MULTIPOLE OPERATORS FOR RECOIL CORRECTIONS & TENSOR INTERACTIONS

Ayala Glick-Magid

Doron Gazit

Hebrew University

To "translate" the needed operators to the "language" of the nuclear structure calculations

- Introduction
- Multipole Expansion
- Effect of BSM operators on the cross section
 - Emphasis on tensor contributions & operators
- Unique first forbidden decays and their prospect as BSM probes
- Recoil corrections & Operators

Beyond Standard Model (BSM)

Elementary particles Fundamental forces Electromagnetic enerations of matte (fermions) ш mass 22.4 MeV/e ×172.44 GeV/c 125.09 GeV/r Strong С t H gluon Higgs charm top ≈4.18 GeV/c³ Weak DUARKS -1/3 -1/3 b 1/2 S d 1/2 SCALAR BOS down strange bottom photon =0.511 MeV/c 105.67 MeV/e 1.7768 GeV/c 1/2 e Ζ τ

The Neutrino has mass, even though according to the SM it should not

Ongoing experimental searches:

Dark Matter Direct detection

Z boson

W boson

ш

electron

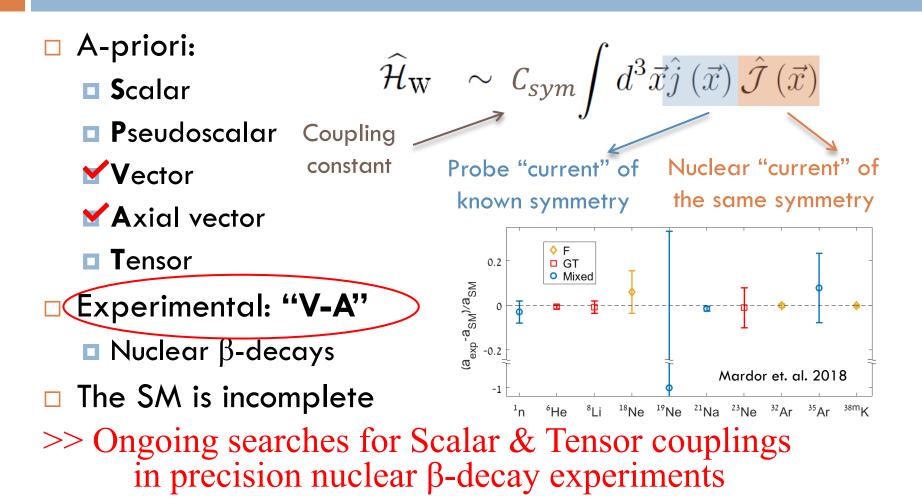
muon

tau

BSM signatures in precision \geq nuclear β -decay experiments

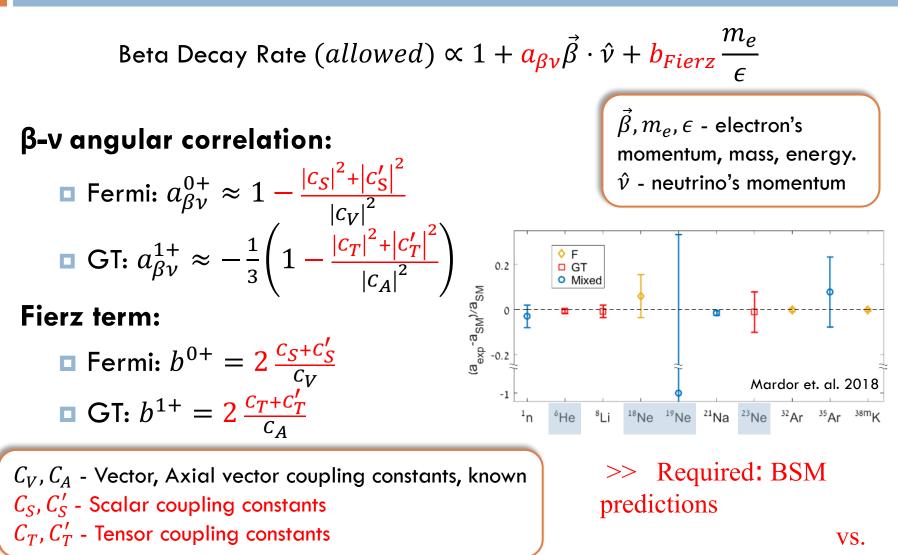
Purpose: Provide the nuclear theory needed to analyze both fields of BSM experimental searches (DM & exotic "weak" interactions)

BSM Signatures @Weak Interaction



The smoking gun we are looking for

5



Dark Matter Direct Detection

Promising candidates – WIMPs: Weakly-Interacting Massive Particles

- Challenge Direct detection:
 - Measuring WIMP scattering off nuclei on detectors

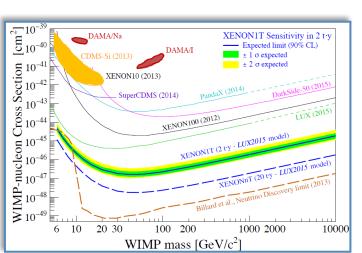
Nuclear matrix elements & structure factors

Detection capabilities: $q \sim 100 \ MeV/c$

- In search for different types of couplings with standard material:
 - Scalar, Pseudoscalar, Vector, Axial and Tensor
- >> Previous works ignored the Tensor symmetry coupling

N. Anand, A. Liam Fitzpatrick, W. C. Haxton, Phys. Rev. C 89, 065501 (2014)

A. Liam Fitzpatrick, W. Haxton, E. Katz, N. Lubbers, Y. Xu, J. Cosmol. Astropart. Phys, 2013(02):004, 2013.



Atoms 4.9% Dark Matter 26.8% Dark

Nuclear β-decay Formalism

8

Differential distribution:

$$\frac{d^{3}\omega_{\beta^{\mp}}}{d\epsilon \frac{d\Omega_{k}}{4\pi} \frac{d\Omega_{\nu}}{4\pi}} = \frac{2G^{2}}{\pi^{2}} \frac{1}{2J_{i}+1} \left(Q-\epsilon\right)^{2} k\epsilon F^{\pm} \left(Z_{f},\epsilon\right) C_{\text{corrections}}. \quad \Theta\left(q,\vec{\beta}\cdot\hat{\nu}\right)$$

$$\vec{k},\epsilon \text{ - electron's momentum, energy}, \vec{\beta} \equiv \frac{\vec{k}}{\epsilon},\epsilon \text{ - electron's momentum, energy}, \vec{\beta} \equiv \vec{k},\epsilon \text{ - electr$$

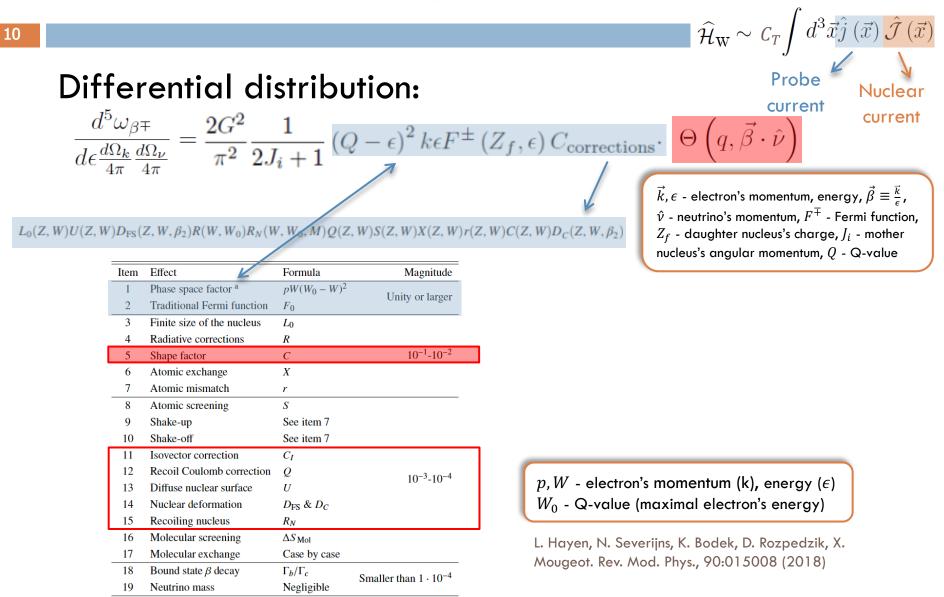
 \hat{v} - neutrino's momentum, F^{\pm} - Fermi function, Z_f - daughter nucleus's charge, J_i - mother nucleus's angular momentum, Q - Q-value

Nuclear β-decay Formalism

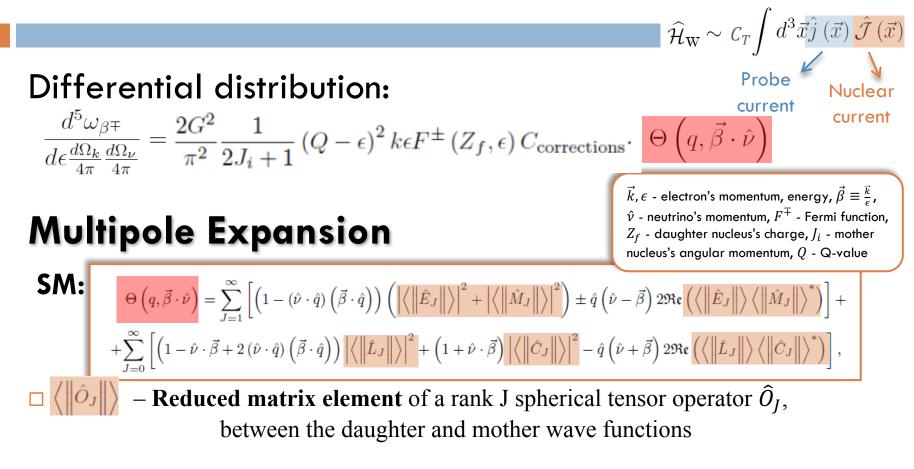
9

	Differential distribution:											
T		1/			$\stackrel{\pm}{\leftarrow} (Z_f, \epsilon) C_{\text{corrections}} \cdot \Theta \left(q, \vec{\beta} \cdot \hat{\nu} \right)$ $\vec{k}, \epsilon \text{ - electron's momentum, energy, } \vec{\beta} \equiv \frac{\vec{k}}{\epsilon}, \\ \hat{\nu} \text{ - neutrino's momentum, } F^{\mp} \text{ - Fermi function,} \\ Z_f \text{ - daughter nucleus's charge, } J_i \text{ - mother nucleus's angular momentum, } Q \text{ - } Q \text{ - value}$							
=	Item	Effect	Formula	Magnitude								
	1 2	Phase space factor ^a Traditional Fermi function	$pW(W_0 - W)^2$ F_0	Unity or larger								
	3 4 5 6 7	Finite size of the nucleus Radiative corrections Shape factor Atomic exchange Atomic mismatch	L ₀ R C X r	10 ⁻¹ -10 ⁻²								
	8 9 10 11 12 13	Atomic screening Shake-up Shake-off Isovector correction Recoil Coulomb correction Diffuse nuclear surface	S See item 7 See item 7 C_I Q U	10 ⁻³ -10 ⁻⁴	p, W - electron's momentum (k), energy (ϵ)							
	13 14 15 16 17	Nuclear deformation Recoiling nucleus Molecular screening Molecular exchange	$D_{\rm FS} \& D_C$ R_N $\Delta S_{\rm Mol}$ Case by case		W ₀ - Q-value (maximal electron's energy) L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, X.							
-	18 19	Bound state β decay Neutrino mass	Γ_b/Γ_c Negligible	Smaller than $1 \cdot 10^{-4}$	Mougeot. Rev. Mod. Phys., 90:015008 (2018)							

Nuclear β-decay Formalism



Nuclear β-decay Formalism



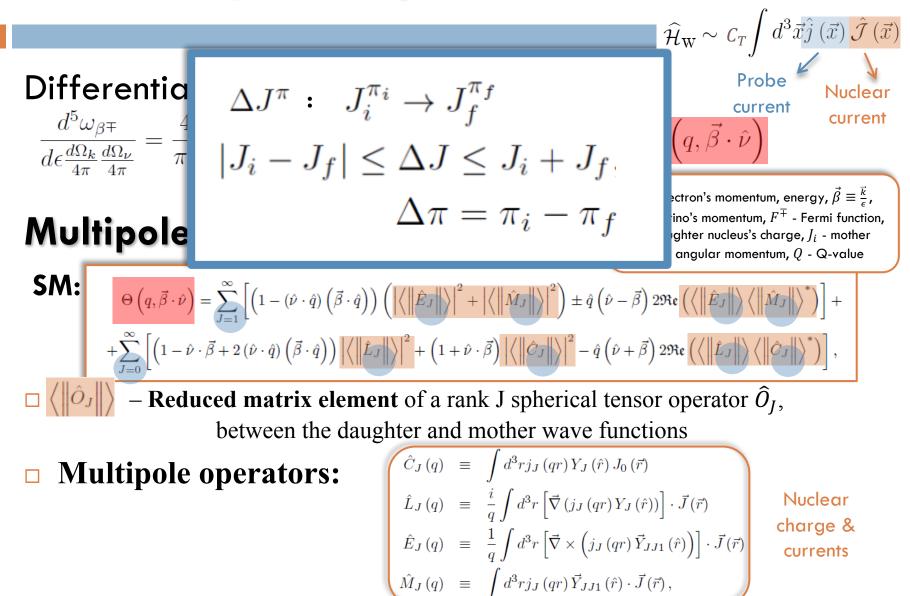
Nuclear β-decay Formalism

12

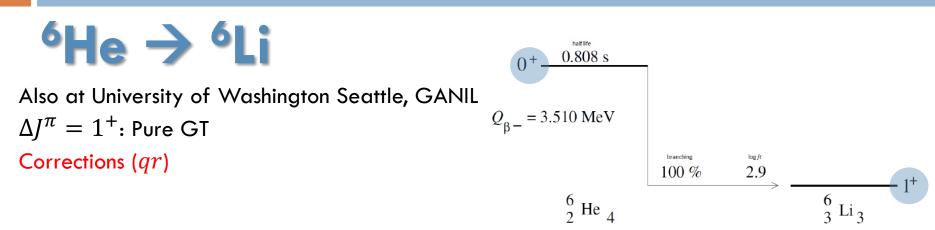
 $\hat{\mathcal{H}}_{W} \sim C_{T} \int d^{3} \vec{x} \hat{j} \left(\vec{x} \right) \frac{\hat{\mathcal{J}} \left(\vec{x} \right)}{\hat{\mathcal{J}} \left(\vec{x} \right)}$ Probe K **Differential distribution:** curren $\frac{d^5\omega_{\beta\mp}}{d\epsilon\frac{d\Omega_k}{4\pi}\frac{d\Omega_\nu}{4\pi}} = \frac{2G^2}{\pi^2} \frac{1}{2J_i+1} \left(Q-\epsilon\right)^2 k\epsilon F^{\pm}\left(Z_f,\epsilon\right) C_{\text{corrections}} \cdot \left[\Theta\left(q,\vec{\beta}\cdot\hat{\nu}\right)\right]$ current \vec{k}, ϵ - electron's momentum, energy, $\vec{\beta} \equiv \frac{\vec{k}}{\epsilon}$, \hat{v} - neutrino's momentum, F^{\mp} - Fermi function, Multipole Expansion Z_f - daughter nucleus's charge, J_i - mother nucleus's angular momentum, Q - Q-value SM:
$$\begin{split} \Theta\left(q,\vec{\beta}\cdot\hat{\nu}\right) &= \sum_{J=1}^{\infty} \left[\left(1-\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\right) \left(\left|\left\langle\left\|\hat{E}_{J}\right\|\right\rangle\right|^{2} + \left|\left\langle\left\|\hat{M}_{J}\right\|\right\rangle\right|^{2}\right) \pm \hat{q}\left(\hat{\nu}-\vec{\beta}\right) 2\Re\epsilon\left(\left\langle\left\|\hat{E}_{J}\right\|\right\rangle\left\langle\left\|\hat{M}_{J}\right\|\right\rangle^{*}\right)\right] + \\ &+ \sum_{I=0}^{\infty} \left[\left(1-\hat{\nu}\cdot\vec{\beta}+2\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\right) \left|\left\langle\left\|\hat{L}_{J}\right\|\right\rangle\right|^{2} + \left(1+\hat{\nu}\cdot\vec{\beta}\right) \left|\left\langle\left\|\hat{C}_{J}\right\|\right\rangle\right|^{2} - \hat{q}\left(\hat{\nu}+\vec{\beta}\right) 2\Re\epsilon\left(\left\langle\left\|\hat{L}_{J}\right\|\right\rangle\left\langle\left\|\hat{C}_{J}\right\|\right\rangle^{*}\right)\right], \end{split}$$
 $\Box \langle | \hat{O}_J | \rangle -$ Reduced matrix element of a rank J spherical tensor operator \hat{O}_I , between the daughter and mother wave functions $\hat{C}_{J}(q) \equiv \int d^{3}r j_{J}(qr) Y_{J}(\hat{r}) J_{0}(\vec{r})$ **Multipole operators:** $\hat{L}_{J}(q) \equiv \frac{i}{a} \int d^{3}r \left[\vec{\nabla} \left(j_{J} \left(qr \right) Y_{J} \left(\hat{r} \right) \right) \right] \cdot \vec{J} \left(\vec{r} \right)$ $\hat{E}_{J}(q) \equiv \frac{1}{q} \int d^{3}r \left[\vec{\nabla} \times \left(j_{J}(qr) \, \vec{Y}_{JJ1}(\hat{r}) \right) \right] \cdot \vec{J}(\vec{r})$ $\hat{M}_{J}(q) \equiv \int d^{3}r j_{J}(qr) \vec{Y}_{JJ1}(\hat{r}) \cdot \vec{J}(\vec{r}),$

Nuclear β-decay Formalism

13

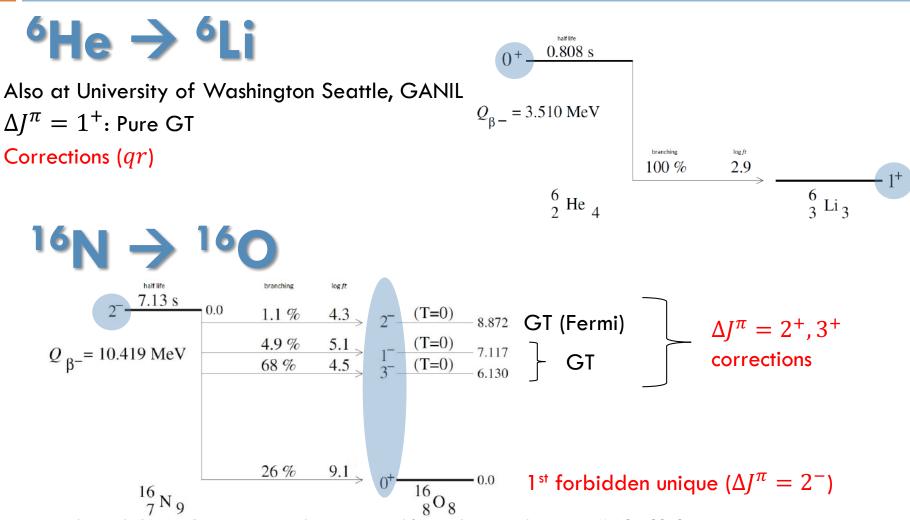


Production @ SARAF



Production @ SARAF

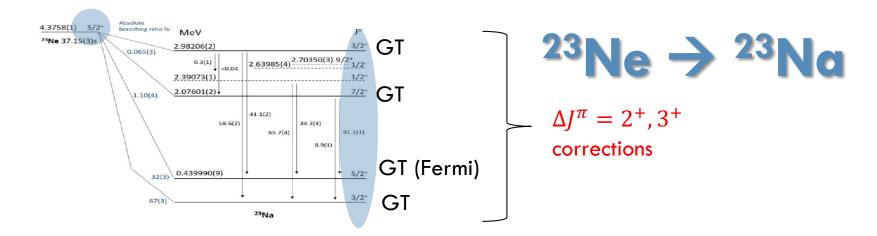
15



I. Mardor et al., SARAF: Overview, research programs and future plans. Eur. Phys. J. A, 54(5):91, 2018. A. Knecht et al., Precision measurement of the ⁶He half-life and the weak axial current in nuclei. Phys. Rev. C, 86(3), 9 2012.

Production @ SARAF

16

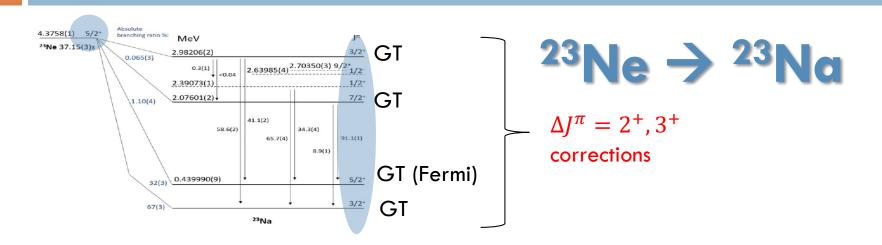


Ohayon, Chocron, Hirsh, Glick-Magid, Mishnayot, Mukul, Rahangdale, Vaintraub, Heber, Gazit, Ron, Weak interaction studies at SARAF. Hyperfine Interact. 239: 57 (2018).

3.2395 1/2+:1/2

Production @ SARAF

17

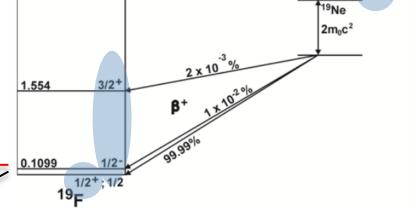


$^{19}Ne \rightarrow ^{19}F$

Ground state corrections originate only from Fermi & GT higher orders

But the second exited state is very close, including the magnetic moment, who dirties the SM calculations

1st forbidden ($\Delta J^{\pi} = 0^{-}, 1^{-}$) \leftarrow

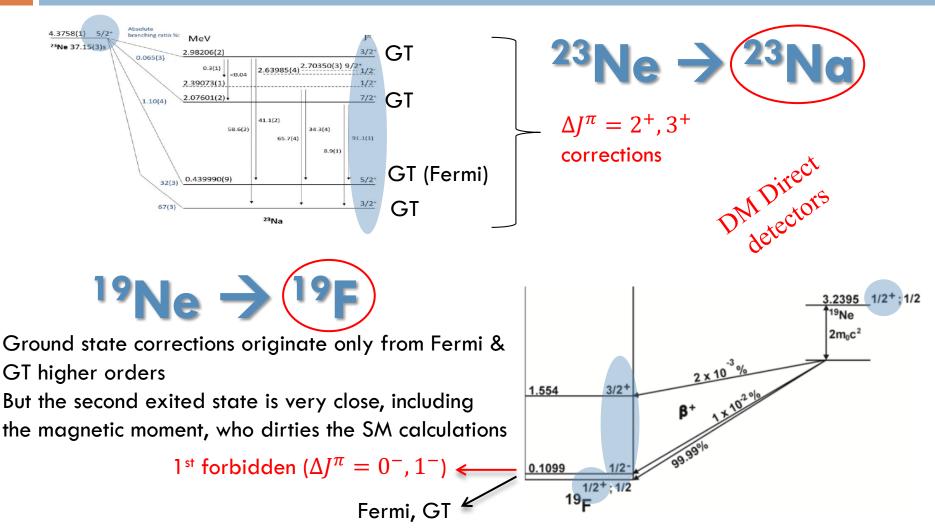


Ohayon, Chocron, Hirsh, Glick-Magid, Mishnayot, Mukul, Rahangdale, Vaintraub, Heber, Gazit, Ron, Weak interaction studies at SARAF. Hyperfine Interact. 239: 57 (2018).

Fermi, GT 🗲

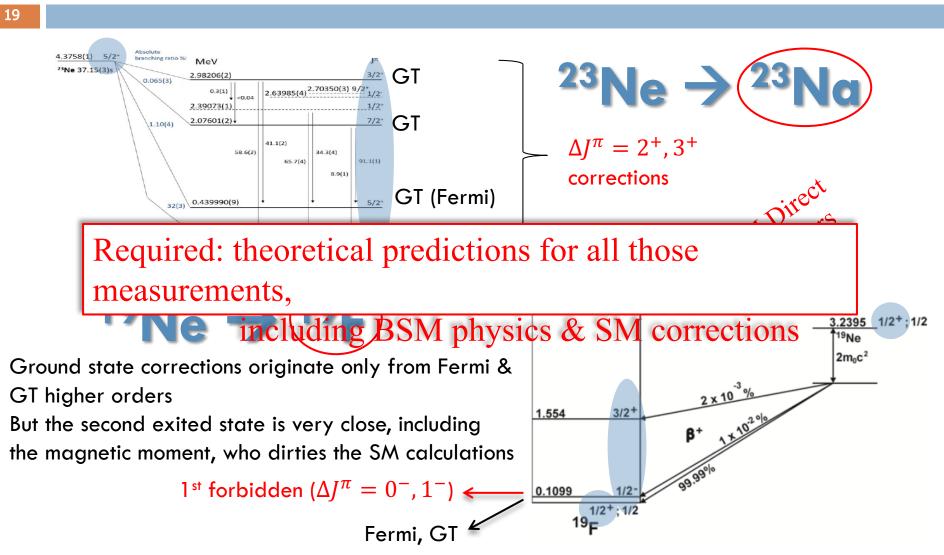
Production @ SARAF

18



Ohayon, Chocron, Hirsh, Glick-Magid, Mishnayot, Mukul, Rahangdale, Vaintraub, Heber, Gazit, Ron, Weak interaction studies at SARAF. Hyperfine Interact. 239: 57 (2018).

Production @ SARAF

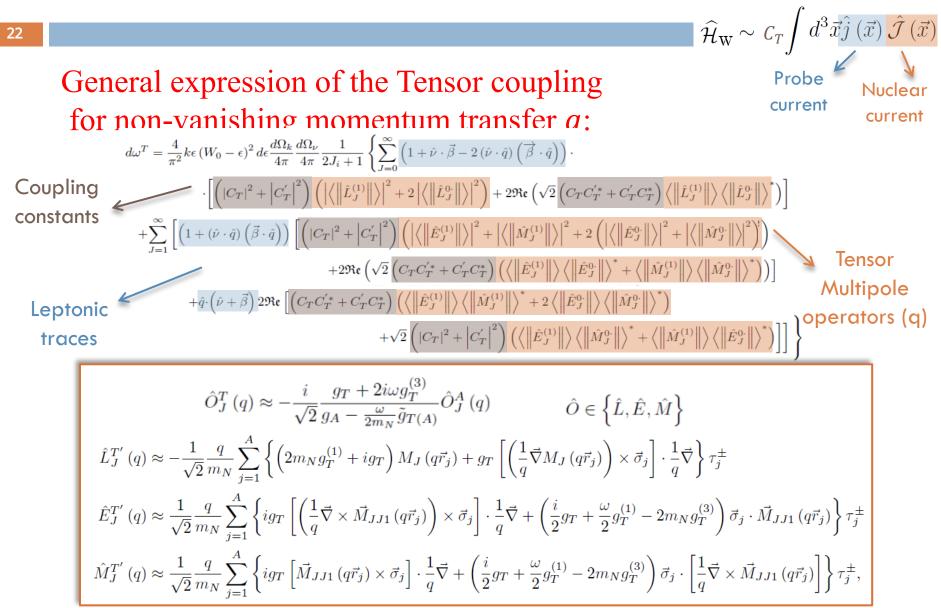


Ohayon, Chocron, Hirsh, Glick-Magid, Mishnayot, Mukul, Rahangdale, Vaintraub, Heber, Gazit, Ron, Weak interaction studies at SARAF. Hyperfine Interact. 239: 57 (2018).

Precise Tensor analysis

- Since we are looking at a lot of nuclei, the BSM contribution would be different
- There are works about Scalar & Pseudoscalar, but there is yet no accurate analysis for tensor interactions.
- There are terms in the literature for small momentum transfers, but not for all transitions
- There is a need for general terms also for non beta decay BSM searches

Tensor Multipole Expansion



- Paves the way to calculating Tensor interactions at:
 - Forbidden β-decays (q dependence)
 - Other BSM searches, e.g. WIMPs:
 - obtaining the non-relativistic reduction, one gets additional operators that do not appear in Haxton's reduction.

BSM contributions & operators

Unique First-Forbidden ($\Delta J^{\pi} = 2^{-}$)

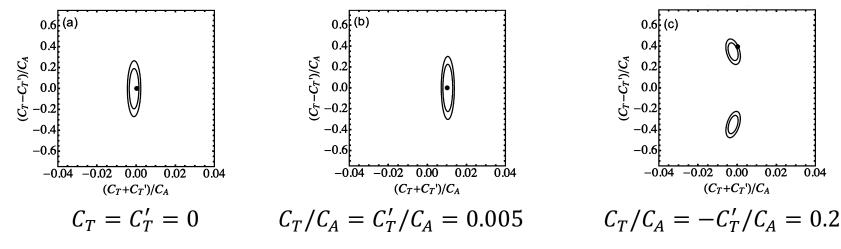
24

Decay Rate
$$(2^{-}) \propto 1 + b \frac{m_e}{\epsilon} + a \left[1 - \left(\hat{\beta} \cdot \hat{\nu}\right)^2\right]$$

β energy spectrum is sensitive to both a & b

Allows simultaneous extraction of tensor coupling to both right & left neutrinos

Increases the accuracy level



Formalism is nice, but applications are nicer...

A. Glick-Magid, Y. Mishnayot, I. Mukul, M. Hass, S. Vaintraub, G. Ron, D. Gazit, Phys. Lett. B767, 285 (2017)

SM corrections & operators

A consistent expansion in powers of q

26

For a specific ΔJ^{π} (axial-dominant current transition)

$$\Theta\left(q,\vec{\beta}\cdot\hat{\nu}\right) = \frac{\left|C_{A}\right|^{2} + \left|C_{A}'\right|^{2}}{2}\frac{2J+1}{J}\left[1 + \delta_{1}^{J^{\pi}} - \frac{J}{2J+1}\hat{\nu}\cdot\vec{\beta}\left(1 + \delta_{\beta\nu}^{J^{\pi}}\right) + \frac{J-1}{2J+1}\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\left(1 + \delta_{proj}^{J^{\pi}}\right)\right]\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|\left\langle \left\|\hat{L}_{J}^{A}\right\|\right\rangle}\right|^{2}\left|$$

Recoil corrections:

$$\begin{split} \delta_{1}^{J^{\pi}} &= 2 \Re \left\{ -\frac{J}{2J+1} \frac{\nu + \frac{k^{2}}{\epsilon}}{q} \frac{\left\langle \left\| \hat{C}_{J}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \pm \frac{\sqrt{J(J+1)}}{2J+1} \frac{\nu - \frac{k^{2}}{\epsilon}}{q} \frac{C_{A}C_{V}^{*} + C'_{A}C'_{V}^{*}}{\left|C_{A}\right|^{2} + \left|C'_{A}\right|^{2}} \frac{\left\langle \left\| \hat{M}_{J}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \right. \\ &\left. -i\sqrt{\frac{J+1}{2J+1}} \frac{\left\langle \left\| \hat{E}_{J}^{A(1)} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \right\} \right\} \\ \delta_{\beta\nu}^{J^{\pi}} &= 2 \Re \epsilon \left\{ \frac{\epsilon + \nu}{q} \frac{\left\langle \left\| \hat{C}_{J}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \mp \sqrt{\frac{J+1}{J}} \frac{\epsilon - \nu}{q} \frac{C_{A}C_{V}^{*} + C'_{A}C'_{V}}{\left|C_{A}\right|^{2} + \left|C'_{A}\right|^{2}} \frac{\left\langle \left\| \hat{M}_{J}^{V} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \right\} \\ \delta_{\beta\nu\sigma}^{J^{\pi}} &= 2 \Re \epsilon \left\{ \frac{i \sqrt{(J+1)(2J+1)}}{J-1} \frac{\left\langle \left\| \hat{E}_{J}^{A(1)} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{J}^{A} \right\| \right\rangle} \right\}. \end{split}$$

One-body Multipole Operators

27

SM + Second class currents Vector

$$\begin{split} \hat{C}_{J}^{V}(q) &\approx \left(g_{V} + \frac{\omega}{2m_{N}}\tilde{g}_{S}\right) \sum_{j=1}^{A} \tau_{j}^{\pm} M_{J}(q\vec{r}_{j}) \\ \hat{L}_{J}^{V}(q) &\approx \frac{q}{\omega} \hat{C}_{J}^{V}(q) \\ \hat{E}_{J}^{V}(q) &\approx \frac{q}{m_{N}} \sum_{j=1}^{A} \tau_{j}^{\pm} \left[-ig_{V} \left[\frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ1}(q\vec{r}_{j}) \right] \cdot \frac{1}{q} \vec{\nabla} + \frac{g_{V} + \tilde{g}_{T(V)}}{2} \vec{M}_{JJ1}(q\vec{r}_{j}) \cdot \vec{\sigma} \right] \\ \hat{M}_{J}^{V}(q) &\approx -\frac{iq}{m_{N}} \sum_{j=1}^{A} \tau_{j}^{\pm} \left[g_{V} \vec{M}_{JJ1}(q\vec{r}_{j}) \cdot \frac{1}{q} \vec{\nabla} + i \frac{g_{V} + \tilde{g}_{T(V)}}{2} \left[\frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ1}(q\vec{r}_{j}) \right] \cdot \vec{\sigma} \right] \end{split}$$

 $M_J(q\vec{r}) \equiv j_J(qr) Y_J(\hat{r})$ $\vec{M}_{JL1}(q\vec{r}) \equiv j_L(qr) \vec{Y}_{JL1}(\hat{r})$

Axial

$$\hat{C}_{J}^{A}(q) \approx -\frac{iq}{m_{N}} \sum_{j=1}^{A} \tau_{j}^{\pm} \left[g_{A} M_{J}(q\vec{r}_{j}) \vec{\sigma} \cdot \frac{1}{q} \vec{\nabla} + \frac{1}{2} \left(g_{A} + \tilde{g}_{T(A)} - \frac{\omega}{2m_{N}} \tilde{g}_{P} \right) \left[\frac{1}{q} \vec{\nabla} M_{J}(q\vec{r}) \right] \cdot \vec{\sigma} \right] \cdot \vec{\omega} \frac{\omega}{2m_{N}} \tilde{g}_{P} \left(q \right) \approx \hat{L}_{J}^{A}(q) \approx i \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{T(A)} \right) \sum_{j=1}^{\cdots} \tau_{j}^{\pm} \left[\frac{1}{q} \vec{\nabla} M_{J}(q\vec{r}_{j}) \right] \cdot \vec{\sigma}$$

$$\hat{E}_{J}^{A}(q) \approx \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{T(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \left[\frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ1}(q\vec{r}_{j}) \right] \cdot \vec{\sigma}$$

$$\hat{M}_{J}^{A}(q) \approx \left(g_{A} - \frac{\omega}{2m_{N}} \tilde{g}_{T(A)} \right) \sum_{j=1}^{A} \tau_{j}^{\pm} \vec{M}_{JJ1}(q\vec{r}_{j}) \cdot \vec{\sigma}$$

$$(5)$$

SM corrections & operators

6He

611

100

Neisotopes

7

1617 7

Nuclear Corrections ($q \neq 0$)

28

Allowed decays ($\Delta J^{\pi} = 0^+, 1^+$)

$$\Theta\left(q,\vec{\beta}\cdot\hat{\nu}\right) = \frac{\left|C_{V}\right|^{2}+\left|C_{V}'\right|^{2}}{2} \left[\left(1+\frac{\omega^{2}}{q^{2}}\right)+\hat{\nu}\cdot\vec{\beta}\left(1-\frac{\omega^{2}}{q^{2}}\right)-2\frac{\omega}{q}\hat{q}\cdot\left(\hat{\nu}+\vec{\beta}\right)+2\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\right]\left|\left\langle\left\|\hat{C}_{0}^{V}\right\|\right\rangle\right|^{2} \quad \text{Fermi}$$
$$+\frac{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}{2}3\left[1+\delta_{1}^{1+}-\frac{1}{3}\hat{\nu}\cdot\vec{\beta}\left(1+\delta_{\beta\nu}^{1+}\right)\right]\left|\left\langle\left\|\hat{L}_{1}^{A}\right\|\right\rangle\right|^{2} \quad \text{Gamow-Teller}$$

Recoil corrections:

$$\begin{split} \delta_{1}^{1^{+}} &= 2 \Re \epsilon \left\{ -\frac{1}{3} \frac{\nu + \frac{k^{2}}{\epsilon}}{q} \frac{\left\langle \left\| \hat{C}_{1}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle} \pm \frac{\sqrt{2}}{3} \frac{\nu - \frac{k^{2}}{\epsilon}}{q} \frac{C_{A}C_{V}^{*} + C_{A}^{'}C_{V}^{'*}}{\left|C_{A}\right|^{2} + \left|C_{A}^{'}\right|^{2}} \frac{\left\langle \left\| \hat{M}_{1}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle} - i\sqrt{\frac{2}{3}} \frac{\left\langle \left\| \hat{E}_{1}^{A(1)} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle} \right\} \\ \delta_{\beta\nu}^{1^{+}} &= 2 \Re \epsilon \left\{ \frac{\epsilon + \nu}{q} \frac{\left\langle \left\| \hat{C}_{1}^{A} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle} \mp \sqrt{2} \frac{\epsilon - \nu}{q} \frac{C_{A}C_{V}^{*} + C_{A}^{'}C_{V}^{'*}}{\left|C_{A}\right|^{2} + \left|C_{A}^{'}\right|^{2}} \frac{\left\langle \left\| \hat{M}_{1}^{V} \right\| \right\rangle}{\left\langle \left\| \hat{L}_{1}^{A} \right\| \right\rangle} \right\} \end{split}$$

 $C_0^V, L_1^A \propto 1$ $C_1^A, M_1^V \propto qR$ higher corrections $\propto (qR)^2$

1st Forbidden Corrections

29

Θ

$$\begin{split} \left(q,\vec{\beta}\cdot\hat{\nu}\right) &= \left[\frac{\left|C_{A}\right|^{2}+\left|C_{A}'\right|^{2}}{2}\left\{\left(1+\hat{\nu}\cdot\vec{\beta}\right)\left|\left\langle\left\|\hat{c}_{0}^{A}\right\|\right\rangle\right|^{2}+\left(1-\hat{\nu}\cdot\vec{\beta}+2\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\right)\left|\left\langle\left\|\hat{L}_{0}^{A}\right\|\right\rangle\right|^{2}-\right.\\ &\left.-\hat{q}\left(\hat{\nu}+\vec{\beta}\right)2\Re\left(\left|\left|\hat{L}_{0}^{A}\right\|\right\rangle\left\langle\left\|\hat{c}_{0}^{A}\right\|\right\rangle^{*}\right)+\left[1-\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\right]\left|\left\langle\left\|\hat{M}_{1}^{A}\right\|\right\rangle\right|^{2}+\right.\\ &\left.+\frac{5}{2}\left[1+\delta_{1}^{2-}-\frac{2}{5}\hat{\nu}\cdot\vec{\beta}\left(1+\delta_{\beta\nu}^{2-}\right)+\frac{1}{5}\left(\hat{\nu}\cdot\hat{q}\right)\left(\vec{\beta}\cdot\hat{q}\right)\left(1+\delta_{proj}^{2-}\right)\right]\left|\left\langle\left\|\hat{L}_{2}^{A}\right\|\right\rangle\right|^{2}\right\}+\right.\\ &\left.+\frac{\left|C_{V}\right|^{2}+\left|C_{V}'\right|^{2}}{2}\left\{\left[1+3\frac{\omega^{2}}{q^{2}}-2\frac{\omega\left(\nu+\frac{k^{2}}{\epsilon}\right)}{q^{2}}+\left(1-\frac{\omega^{2}}{q^{2}}-2\frac{\omega\left(\epsilon+\nu\right)}{q^{2}}\right)\hat{\nu}\cdot\vec{\beta}\right]\left|\left\langle\left\|\hat{C}_{1}^{V}\right\|\right\rangle\right|^{2}\right.\\ &\left.+\frac{\omega}{q}\left(\frac{\nu-\frac{k^{2}}{\epsilon}}{q}+\frac{\epsilon-\nu}{q}\hat{\nu}\cdot\vec{\beta}\right)2\sqrt{2}\Re\left(\frac{C_{V}C_{A}^{*}+C_{V}'C_{A}^{*}}{\left|C_{V}\right|^{2}}\left\langle\left\|\hat{C}_{1}^{V}\right\|\right\rangle\left\langle\left\|\hat{M}_{1}^{A}\right\|\right\rangle^{*}\right)\right\}\end{split}$$

$$\begin{split} \delta_1^{2^-} &= -2 \Re \mathfrak{e} \left\{ i \sqrt{\frac{3}{5}} \frac{\left\langle \left\| \hat{L}_2^A(1) \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} + \right. \\ &+ \frac{1}{5} \frac{\nu + \frac{k^2}{\epsilon}}{q} \frac{\left\langle \left\| \hat{C}_2^A \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} \mp \frac{\sqrt{6}}{5} \frac{\nu - \frac{k^2}{\epsilon}}{q} \frac{C_A C_V^* + C_A' C_V'}{|C_A|^2 + |C_A'|^2} \frac{\left\langle \left\| \hat{M}_2^V \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} \right\} \\ \delta_{\beta\nu}^{2^-} &= 2 \Re \mathfrak{e} \left\{ \frac{\epsilon + \nu}{q} \frac{\left\langle \left\| \hat{C}_2^A \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} \mp \sqrt{\frac{3}{2}} \frac{\epsilon - \nu}{q} \frac{C_A C_V^* + C_A' C_V'}{|C_A|^2 + |C_A'|^2} \frac{\left\langle \left\| \hat{M}_2^V \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} \right\} \\ \delta_{proj}^{2^-} &= 2 \Re \mathfrak{e} \left\{ i \sqrt{15} \frac{\left\langle \left\| \hat{L}_2^A(1) \right\| \right\rangle}{\left\langle \left\| \hat{L}_2^A \right\| \right\rangle} \right\}. \end{split}$$

 $\hat{C}_1^V \propto \frac{q}{\omega} \frac{P}{2m_N} \quad \hat{C}_0^A \propto \frac{P}{2m_N}$

 $\hat{L}_{0}^{A}, \hat{M}_{1}^{A} \propto \frac{qr}{3} \text{ and } \hat{L}_{2}^{A} \propto \frac{qr}{15}$ $\hat{C}_{1}^{V(1)} \propto \frac{q}{\omega} \left(\frac{P}{2m_{N}}\right)^{3}; \hat{C}_{0}^{A(1)}, \hat{L}_{1}^{V(1)}, \hat{E}_{1}^{V(1)} \propto \left(\frac{P}{2m_{N}}\right)^{3}$ $\hat{L}_{0}^{A(1)}, \hat{M}_{1}^{A(1)} \propto \frac{qr}{3} \left(\frac{P}{2m_{N}}\right)^{2} \text{ and } \hat{L}_{2}^{A(1)}, \hat{E}_{2}^{A(1)} \propto \frac{qr}{15} \left(\frac{P}{2m_{N}}\right)^{2}$ $\hat{C}_{2}^{A}, \hat{M}_{2}^{V} \propto \frac{(qr)^{2}}{15} \frac{P}{2m_{N}}$

WIMPs Scattering Formalism

31

Non-Relativistic Nuclear Reduction

Contact interaction Lagrangian between a spin- $^{1}/_{2}$ WIMP χ & a nucleon N:

$$L_{int} \sim \bar{\chi} O_{\chi} \chi \overline{N} O_N N \approx \sum_{i=1}^{16} c_i O_i \bar{\chi} \chi \overline{N} N$$

(Leading order in the particles' velocities $\frac{p}{m_{\chi}}$, $\frac{k}{m_N}$)

 $\{O_i\}_{i=1}^{16}$ – 16 non-relativistic operators appropriate to use with Pauli spinors, built of 4 three-vectors:

 $\Box = \frac{i\vec{q}}{m_N} (\vec{q} - \text{momentum transfer})$

$$\Box \quad \vec{v}^{\perp} \equiv \frac{\vec{P}}{2m\chi} - \frac{\vec{K}}{2m_N}$$

 $\Box \quad \vec{S}_{\chi}, \vec{S}_N \text{ - particle spins}$

j	$\mathcal{L}^{j}_{\mathrm{int}}$	Nonrelativistic Reduction	$\sum_i c_i O_i$
1	$\bar{\chi}\chi\bar{N}N$	$1_{\chi}1_N$	\mathcal{O}_1
2	$i\bar{\chi}\chi\bar{N}\gamma^5N$	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	\mathcal{O}_{10}
3	$i\bar{\chi}\gamma^5\chi\bar{N}N$	$-i\frac{\vec{q}}{m_{\chi}} \cdot \vec{S}_{\chi}$	$-\frac{m_N}{m_\chi}O_{11}$
4	$\bar{\chi}\gamma^5\chi\bar{N}\gamma^5N$	$-\frac{\vec{q}}{m_{\chi}} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	$-\frac{m_N}{m_{\chi}}O_6$
5	$\frac{P^{\mu}}{m_M} \bar{\chi} \chi \frac{K_{\mu}}{m_M} \bar{N} N$	$4 \frac{m_{\chi} m_N}{m_M^2} 1_{\chi} 1_N$	$4 \frac{m_{\chi} m_N}{m_M^2} O_1$
6	$\frac{P^{\mu}}{m_M} \bar{\chi} \chi \bar{N} i \sigma_{\mu \alpha} \frac{q^{\alpha}}{m_M} N$	$-\frac{m_{\chi}}{m_N}\frac{\vec{q}^2}{m_M^2}1_{\chi}1_N - 4i\frac{m_{\chi}}{m_M}\vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_N\right)$	$-\frac{m_{\chi}}{m_{N}}\frac{\vec{q}^{2}}{m_{M}^{2}}\mathcal{O}_{1}+4\frac{m_{\chi}m_{N}}{m_{M}^{2}}\mathcal{O}_{3}$
7	$\frac{P^{\mu}}{m_M} \bar{\chi} \chi \bar{N} \gamma_{\mu} \gamma^5 N$	$-4 \frac{m_{\chi}}{m_M} \vec{v}^{\perp} \cdot \vec{S}_N$	$-4 \frac{m_{\chi}}{m_M} O_7$
8	$i \frac{P^{\mu}}{m_{\rm M}} \bar{\chi} \chi \frac{K_{\mu}}{m_{\rm M}} \bar{N} \gamma^5 N$	$4i \frac{m_{\chi}}{m_M} \frac{\vec{q}}{m_M} \cdot \vec{S}_N$	$4 \frac{m_{\chi} m_N}{m_M^2} O_{10}$
9	$\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{M}}\chi\frac{K_{\mu}}{m_{M}}\bar{N}N$	$\frac{m_N}{m_\chi} \frac{\vec{q}^2}{m_M^2} 1_{\chi} 1_N + 4i \frac{m_N}{m_M} \vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_{\chi}\right)$	$\frac{\overline{m_N}}{\overline{m_\chi}}\frac{\overline{q}^2}{\overline{m_M^2}}\mathcal{O}_1 - 4\frac{\overline{m_N^2}}{\overline{m_M^2}}\mathcal{O}_5$
10	$\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{\rm M}}N$	$4\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{\chi}\right)\cdot\left(\frac{\vec{q}}{m_{\rm M}}\times\vec{S}_{N}\right)$	$4\left(\frac{\vec{q}^{2}}{m_{M}^{2}}O_{4}-\frac{m_{N}^{2}}{m_{M}^{2}}O_{6}\right)$
11	$\bar{\chi} i \sigma^{\mu\nu} \frac{q_{\nu}}{m_M} \chi \bar{N} \gamma^{\mu} \gamma^5 N$	$-4i\left(\frac{\vec{q}}{m_M} \times \vec{S}_{\chi}\right) \cdot \vec{S}_N$	$-4 \frac{m_N}{m_M} O_9$
12	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\chi\frac{K_{\mu}}{m_{\rm M}}\bar{N}\gamma^5N$	$\left[i\frac{\vec{q}^2}{m_\chi m_{\rm M}} - 4\vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_{\rm M}} \times \vec{S}_\chi\right)\right] \frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_N$	$\frac{m_N}{m_\chi} \frac{\vec{q}^2}{m_M^2} \mathcal{O}_{10} + 4 \frac{\vec{q}^2}{m_M^2} \mathcal{O}_{12} + 4 \frac{m_N^2}{m_M^2} \mathcal{O}_{15}$
13	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \frac{K_{\mu}}{m_{M}}\bar{N}N$	$4 \frac{m_N}{m_M} \vec{v}^{\perp} \cdot \vec{S}_{\chi}$	$4 \frac{m_N}{m_M} O_8$
14	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{M}}N$	$-4i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_N\right)$	$4 \frac{m_N}{m_M} O_9$
15	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$-4\vec{S}_{\chi}\cdot\vec{S}_{N}$	$-4O_4$
16	$i\bar{\chi}\gamma^{\mu}\gamma^{5}\chi \frac{K^{\mu}}{m_{M}}\bar{N}\gamma^{5}N$ $P^{\mu} = 5 K_{\mu} = 0.01$	$4i\vec{v}^{\perp} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_M} \cdot \vec{S}_N$	$4 \frac{m_N}{m_M} \mathcal{O}_{13}$
17	$i \frac{P^{\mu}}{m_M} \bar{\chi} \gamma^5 \chi \frac{K_{\mu}}{m_M} \bar{N}N$ $P^{\mu} = -a^{\alpha}$	$-4i\frac{m_N}{m_M}\frac{\vec{q}}{m_M}\cdot S_{\chi}$ $\vec{q} \rightarrow \begin{bmatrix} \vec{q}^2 & \ddots & (\vec{q} \rightarrow \chi) \end{bmatrix}$	$-4 \frac{m_N^2}{m_M^2} O_{11}$ $\vec{a}^2 = m_M^2$.
18		$\frac{\vec{q}}{m_{\rm M}} \cdot \vec{S}_{\chi} \left[i \frac{\vec{q}^2}{m_N m_{\rm M}} - 4 \vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_{\rm M}} \times \vec{S}_N \right) \right]$	$\frac{\vec{q}^2}{m_M^2} \mathcal{O}_{11} + 4 \frac{m_N^2}{m_M^2} \mathcal{O}_{15}$
19	$i \frac{P^{\mu}}{m_M} \bar{\chi} \gamma^5 \chi \bar{N} \gamma_{\mu} \gamma^5 N$ $P^{\mu} = K_{\nu} = 5$	$4i \frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi} \vec{v}_{\perp} \cdot \vec{S}_N$	$4 \frac{m_N}{m_M} O_{14}$ m_{3}^2
20	$\frac{P^{\mu}}{m_{\rm M}}\bar{\chi}\gamma^5\chi\frac{K_{\mu}}{m_{\rm M}}\bar{N}\gamma^5N$	$-4rac{ec{q}}{m_{\mathrm{M}}}\cdotec{S}_{\chi}rac{ec{q}}{m_{\mathrm{M}}}\cdotec{S}_{N}$	$-4 \frac{m_N^2}{m_M^2} O_6$

A. L. Fitzpatrick, W. Haxton et al., J. Cosmol. Astropart. Phys, 2013(02):004, 2013

Doesn't take into account Tensor couplings between WIMPs and nucleons

WIMPs Tensor Interactions

32

Using the same tensor current decomposition we used for achieving the tensor multipole expansion, we were able to obtain, for the first time, the nonrelativistic reduction for the tensor coupling:

j	$\mathcal{L}_{ ext{int}}^{j}$	Nonrelativistic Reduction	$\Sigma_i c_i O_i$]
21	$\bar{\chi}\sigma^{\mu u}\chi\bar{N}\sigma_{\mu\nu}N$	$8\left(\vec{S}_{\chi}\cdot\vec{S}_{N} ight)$	80 ₄	
22	$\bar{\chi} \sigma^{\mu\nu} \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu} \right) N$	$ \begin{array}{l} i \frac{\vec{q}^2}{m_\chi m_M} 1_\chi 1_N - 4i \frac{\vec{q}^2}{m_M m_N} \left(\vec{S}_\chi \cdot \vec{S}_N \right) + \\ + 4i \left(\frac{\vec{q}}{m_M} \cdot \vec{S}_\chi \right) \left(\frac{\vec{q}}{m_N} \cdot \vec{S}_N \right) + 2 \left(\frac{\vec{P}}{m_\chi} + \frac{\vec{R}}{m_N} \right) \cdot \left(\vec{S}_\chi \times \frac{\vec{q}}{m_M} \right) \end{array} $	$\begin{array}{c} i \frac{\vec{q}^2}{m_M m_N} O_1 - 4 i \frac{\vec{q}^2}{m_M m_N} O_4 + \\ + 4 i \frac{m_N}{m_M} O_6 + 4 i \left(O_3 - 2 O_{17} \right) \end{array}$	Another 4 non-relativistic operators, built of 1 more
23	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\left(rac{q^{\mu}}{m_{M}}rac{K^{\nu}}{m_{M}}-rac{q^{\nu}}{m_{M}}rac{K^{\mu}}{m_{M}} ight)N$	$4rac{ec{K}}{m_M}\cdot\left(ec{S}_\chi imesrac{ec{q}}{m_M} ight)$	$8i \frac{m_N^2}{m_M^2} (O_3 - O_{17})$	
24	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{N}\left(\gamma\mu\frac{d}{m'_M}\gamma\nu-\gamma\nu\frac{k}{m'_M}\gamma\mu\right)N$	$16irac{q_{ m O}}{mM}\left(ec{S}_{\chi}\cdotec{S}_{N} ight)$	$16i \frac{q_0}{m_M}O_4$	three-vector (\vec{P})
25	$\tilde{\chi}\left(\frac{q^{\mu}}{m_{M}}\gamma^{\nu}-\frac{q^{\nu}}{m_{M}}\gamma^{\mu}\right)\chi\bar{N}\sigma_{\mu\nu}N$	$\frac{i\frac{\vec{q}^2}{m_M m_N} 1_{\chi} 1_N - 4i \frac{\vec{q}^2}{m_M m_{\chi}} \left(\vec{S}_{\chi} \cdot \vec{S}_N \right) + \\ + 4i \left(\frac{\vec{q}}{m_{\chi}} \cdot \vec{S}_{\chi} \right) \left(\frac{\vec{q}}{m_M} \cdot \vec{S}_N \right) - 2 \left(\frac{\vec{p}}{m_{\chi}} + \frac{\vec{k}}{m_N} \right) \cdot \left(\vec{S}_N \times \frac{\vec{q}}{m_M} \right)$	$i \frac{\tilde{q}^2}{m_M m_N^N} O_1 - 4i \frac{\tilde{q}^2}{m_M m_\chi} O_4 +$ $+ 4i \frac{m_N^2}{m_M m_\chi} O_6 - 4i (O_5 - 2O_{18})$	$O_{17} = i\vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \frac{\vec{P}}{2m_\chi}\right)$
26	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \gamma^{\nu} - \frac{q^{\nu}}{m_M} \gamma^{\mu}\right) \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu}\right) N$	$\frac{2 \tilde{q}^2}{m_M^2} 1_{\chi} 1_N$	$2 \frac{\overline{q}^2}{m_M^2} O_1$	$O_{17} \equiv i S_N \cdot \left(\frac{1}{m_N} \times \frac{1}{2m_N} \right)$
27	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \gamma^{\nu} - \frac{q^{\nu}}{m_M} \gamma^{\mu} \right) \chi \bar{N} \left(\frac{q^{\mu}}{m_M} \frac{K^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{K^{\mu}}{m_M} \right) N$	$2 \frac{m_N}{m_M} \frac{\vec{q}^2}{m_M^2} 1_{\chi} 1_N - 2 \frac{q_0}{m_M} \left(\frac{\vec{q}}{m_M} \cdot \frac{\vec{K}}{m_M} \right)$	$2 \frac{m_N}{m_M} \frac{\tilde{q}^2}{m_M^2} O_1 - 2 \frac{q_0}{m_M} \frac{m_N^2}{m_M^2} O_{19}$	
28	$\tilde{\chi}\left(\frac{q^{\mu}}{m_{M}}\gamma^{\nu}-\frac{q^{\nu}}{m_{M}}\gamma^{\mu}\right)\chi\tilde{N}\left(\gamma\mu\frac{4}{m_{M}}\gamma\nu-\gamma\nu\frac{6}{m_{M}}\gamma\mu\right)N$	$\frac{16\frac{q_0}{m_M}\left[\frac{\dot{q}^2}{m_M m_\chi}\left(\vec{S}_\chi\cdot\vec{S}_N\right) - \left(\frac{\dot{q}}{m_\chi}\cdot\vec{S}_\chi\right)\left(\frac{\dot{q}}{m_M}\cdot\vec{S}_N\right) - \frac{\dot{q}}{2}\frac{\vec{P}}{m_\chi}\cdot\left(\vec{S}_N\times\frac{\dot{q}}{m_M}\right)\right]}$	$\frac{16\frac{q_0}{m_M}}{m_M m_\chi} \left[\frac{\vec{q}^2}{m_M m_\chi} O_4 - \frac{m_N^2}{m_M m_\chi} O_6 - \frac{m_N}{m_M} O_{18} \right]$	$O_{18} = i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \frac{\vec{P}}{2m_\chi}\right)$
29	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{P^{\mu}}{m_M} \right) \chi \bar{N} \sigma_{\mu\nu} N$	$-4 \frac{\vec{P}}{m_M} \cdot \left(\vec{S}_N \times \frac{\vec{q}}{m_M} \right)$	$\frac{8i\frac{m_Nm_{\chi}}{m_M^2}O_{18}}{m_M^2}$	$\vec{\tau}$ \vec{D} $\vec{\tau}$
30	$\bar{\chi} \left(\frac{q^{\mu}}{m_M} \frac{p^{\nu}}{m_M} - \frac{q^{\nu}}{m_M} \frac{p^{\mu}}{m_M} \right) \chi \bar{N} \left(\frac{q_{\mu}}{m_M} \gamma_{\nu} - \frac{q_{\nu}}{m_M} \gamma_{\mu} \right) N$	$2 \frac{m_{\chi}}{m_M} \frac{\vec{q}^2}{m_M^2} 1_{\chi} 1_N + 2 \frac{q_0}{m_M} \left(\frac{\vec{q}}{m_M} \cdot \frac{\vec{p}}{m_M} \right)$	$2 \frac{m\chi}{m_M} \frac{\tilde{q}^2}{m_M^2} O_1 + 2 \frac{q_0}{m_M} \frac{m_N m\chi}{m_M^2} O_{19}$	$O_{19} = \frac{\vec{q}}{m_N} \cdot \frac{\vec{P}}{m_\chi} = \frac{\vec{q}}{m_N} \cdot \frac{\vec{K}}{m_N}$
31	$\tilde{\chi}\left(\frac{q^{\mu}}{m_M}\frac{P^{\nu}}{m_M} - \frac{q^{\nu}}{m_M}\frac{P^{\mu}}{m_M}\right)\chi\bar{N}\left(\frac{q^{\mu}}{m_M}\frac{K^{\nu}}{m_M} - \frac{q^{\nu}}{m_M}\frac{K^{\mu}}{m_M}\right)N$	$2 \frac{m \chi m_N}{m_M^2} \frac{q^2}{m_M^2} 1_{\chi} 1_N - 2 \frac{q_0^2}{m_M^2} \left(\frac{\vec{p}}{m_M} \cdot \frac{\vec{K}}{m_M} \right)$	$2 \frac{m\chi m_N}{m_M^2} \frac{\bar{q}^2}{m_M^2} O_1 - 2 \frac{q_0^2}{m_M^2} \frac{m_N m_\chi}{m_M^2} O_{20}$	$m_N m_\chi m_N m_N$
32	$\bar{\chi}\left(\frac{q^{\mu}}{m_{M}}\frac{P^{\nu}}{m_{M}}-\frac{q^{\nu}}{m_{M}}\frac{P^{\mu}}{m_{M}}\right)\chi\bar{N}\left(\gamma_{\mu}\frac{q}{m_{M}}\gamma_{\nu}-\gamma_{\nu}\frac{q}{m_{M}}\gamma_{\mu}\right)N$	$-16i \frac{q_0}{m_M} \frac{\vec{P}}{m_M} \cdot \left(\vec{S}_N \times \frac{\vec{q}}{m_M}\right)$	$-32 \frac{q_0}{m_M} \frac{m_N m_{\chi}}{m_M^2} O_{18}$	\vec{P} \vec{K} \vec{P}^2 \vec{P}
33	$\bar{\chi}\left(\gamma^{\mu}\frac{\hbar}{m_{M}}\gamma^{\nu}-\gamma^{\nu}\frac{\phi}{m_{M}}\gamma^{\mu}\right)\chi\bar{N}\sigma_{\mu\nu}N$	$16i \frac{q_0}{m_M} \left(\vec{S}_{\chi} \cdot \vec{S}_N \right)$	$16i \frac{q_0}{m_M}O_4$	$O_{20} = \frac{\vec{P}}{m_{\chi}} \cdot \frac{\vec{K}}{m_N} = \frac{\vec{P}^2}{m_{\chi}^2} - 2\vec{v}^{\perp} \cdot \frac{\vec{P}}{m_{\chi}}$
34	$\bar{\chi}\left(\gamma^{\mu}\frac{d}{m_{M}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{M}}\gamma^{\mu}\right)\chi\bar{N}\left(\frac{q_{\mu}}{m_{M}}\gamma_{\nu}-\frac{q_{\nu}}{m_{M}}\gamma_{\mu}\right)N$	$\frac{16 \frac{q_0}{m_M}}{\left[\frac{q^2}{m_M m_N} \left(\vec{S}_{\chi} \cdot \vec{S}_N\right) - \left(\frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi}\right) \left(\frac{\vec{q}}{m_N} \cdot \vec{S}_{\chi}\right) + \frac{i}{2} \frac{\vec{k}}{m_N} \cdot \left(\vec{S}_{\chi} \times \frac{\vec{q}}{m_M}\right)\right]$	$\frac{16 \frac{q_0}{m_M}}{m_M m_N} \left[\frac{\bar{q}^2}{m_M m_N} O_4 - \frac{m_N}{m_M} O_6 - \frac{m_N}{m_M} (O_3 - O_{17}) \right]$	$\begin{array}{cccc} m_{\chi} & m_{N} & m_{\tilde{\chi}}^{*} & m_{\chi} \\ & 20 \end{array}$
35	$\bar{\chi}\left(\gamma^{\mu}\frac{d}{m_{M}}\gamma^{\nu}-\gamma^{\nu}\frac{d}{m_{M}}\gamma^{\mu}\right)\chi\bar{N}\left(\frac{q^{\mu}}{m_{M}}\frac{\kappa^{\nu}}{m_{M}}-\frac{q^{\nu}}{m_{M}}\frac{\kappa^{\mu}}{m_{M}}\right)N$	$16i \frac{q_0}{m_M} \frac{\vec{\kappa}}{m_M} \cdot \left(\vec{S}_{\chi} \times \frac{\vec{q}}{m_M}\right)$	$-\frac{m_N}{m_M}O_6^{-}-\frac{m_N}{m_M}(O_3^{-}-O_{17})\right]$ $-32\frac{q_0}{m_M}\frac{m_M^2}{m_{ff}^2}(O_3^{-}-O_{17})$	$\sum \sum $
36	$\bar{\chi}\left(\gamma^{\mu}\frac{b}{mM}\gamma^{\nu}-\gamma^{\nu}\frac{d}{mM}\gamma^{\mu}\right)\chi\bar{N}\left(\gamma_{\mu}\frac{d}{mM}\gamma_{\nu}-\gamma_{\nu}\frac{b}{mM}\gamma_{\mu}\right)N$	$32\left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_M}\right)\left(\vec{S}_N \cdot \frac{\vec{q}}{m_M}\right) - 32\left(\frac{q_0^2}{m_M^2} + \frac{\vec{q}^2}{m_M^2}\right)\left(\vec{S}_{\chi} \cdot \vec{S}_N\right)$	$32 \frac{m_N^2}{m_M^2} O_6 - 32 \left(\frac{q_0^2}{m_M^2} + \frac{\bar{q}^2}{m_M^2} \right) O_4$	$\int L_{int} \approx \sum_{i=1}^{N} c_i O_i \bar{\chi} \chi \bar{N} N$
			Ne	i=1

Summary

Summary

- We have Accurate expressions for SM & BSM (including tensor)
- We have formalism for corrections resulted from nuclear structure, in the "language" of nuclear structure calculations

Ability to provide single nucleon matrix elements

The general expression allows us to pinpoint different types of beta decays that it's interesting to measure, because of their different sensitivity to BSM signatures

E.g. unique first forbidden decay @ ¹⁶N

- Allows us to find more interesting decay transitions and nuclei
- The general expression also allows us to analyze other BSM experiments - direct detection WIMPs searches