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Outline
Introduction to our relativistic approach to β-decay (β-decay 
and EC  are not only purely nuclear but also atomic processes) 

What is correlation in c.m. and why is important to interpret β-
decay lineshapes: a primer on many-body approaches, from 
semi-empirical to mean-field (HF and DHF) 

Application of  our approach to a number of  β-decay processes 
in heavy atoms (                                                       )          

Application to β-decay of  Tritium and to EC in 163Ho for the 
determination of  neutrino mass 

Application to astrophysical scenario 

Perspectives, future developments and conclusions 
 

36Cl,63 Ni,129 I,210 Bi,241 Pu,



• Standard Model of  particle physics: weak interaction is 
caused by emission or absorption of  very massive bosons

 

 

  
(range of strong interaction)

Weak hadronic current

Weak leptonic current

Short range=Fermi contact interaction 
Validity of  the independent particle model to treat the e- -capture and emission

β-decay from a c.m. perspective: tool basket



In the traditional theory of  β-decay processes, spectra are typically 
calculated as product of  three factors:  

 a phase-space factor to deal with the momentum sharing between the β-
electron (p) and neutrino (q); 
 a Fermi function F(Z,W) to take into account the static corrections due to 
the Coulomb field of  the nucleus; 
 a shape factor C(W) to include the coupling between nuclear and lepton 
dynamics. 

A typical nuclear β-decay process reads:
A
ZXN ! A

Z+1X
0

N�1 + e� + ⌫̄e

Q�� = {[m(AX)� Z ·me]� [m(AX
0
)� (Z + 1) ·me]�me} · c2 + {

ZX

i=1

Bi �
Z+1X

i=1

Bi}

Q-value:  total energy released by the reaction (             )m⌫ = 0

Q�� = mN (AX)�mN (AX 0) m(AX) = mN (AX) + Zme �
ZX

i=1

(Bi)

Extra-nuclear factor

β-decay from a c.m. perspective: tool basket
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dN
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It works well to predict the lineshapes of  allowed and forbidden 
unique transitions, at variance, nuclear structure effects cannot be 
neglected when dealing with forbidden non-unique transitions, and 
there is no such a simple relation for C(W) 

β-decay from a c.m. perspective

One can treat first forbidden non-unique transitions as allowed if

where               is the maximum escaping energy of  the β-electron 
and      is the fine structure constant

2⇠ =
↵Z

Rnuc
>> Emax

Emax

Still a rigours treatment of  these transitions from the 
electronic structure point of  view is missing!!!

↵

Our approach to beta-decay helps to solve these issues, 
related to many-body effects, in the leptonic current term



β-decay rate is calculated by using Fermi’s Golden Rule:

 

Creates a proton

Destroys a neutron

Creates an electron
Destroys a neutrino 
(creates an antineutrino)

 
 

Standard Model β-decay theory

    Weak Interaction Hamiltonian

All the wavefunctions  will be written as Dirac spinors

Pi!f = 2⇡

Z
|hf |Ĥ� |ii|2⇢(Wf )�(Wf �Wi)dWf

H� =
G�
p
2
( ̄f,p(r)�

µ(1� x�5) ̂i,n(r)) · ( ̄f,e(r)�µ(1� �5) ̂i,⌫(r)) + h.c.
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Initial nuclear 
Fock-space state:

Final nuclear 
Fock-space:

Initial lepton
Fock-space:

Field operators entering the Weak Interaction Hamiltonian

β-decay theory

Final lepton
Fock-space:

In the standard approximation, one considers the particles 
entering the decay as non-interacting single particles

 ̂+
e (r) =

X

n0
B ,0

B ,µ0
B

hn0
B ,

0
B , µ

0
B |ri â+B,e +

Z
dW 0

C

X

0
C ,µ0

C

hW 0
C ,

0
C , µ

0
C |ri â+C,e

+ positron destruction term

 ̂n(r) =
X

⇠n,jn,µn

hr|⇠n, jn, µni ân+

antineutron creation term

 ̂+
p (r) =

X

⇠p,jp,µp

h⇠p, jp, µp|ri â+p +

antiproton destruction term

|(nB ,B , µB +W f
C ,

f
C , µ

f
C);W⌫ ,⌫ , µ⌫iL ⌘ (â+C,e + â+C,e)b

†
⌫ |0; 0iL

jp,n,e nuclear spin

projection along the quantization axisµp,n,e
⇠p,n,e quantum number characterizing the nuclear state

Inclusion of  the antisymmetrization



   with electron energy

β-decay theory: total decay rate

I =

Z Z
h⇠p, jp, µp|  ̂+

p
(rh)�

0�µ(1� x�5) ̂n(rh) |⇠n, jn, µni·

h
^

B,C

n0
B
,0

B
, µ0

B
,W 0

C
,0

C
, µ0

C
;W⌫ ,⌫ , µ⌫ |  ̂+

e
(rl)�

0�µ(1� �5) ̂⌫(rl) |
^

B

nB ,B , µB ; 0i �(rh � rl)drhdrl =

=

Z
JH,µ

i!f
(rh)J

L

i!f,µ
(rh) drh expresses the point-like nature of  the decay

This notation is useful because it allows to split the  
matrix element into nuclear and lepton parts

�(rh � rl) =
X

L0,q

�(rh � rl) · r�2
l · YL0,q(✓h,�h)YL0,�q(✓l,�l) · (�)q

Spherical armonics

µ �0
and runs over magnetic and principal quantum number and where 

�t =
⇡G2

�

(2jn + 1)(2JB + 1)

X

�

X

µn,µp

X

µ0
B ,µ0

C ,µB

X

µ⌫

Z
|I|2⇢(Wf )�(Q� T 0

C �W⌫)dW⌫dW
0
C

hf |H� |ii
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To find the eigensolutions of  the SM Hamiltonian for the β-
decay we make a first major “approximation”: we assume 
that one can factorize this operator as the tensorial 
product of  of  two interacting currents: 
✤ hadronic (nuclear); 
✤ leptonic (electron + neutrino)

hf |H� |ii =
G�
p
2
JH,µ

i!f
(r)JL

i!f,µ
(r)

β-decay theory

Explicitly:

JL
i!f,µ(r) =  +

f,e(r)�0�µ
�
1� �5

�
 i,⌫(r)

where:

JH.µ

i!f
(r) =  +

f,p
(r)�0�

µ
�
1� x�5

�
 i,n(r)

e- and 𝜈 can be considered uncoupled

n and p w.f. can be factorized provided that the nucleus is “hydrogenic”, that is 
composed by a closed shell with only one single nucleon in one open shell embedded  
in the mean field generated by the closed shell



Nuclear matrix element on a real space grid

inserting the expressions for the field operators

and applying anti-commutation rules for creation/destruction Fock-space operators

one gets
Selection rules

β-decay theory in central symmetry

JH,µ(rh) =

Z
d⌦hYL0,q(✓h,�h)h⇠p, jp, µp|  ̂+

p
(rh)�

0�µ(1� x�5) ̂n(rh) |⇠n, jn, µni · r2h =

=

Z
d⌦hYL0,q(✓h,�h)h0|âp  ̂+

p
(rh)�

0�µ(1� x�5) ̂n(rh) â
+
n
|0i · r2

h

JH,µ(rh) =
X

⇠0p,j
0
p,µ

0
p

X

⇠0n,j
0
n,µ

0
n

h0|âp â+
p0 ân0 â+

n
|0i

·
Z

d⌦hYL0,q(✓h,�h)h⇠0p, j0p, µ0
p
|rhi �0�µ(1� x�5)hrh|⇠0n, j0n, µ0

n
i · r2

h

JH,µ(rh) =

Z
d⌦hYL0,q(✓h,�h)h⇠p, jp, µp|rhi �0�µ(1� x�5)hrh|⇠n, jn, µni · r2h



β-decay theory: total decay rate
Lepton matrix element on a real space grid

JL
µ (rh) =

Z
drl

Z
d⌦lYL0,�q(✓l,�l)h

^
B,C

n0
B ,

0
B , µ

0
B ,W

0
C ,

0
C , µ

0
C ;W⌫ ,⌫ , µ⌫ |

 ̂+
e (rl)�

0�µ(1� �5) ̂⌫(rl) |
^

B
nB ,B , µB ; 0i �(rh � rl) =

=

Z
drl

Z
d⌦lYL0,�q(✓l,�l)h0; 0|â01,e... â0N,eâ

0
C,eb̂⌫  ̂

+
e (rl)�

0�µ(1� �5) ̂⌫(rl)â
+
1,e... â

+
N,e|0; 0i�(rh � rl)

inserting the expressions for the field operators

JL
µ (rh) =

X

n0
B ,0

B ,µ0
B

Z
dW 0

⌫

X

0
⌫ ,µ

0
⌫

h0; 0|â01,e... â0N,eâ
0
C,eb̂⌫ â

0+
B0,eb̂

+
⌫0 â+1,e... â

+
N,e|0; 0i

Z
drl

Z
d⌦lYL0,�q(✓l,�l)hn0

B ,
0
B , µ

0
B |rli�0�µ(1� �5)hrl|W 0

⌫ ,
0
⌫ , µ

0
⌫i�(rh � rl) +

+

Z
dW 0

C

X

0
C ,µ0

C

Z
dW 0

⌫

X

0
⌫ ,µ

0
⌫

h0; 0|â01,e... â0N,eâ
0
C,eb̂⌫ â

0+
C0,eb̂

+
⌫0 â+1,e... â

+
N,e|0; 0i

Z
drl

Z
d⌦lYL0,�q(✓l,�l)hW 0

C ,
0
C , µ

0
C |rli�0�µ(1� �5)hrl|W 0

⌫ ,
0
⌫ , µ

0
⌫i�(rh � rl)



β-decay theory: total decay rate
Lepton matrix element on a real space grid

{â0B,e, â
0+
B0,e} = �nB ,n0

B
�B ,0

B
�µB ,µ0

B

{â0C,e, â
0+
C0,e} = �(WC �W 0

C) �C ,0
C
�µC ,µ0

C

{b̂⌫ , b̂+⌫0} = �(W⌫ �W 0
⌫) �⌫ ,0

⌫
�µ⌫ ,µ0

⌫

{âB/C,e, b̂⌫} = {â+B/C,e, b̂⌫} = {âC,e, â
+
B,e} = 0

and applying anti-commutation rules for creation/destruction Fock-space operators

JL
µ (rh) =

NX

j=1

Y

B 6=j

(�)jh0; 0|â0B,eâ
0
C,eâ

+
1,e...â

+
N,e|0; 0i

Z
drl

Z
d⌦lYL0,�q(✓l,�l)hn0

B ,
0
B , µ

0
B |rli�0�µ(1� �5)hrl|W⌫ ,⌫ , µ⌫i�(rh � rl) +

+ h0; 0|â01,e... â0N,eâ
+
1,e...â

+
N,e|0; 0iZ

drl

Z
d⌦lYL0,�q(✓l,�l)hW 0

C ,
0
C , µ

0
C |rl�0�µ(1� �5)hrl|W⌫ ,⌫ , µ⌫i�(rh � rl)

one gets
Inclusion of  post-collisional 
                 effects: Fano’s and 

Exchange interactions

Standard beta-decay 
                

i



β-decay theory: total decay rate
Lepton matrix element on a real space grid
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Z
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N,e|0; 0iZ

drl

Z
d⌦lYL0,�q(✓l,�l)hW 0

C ,
0
C , µ
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QL0,q,B;µ(rh)

QL0,q,C;µ(rh)

i



JL
µ (rh) =

�����������

h 0
1|�1i h 0

1|�2i · · · h 0
1|�N i QL0,q,1;µ(rh)

h 0
2|�1i h 0

2|�2i · · · h 0
2|�N i QL0,q,2;µ(rh)

...
. . .

...
h 0

N |�1i h 0
N |�2i · · · h 0

N |�N i QL0,q,N ;µ(rh)
h 0

C |�1i h 0
C |�2i · · · h 0

C |�N i QL0,q,C;µ(rh)

�����������

JH,µ(rh) =

Z
d⌦hYL0,q(✓h,�h)h⇠p, jp, µp|rhi �0�µ(1� x�5)hrh|⇠n, jn, µni · r2h

by combining the leptonic and the hadronic currents

Differential decay rate (electron energy spectrum)

d�

dW t
e

=
⇡G2

�

(2jn + 1)(2JB + 1)

X

�0

X

µn,µp

X

µ0
B ,µB

X

0
C ,µ0

C

X

⌫ ,µ⌫

�����������

P
L0,q(�)q

�����������

h 0
1|�1i h 0

1|�2i · · · h 0
1|�N i ML0,q,1(W⌫ = Q�W t

e)
h 0

2|�1i h 0
2|�2i · · · h 0

2|�N i ML0,q,2(W⌫ = Q�W t
e)

...
. . .

...
h 0

N |�1i h 0
N |�2i · · · h 0

N |�N i ML0,q,N (W⌫ = Q�W t
e)

h 0
C |�1i h 0

C |�2i · · · h 0
C |�N i ML0,q,C(W⌫ = Q�W t

e)

�����������

�����������
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It gives the number of electrons per unit energy and per unit time
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Z
drl

Z
d⌦lYL0,�q(✓l,�l)hn0

B ,
0
B , µ

0
B |rli�0�µ(1� �5)hrl|W⌫ ,⌫ , µ⌫i�(rh � rl)

#
drh;

ML0,q,C =

Z "Z
d⌦hYL0,q(✓h,�h)h⇠p, jp, µp|rhi �0�µ(1� x�5)hrh|⇠n, jn, µni · r2h·

Z
drl

Z
d⌦lYL0,�q(✓l,�l)hW 0

C ,
0
C , µ

0
C |rli�0�µ(1� �5)hrl|W⌫ ,⌫ , µ⌫i�(rh � rl)

#
drh;

The final orbital was      depend on     that identifies the 
possible final (shake-up, shake-off, excited) states

 0
i �0

Using L’ = 0,                         ,  h 0
i|�ji = �ij e- wfs at nuclear radius, and �0

one recovers standard beta-decay 
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Differential decay rate (electron energy spectrum)



The time independent Dirac Hamiltonian of  a many particles system 
In the case of  two different types of  interactions, e.g. represented by 
scalar (gS) and vector (gV) potentials, the Dirac equation reads

Calculation of  the leptonic and hadronic wfs: DHF

8
<

:
X

i

�
c↵i · pi + �imc2 + Vi

�
+

X

i<j

[�i�jgS,ij + (1�↵i ·↵j) gV,ij ]

9
=

; (r1, · · · rN ) = E (r1, · · · rN )

which in second quantization can be written as follows:
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where s1, s2, s1’,s2’ index the bispinor two-components

D
 ̂+
s1(r) ̂

+
s01
(r0) ̂s02

(r0) ̂s2(r)
E
=
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E

To compute the electronic and hadronic current we use the HF 
approximation
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where
WS � scalar potential

WV � vectorial potential

WPS � pseudoscalar potential

AP � pseudo-vectorial potential

Calculation of  the leptonic and hadronic wfs: DHF

WV +WS � Wood-Saxon potential

WV +WS � spin-orbit potential

AP � magnetic field

For leptons:

For hadrons:

= 0

WV �WS

WS = Coulomb interaction

WV = 0

AP = 0



Dirac equation in a spherical potential 

solutions are of  the form:

where

 

are the spherical harmonics tensor

Calculation of  the leptonic wfs

V (r) = �Zf

r
+

Z
⇢(r0)

r>
d3r0 � Vex(r)where

and we assume Vex =
3

2
↵X

h 3
⇡
⇢(r)

i1/3
which is local (TF or LDA)

To numerically solve the DHF equations we use the collocation 
methods, which a Runge-Kutta type integration method



Calculation of  the hadronic wfs: DHF
By changing the interaction potential, the calculation of  
the hadronic wavefunctions within the nuclear matrix 
elements can be performed

VC(r) = �VC


1 + exp

✓
r �R

a

◆��1

ṼSO(r) = ṼSO


1 + exp

✓
r �RSO

aSO

◆��1

RSO = R0,SOA
1/3R = R0A

1/3

aSOa

VC = V0

✓
1± �

N � Z

A

◆
Nuclear wfs simulations out of  scope (WS model potential)

ṼSO = �VC

and

and

= nuclear radius

= diffuseness

V0,�,�, a = aSO, R0, R0,SO

are parameters to be optimised  
according to experiments or ab-initio 
nuclear structure simulations

V0 = 52.06 MeV,� = 0.639, R0 = 1.260 fm,R0,SO = 1.160 fm,� = 24.1, a = aSO = 0.662 fm

Protons

Neutrons
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Q-value = 66.945 keV
(ground state to ground state) 

half-life = 101.2 y100% via ��

Allowed Gamow-Teller

Mean-field DHF + 
screening + exchange 
works just fine as other 
approaches!!!!
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J = 1/2� ! J = 3/2�63
28Ni35 = even-odd

= odd-even63
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63Ni,129 I,241 PuThe beta-decay spectrum of  



129I ! 17374.6321 > 5486.6741
241Pu ! 30566.4823 >> 763.6509

Q-value = 149.4 keV
(ground state to excited state) 

half-life = 1.57X107 y (10.05)��

Second forbidden
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129
53 I76 ! 129

54 Xe⇤75 + e� + ⌫̄e

J = 7/2+ ! J = 3/2+

= odd-even129
53 I76

= even-odd129
54 Xe75

� = 39.578 keV

63Ni,129 I,241 PuThe beta-decay spectrum of  

Mean-field DHF + 
screening + exchange 
works just better than 
other approaches!!!!



63Ni,129 I,241 PuThe beta-decay spectrum of  
129I ! 17374.6321 > 5486.6741

241Pu ! 30566.4823 >> 763.6509

Q-value = 20.78 keV
(ground state to excited state) 

half-life = 14.329 y (6.85)��

First forbidden

= even-odd

= odd-even

� = 39.578 keV

241
94 Pu147 ! 241

95 Am146 + e� + ⌫̄e

J = 5/2+ ! J = 5/2�

241
95 Am146

241
94 Pu147

Mean-field DHF + 
screening + exchange 
works just fine as other 
approaches!!!!
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The beta-decay spectrum of  

Q-value = 709.547 keV
(ground state to excited state) 

half-life = 3.01X105 y��

Second forbidden non-
unique

Mean-field DHF + screening 
(self-consistent DHF)  
+ exchange (discrete-
continuum interaction) does 
not work fine as standard 
approaches !!!!

36
17Cl19 ! 36

18Ar18 + e� + ⌫̄e

J = 2+ ! J = 0+

= even-even

= odd-odd
36
18Ar18
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17Cl19
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Shake-up and shake-off  modifies  
the decay by only 5%



The beta-decay spectrum of  
210
83 Bi127 ! 210

84 Po126 + e� + ⌫̄e

J = 1� ! J = 0+

��

Q-value = 1162.2 keV
(ground state to excited state) 

half-life = 5.012 d

First forbidden non 
-unique

= odd-odd

= even-even210
84 Po126

210
83 Bi127

210
83 Bi127

 0  200  400  600  800  1000 1200

d
λ 
/
 
d
W
e
 
[
a
r
b
.
 
u
n
i
t
s
]

Kinetic energy [keV]

Experimental
Experimental extrapolated

theory - Mougeot
theory - this work

theory mix. trans. - this work

Mean-field DHF + screening  
+ exchange does not work fine 
as standard approaches !!!!

Shake-up and shake-off  modifies  
the decay by only 5%



Final-state nuclear many-body affects on beta-decay 
spectra of  odd-odd nuclei? 

The experimentally determined 
final state of  the             daughter 
nucleus is 0+. Within the nuclear 
shell model two protons and two 
neutrons all occupy the 1d3/2 
single-particle state. By coupling 
the 1d3/2 proton to a 1d3/2 “core” 
to construct a 0+ final symmetry 
state, and by calculating the 
hadronic matrix element for this 
transition only, we obtain the 
lineshape reported as a blue 
curve in the previous figure. We 
could not yet find a good 
agreement between simulations 
and experimental data.

36
18Ar18

Adding “nuclear many-body 
effects” by mixing transitions to 
the 1d3/2  orbital, possibly the 
highest populated orbital 
according to the nuclear shell 
model, with the 2s1/2 level, which 
is energetically close, we find 
good agreement with experiments



Final-state nuclear many-body affects on 
beta-decay spectra of  odd-odd nuclei? 
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Nuclear many-body affects on beta-decay 
spectra of  odd-odd nuclei? 
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β-decay theory: higher order approximations - results



Just take the hermitian conjugate in the previous expression of  
the field operators

138
57 La81 + e� ! 138

56 Ba82 + ⌫e

J = 5+ ! J = 2+

Electron capture of  Lantanum

Q-value = 1742 keV
(ground state to excited 
state) 

half-life = 1.03X 1011 y

Second forbidden 
unique

L

K

L/K=0.44 (0.391)
M/K=0.106 (0.102)

M/L=0.241 (0.261)

M

Most likely capture  
occurs by capturing  
1s1/2 and 2s1/2 electrons  



To reproduce the experimental line shape one has to 
include all the decay processes following the e-capture 

In particular, one has to include K- and L- shell Auger 
decays that compete with γ-ray emission. The daughter 
system undergoes most likely (49.1%) Auger decay 
from the L-shell and less likely (4.16%) the Auger decay 
proceeds from the K-shell, even though the K-shell 
capture is more likely 

Indeed, one may guess that the system, before the 
Auger non-radiative process takes place, undergoes a 
radiative transition which afterwards favours the Auger 
decay from the L-shell with respect to the K-shell.

Electron capture of  Lantanum



Autoionization, Auger, shake-up and shake-off



EC and β-decay are sensitive to a neutrino mass ≠ 0 (≤ 0.1 
eV) in the region very close to the end-point 

The ratio between the region modified by a value of  the 
neutrino mass ≠ 0 and the Q-value is higher for lower Q-
values 

Instruments have a sensitivity inverse proportional to the  
Q-value. For the same sensitivity, the possible influence of  
the neutrino mass on the β-spectrum is more evident in low 
Q-value processes 

The most promising candidates are 163Ho and 3H because 
they have a small Q-value 

One- and two core-hole, shake-up, shake-off  processes  
can dramatically affect the end-point of  the reaction 

General considerations on the determination of  𝛎 mass



Determination of the anti-neutrino 
mass by beta-decay 

KATRIN = Karlsruhe Tritium Neutrino Experiment

Q-value =  18.592 keV

half-life =  12.32 y

Allowed transition

Beyond SM?

3
1T2 ! 3

2He1 + e� + ⌫̄e

J = 1/2+ ! J = 1/2+

Recoil energy is negligible 
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Determination of the neutrino mass 
by electron capture 

ECHo = Electron  Capture by Ho - Heidelberg

Q-value =  2,83 keV

half-life =  4570 y

Ho Electronic configuration
[Xe]4f11 6s2

Recoil energy is negligible 

163
67 Ho96 + e� ! 163

66 Dy97 + ⌫e

J = 7/2� ! J = 5/2�

Allowed transition

Beyond SM?

Gastaldo & Faessler



Electronic capture rate:

The calorimeter measure all the energy, so that the e- -rate of  Ho  
coincides with the de-excitation spectrum of  Dy 

The sum runs over all the orbitals from which the e- can be 
captured 

The line shape is a sum of  Lorentzian functions centered in EH 

 The spectrum depends on the energy Ec = [0:2,833] keV and 
parametrically on the neutrino mass. 

We assume that all the other parameters are constant 

             is the DHF orbital wf  from which the capture occurs, but in 
the final metastable Dy state
�H(0)



1) Electron at nucleus                 s1/2 and p1/2   
 
2) Electron binding energy < Q-value ≈ 2.8 [keV]

E(1s1/2,  K,Ho)   =  55.6 keV 
E(2s1/2, L1,Ho)  =    9.4 keV 
E(2p1/2,L2,Ho)  =    8.9 keV 
E(2p3/2,L3,Ho)  =    8.1 keV
E(3s1/2 ,M1,Ho) = 2.0 keV 
E(3p1/2,M2,Ho) = 1.8 keV 
E(4s1/2 , N1,Ho) = 0.4 keV 
E(4p1/2, N2,Ho) = 0.3 keV  
E(5s1/2  ,O1,Ho) = 0.05 keV



Autoionization only spectral line shape 
(first-order transitions)



To determine the neutrino mass we need to assess the contribution 
to the spectrum in proximity of  the end-point: Lorentzian peaks 

Theory vs. Experiments (first-order transitions)

,



EC in Be
The knowledge of  β decay and electronic capture rates are of  
paramount importance for our understanding of  stellar 
nucleosynthesis and isotopic abundances in stellar and interstellar 
gases 

Motivation of  this work: provide the missing weak-interaction input 
data for Li nucleosynthesis calculations  

 

At ambient conditions 7Be decays in 
53 days into the ground state of  7Li 
(3/2-) for 89.7% of  cases, 10.3% it 
decays into the first excited state (1/2-)

7
4Be+ e� ! 7

3Li+ ⌫e

insensitive to extra-nuclear  
 factors, such as chemical   
  environment, ionization   
    degree, pressure and     
           temperature.

W / �(~r) A small amount of 7Li is produced in stars, 
but is thought to be burned during MS as fast 
as produced when convective processes can 
carry it to temperatures of a few millions K, 

where it undergoes p-captures.

Galactic Cosmic Rays  
do not produce much 7Li



Nucleosynthesis and Solar Neutrinos

proton–proton chain reaction



The e-capture rate for 7Be is proportional to the electronic 
density at the nucleus!!! 

How to calculate            ?  

State-of-the-art techniques are based on the the Debye-Hückel (DH) 
models of  screening, valid only for solar conditions and when 
electrons are not degenerate (but in RBG they could). 

Does DH approximation really stand??? 

How do we actually calculate e-capture rates?

⇢e(0)

Our model system of  stellar plasma is a Fermi gas in the presence of  
neutralising  particles, such as proton, helium, etc…

Factors affecting this density, such as T, 𝜚, the level of  ionization and the 
presence of  other charged particles, screening the interaction, can 
appreciably modify the decay rate



DEGENERACY CONDITIONS: CLASSICAL vs. QUANTUM 

                                                                 

                 and thus                                            , which cannot keep the pace with

The separation between identical particles is <<                
The density is >> Nq where Nq is the number of  available 
quantum states     

Condition of  the stellar material at high T

⇢e >> nQNR = (2⇡mekT/h
2)3/2 = 6.65⇥ 1031 m�3

⇢e / R�3
T << h2⇢2/3/(2⇡mk) = 9.12⇥ 106

T / 1/R

l << �DB = h/p ' h/(3mekT )
1/2 = 2.731⇥ 10�11 m

De Broglie wavelength in the core of  the Sun

Electronic density

�DB

Solar core: T=15.6 X 106 K                   7Be atoms are all ionized  
(12000 K = 1 eV)!!!

nQNR / T (3/2) / R�3/2

In the solar core the temperature is marginally too high for 
degeneracy of  electrons, but decreasing R can set it in... 
Cold? Fermi gas can be degenerate even at millions of  K.

. To have degeneracy  K 



Debye-Hückel  

Which Hamiltonian? Flavours of  Electronic 
Correlation 

Hartree-Fock

model

model

Thomas-Fermi

model

Lower accuracy

Low
er

 a
cc

ura
cy

beyond  
mean-field



Some data…
Degenerate 
condition

Solar 
condition



A pictorial view of  7Be half-life…
half-life (days)= 941.86881/𝜚(0)
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Astrophysical consequences of  the new rate

Equilibrium abundances of  7Be and 7Li in the layers above the H-burning 
shell using our 7Be life-time (red line) and  the solar extrapolated rate (black 
line), in a 2 M⦿ evolved star of  solar metallicity. The matter density is also 
shown (blue line), and is referred to the scale on the right axis.
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Bottom panel: 

Top panel: ratio between the  
STPB13’s e- -capture and  
ADE11’s rates in the  
production region of  8B  
neutrinos, both computed on 
the solar structure resulting  
from the ADE11 SSM, with 
PLJ14 composition. 

Middle panel: ratio between  
the neutrinos fraction in  
STPB13 SSM and ADE11,  
both computed with a PLJ14  
composition. 

n⌫(8B)STPB13 ·RSTPB13

(n⌫(8B)ADE11 ·RADE11)

Being the relative rates very sensitive to the solar core temperature, 
one can infer from neutrino fluxes important information about the 
physics of  the solar interior.
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• Inclusion of  shake-up and shake-off  effects into the calculation 
of  the spectrum; 

• Application of  the DHF equations to calculate accurately Auger 
spectra in molecules containing high A atoms = extension to 
multi-centric systems (almost done); 

• Extension of  this approach to include rigorously the nuclear 
current over nuclear volume to see the influence on β-
spectrum lineshape 
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Conclusions
• A new method for calculating β- and e--capture  

decay spectra in medium to heavy nuclei, which 
extend the standard approach in several ways 

• This method can be applied to any nuclear beta 
decay and include relativistic, many-body screening 
and post-collisional effects 

• Our approach works better than state-of-the-art 




