36]. The main feature of this code
is the implicit construction of the Hamiltonian matrix.
It employs the fact that the total many-body space is a
product of the much smaller spaces spanned by protons
and neutrons. A state I in the full-space basis can be
labeled by a pair of proton (⇡) and neutron (⌫) states as
illustrated in Fig. 1. All the ⇡ (and ⌫) states are classi-
fied in blocks defined by their Jz value. To any proton
block Jz,p = Mp there is a corresponding neutron block
Jz,n = Mn = M � Mp, where Jz = M is the total an-
gular momentum projection of the A-body state. Total
wave functions are built by the association of a proton
state ⇡ (belonging to the block Mp) to a neutron state ⌫

(belonging to the corresponding neutron block Mn). A
simple numerical relation

I = R(⇡) + ⌫ (12)

describing the index of a full multi-particle state can be
established. Non-zero elements of the matrix, HII0 =
V (K), are obtained through three integer additions: I =
R(⇡) + ⌫, I 0 = R(⇡0) + ⌫

0 and K = Q(q⇡) + q⌫ . The
index q⇡ labels the one-body operator acting between
⇡ and ⇡

0 states, and analogously the index q⌫ links ⌫

and ⌫
0 states. The storage of pre-calculated (⇡,⇡0,q⇡)

and (⌫,⌫0,q⌫) labels remains possible as the dimensions
in respective proton- and neutron-spaces are moderate
compared to those of the full A-body space. Note that
the each triple either applies to the proton- or neutron-
subspace only. By performing a simple double-loop over
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is ⇤� = 500 MeV. The 4He nucleus will serve as an ex-
ample for a well-bound nucleus where IR extrapolations
are relatively simple. As we will see, the case of 6Li is
more challenging because of the low-lying decay channel
6Li!4He+d.
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See also König and Lee, arXiv:1701.00279 for volume 
dependence of N-Body Bound States in lattice calculations.



Results: A=3 — ground-state energy
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Results: A=4 — ground-state energy
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Results: 6Li — ground-state energy
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Results: 3H, 6Li — point-proton radii
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